小发散角N型共阴极Micro LED器件及其阵列

文档序号:1924090 发布日期:2021-12-03 浏览:25次 >En<

阅读说明:本技术 小发散角N型共阴极Micro LED器件及其阵列 (Small-divergence-angle N-type common-cathode Micro LED device and array thereof ) 是由 孙雷 张婧姣 于 2020-05-27 设计创作,主要内容包括:本发明提供了小发散角N型共阴极Micro LED器件及其阵列,包括微光学系统、绝缘隔离结构、隔离结构、像素电极、N型半导体、量子阱层、P型半导体。由于LED发光原理因素,Micro LED器件出光发散角过大,而在工业曝光领域和图像投影领域受投影镜头数值孔径限制,需要Micro LED器件及其阵列所发出的光具有较小的发散角。本专利通过在Micro LED器件上集成绝缘隔离结构、隔离结构、微光学系统的方式进一步收敛发散角使之满足工业曝光领域和图像投影领域的应用。其中Micro LED上的N型半导体相互连接,形成共阴极结构,有利于进一步简化工艺流程降低生产成本。凭借高集成度和可控的光场发散角度,最终将Micro LED推向工业曝光领域和图像投影领域的大规模应用阶段。(The invention provides an N-type common cathode Micro LED device with a small divergence angle and an array thereof. Due to the LED light-emitting principle, the Micro LED device has an excessively large light-emitting divergence angle, and the light emitted by the Micro LED device and the array thereof needs to have a smaller divergence angle due to the limitation of the numerical aperture of the projection lens in the industrial exposure field and the image projection field. The Micro LED device further converges the divergence angle by integrating an insulating isolation structure, an isolation structure and a Micro optical system on the Micro LED device, so that the Micro LED device meets the application requirements of the industrial exposure field and the image projection field. N-type semiconductors on the Micro LED are connected with one another to form a common cathode structure, so that the process flow is further simplified, and the production cost is reduced. By means of high integration and controllable light field divergence angles, Micro LEDs are finally pushed to the large-scale application stage in the industrial exposure field and the image projection field.)

小发散角N型共阴极Micro LED器件及其阵列

技术领域

本发明涉及小发散角N型共阴极Micro LED器件及其阵列。

背景技术

Micro LED技术一般指微型的LED颗粒通过可控的电极供电并控制其开关的技术。目前Micro LED的尺寸从微米级一直到百微米级。一般将相对较大的LED颗粒叫为MiniLED,但Mini LED与Micro LED之间的区分相对模糊。本专利所述Micro LED包含直径小于等于500微米的微LED颗粒。在部分研究者定义中Mini LED也包含500微米以下的微LED颗粒。在Micro LED与Mini LED双方定义重合区间内,本文所指Micro LED也可用Mini LED的称呼进行命名。即也可理解为本文所述Micro LED可用Mini LED进行等价替换。

目前Micro LED技术大量应用于平板显示领域,并得到了快速的发展。从应用层面角度,平板显示领域要求具有较大的观看角度,因此要求Micro LED具有较大的出光角度。从技术原理角度,Micro LED的量子阱层的电致发光为360度发光,因此具有极大的发散角度,恰好满足了平板显示领域应用需求。

而在将Micro LED技术用于紫外曝光、投影仪等光学应用中,由于投影镜头的引入即光学原理限制及应用本身对投影镜头出射光线发散角的要求,需要Micro LED阵列每一个像素单元器件所发光线均有与投影镜头所对应的较小的发散角度。超出发散角度之外的光线将成为杂散光导致对比度下降,黑场亮度过高,像素串扰等问题。

本发明通过采用芯片级光学设计及集成式芯片光学加工方法,通过像素电极、绝缘隔离结构和隔离结构形成对出射光线的反射和吸收的物理结构,最终使出射光线的主要能量向阴极电极和微光学系统方向出射。而微光学系统对出射光线的进一步收敛出射光线的发散角,最终满足数字曝光及投影领域的对Micro LED器件的小发散角技术需求。

传统的Micro LED加工方法中,将海量的Micro LED颗粒的N型半导体层与透明阴极电极或开口的阴极电极进行连接,通过阴极电极的连接实现共阴极结构。在这种工艺情况下,透明阴极电极仍然对Micro LED出射光线有一定的吸收作用,而开口的阴极电极受开口率的限制也对出射光线有一定的吸收作用。

做为上述方法的一种改进,本发明基于Micro LED中的N型半导体材料也具有较高的电子迁移率的原理,通过对LED外延片中N型半导体层不进行完全分离的方式,使MicroLED阵列中的N型半导体成为共阴极结构,进而不需要再为所有的Micro LED颗粒再重新制作阴极电极。解决采用透明阴极材料和开口阴极材料导致的Micro LED光效下降的问题。进一步提高Micro LED颗粒的出光效率。

本发明小发散角Micro LED器件及Micro LED阵列主要优点在于:

1.通过采用绝缘隔离结构、隔离结构、金属像素电极形成的光学结构将Micro LED颗粒的量子阱层所发出的光线反射到所需的输出方向上进一步提高了整个Micro LED器件的整体光效率。

2. 通过采用微光学系统将Micro LED器件发光的发散角进一步收敛到所需的发散角,满足了数字曝光及图像投影系统对小发散角Micro LED器件的光学需求。

3.通过用Micro LED颗粒的N型半导体材料层代替单独制作的阴极电极,进一步简化了结构降低了成本。

发明内容

本发明提供一种小发散角N型共阴极Micro LED器件及其阵列,旨在使Micro LED器件及Micro LED阵列发出小发散角的光线使之满足数字曝光及图形投影系统的光学需求。同时通过连续的Micro LED N型半导体层做为共阴极电极代替单独制作的阴极电极,进而进一步提高出光效率降低制作成本。

提出了采用微光学系统、绝缘隔离结构、隔离结构、像素电极、N型半导体、量子阱层、P型半导体,用以解决现有的技术缺陷。

为了达到上述目的,本发明的技术方案是这样实现的:

本发明提供一种小发散角N型共阴极Micro LED器件,包括微光学系统1、绝缘隔离结构2、隔离结构3、像素电极4、N型半导体5、量子阱层6、P型半导体7,所述N型半导体5、量子阱层6、P型半导体7组成Micro LED颗粒;所述像素电极4位于底部;P型半导体7置于所述像素电极4上方;量子阱层6置于型半导体7的上方;N型半导体5置于量子阱层6的上方;微光学系统1置于N型半导体5的上方;N型半导体5与其他相邻的小发散角Micro LED器件的N型半导体5相连并最终连接到外接阴极电极上;绝缘隔离结构2与像素电极4、N型半导体5、量子阱层6、P型半导体7相邻;隔离结构3与微光学系统1 、N型半导体5相邻。

优选地,所述微光学系统1为透射式光学系统,可透射所述量子阱层6发出的光,且透过率大于等于80%;所述微光学系统1口径小于等于500微米;所述微光学系统1为起到收敛所述量子阱层6发出的光发散角作用的一片或多片透镜的组合。

优选地,所述绝缘隔离结构2为填满空气的空间、绝缘材料填充、绝缘膜层中的任意一种或多种的组合;所述绝缘隔离结构2使小发散角N型共阴极Micro LED阵列中的各相邻的量子阱层6、P型半导体7相互隔离成为分立器件。

优选地,所述隔离结构3为对所述量子阱层6发出的光吸收率大于70%的材料或对所述量子阱层6发出的光反射率大于70%的材料中的任意一种。所述隔离结构3空间上处于N型半导体5被刻蚀之后的槽中或在N型半导体5的上表面上。

优选地,所述像素电极4具体为金属电极并与外部电路相连;所述像素电极4由硅基或玻璃基上的CMOS电路驱动实现独立开关及为所述P型半导体7进行独立供电;所述像素电极可反射所述Micro LED颗粒 2所发出的光线;所述像素电极4为海量矩阵分布的独立像素电极集成电路的一个像素电极单元。

优选地,所述N型半导体5为Ⅴ族元素参杂的半导体材料层。

优选地,所述量子阱层6为具有电致发光特性量子阱的材料层;发光波长范围为170nm~800nm。

优选地,所述P型半导体7为Ⅲ族元素参杂的半导体材料层或未参杂的半导体材料层。

本发明还提供一种小发散角N型共阴极Micro LED阵列,包括本发明上述提供的小发散角N型共阴极Micro LED器件。

本发明还提供一种小发散角N型共阴极Micro LED阵列,包括本发明上述提供的小发散角N型共阴极Micro LED器件所组成的任意数量的阵列。

本方所采用的其他领域的公知技术对此本发明不再一一赘述。

附图说明

图1为本发明小发散角N型共阴极Micro LED器件的结构示意图;

图中,微光学系统1、绝缘隔离结构2、隔离结构3、像素电极4、N型半导体5、量子阱层6、P型半导体7。

图2为本发明小发散角N型共阴极Micro LED器件中隔离结构所处不同位置的结构示意图;其中图2A为隔离结构3处于N型半导体5之上位置的结构示意图、图2B为隔离结构3部分处于N型半导体5的浅槽位置的结构示意图、图2C为隔离结构3全部处于N型半导体5的浅槽位置的结构示意图;

图中,微光学系统1、绝缘隔离结构2、隔离结构3、像素电极4、N型半导体5、量子阱层6、P型半导体7。

图3为本发明小发散角N型共阴极Micro LED阵列的结构示意图;

图中,微光学系统1、绝缘隔离结构2、隔离结构3、像素电极4、N型半导体5、量子阱层6、P型半导体7。

具体实施方式

优选地,所述隔离结构3可采用反光材料或吸光材料中的一种制作。

当采用反光材料时优选地,所述隔离结构3为对所述量子阱层6发出的光反射率大于70%的材料。进一步优选地,所述隔离结构3采用铝膜做为反射材料,铝膜层厚范围为3nm~20nm。

当采用吸光材料时优选地,所述隔离结构3为对所述量子阱层6发出的光吸收率大于70%的材料。进一步优选地,所述隔离结构3采用具有表面纳米结构的氧化铝(AlO)做为吸光材料,铝膜层厚范围为10nm~200nm。

下面结合具体实施例对本发明作进一步详细的说明,以令本领域技术人员参照说明书文字能够据以实施。

应当理解,本文所使用的的诸如“具有”、“包含”以及“包括”术语并不配出一个或多

个其它元件或其组合的存在或添加。

实施例1:用于紫外数字曝光的小发散角N型共阴极Micro LED器件及其阵列

本实施例1提供的小发散角N型共阴极Micro LED器件,包括微光学系统1、绝缘隔离结构2、隔离结构3、像素电极4、N型半导体5、量子阱层6、P型半导体7。特别需要说明的是,其中隔离结构3为吸光材料对量子阱层6所发出的光线具有吸收作用,最终吸收了大角度的杂散光,进而提高了光束质量。

优选地,微光学系统1为单片平凸透镜。

优选地,绝缘隔离结构2由氧化铝(AlO)填充。

优选地,隔离结构3为氧化铝(AlO)薄膜薄膜厚度为10nm。

进一步优选地,N型半导体5的上表面是一个完整的平面,隔离结构3位于N型半导体5的上表面。

优选地,像素电极4为金(Au)电极,像素电极4与P型半导体7通过金属键合的方式进行连接。

优选地,N型半导体5为Ⅴ族元素参杂的氮化镓半导体材料层。

优选地,量子阱层6为铝铟镓氮Al(In,Ga)N体系的具有量子阱结构的半导体材料层。

优选地,P型半导体7为Ⅲ族元素参杂的氮化镓半导体材料层。

图3为本发明小发散角N型共阴极Micro LED阵列的结构刨面示意图;将图1所示的小发散角N型共阴极Micro LED器件进行重复阵列得到小发散角N型共阴极Micro LED阵列。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:显示基板、显示面板和显示装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类