盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用

文档序号:427374 发布日期:2021-12-24 浏览:31次 >En<

阅读说明:本技术 盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用 (Application of higenamine hydrochloride in preparing medicine for treating osteoporosis ) 是由 宁斌 董辉 刘镕菡 金政鑫 张英 邹珂 于 2021-11-23 设计创作,主要内容包括:本发明涉及盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用,属于化学药物开发技术领域。本发明首次发现了盐酸去甲乌药碱可以通过靶向IQGAP1蛋白,激活Smad2/3通路,促进Smad2/3磷酸化,从而促进成骨分化,有潜力成为新的治疗骨质疏松症的药物。目前临床上对骨质疏松症的治疗以抗骨吸收药物为主:如双磷酸盐等,但随着骨质疏松症的病因不同和病程的发展,单纯的抗骨吸收已经不能满足病人的需要,而唯一的促成骨药物特立帕肽有远期骨肉瘤风险和其他副作用及局限性,而盐酸去甲乌药碱具有可口服可注射、副作用小、促进成骨作用明显等特点,为临床治疗骨质疏松症提供了新的选择。(The invention relates to application of higenamine hydrochloride in preparing a medicine for treating osteoporosis, belonging to the technical field of chemical medicine development. The invention discovers that the higenamine hydrochloride can activate Smad2/3 pathway and promote Smad2/3 phosphorylation by targeting IQGAP1 protein for the first time, thereby promoting osteogenic differentiation and having potential to become a novel medicine for treating osteoporosis. At present, the clinical treatment of osteoporosis is mainly based on bone absorption resistant medicines: such as diphosphate, etc., but with the different etiology and development of the course of disease of osteoporosis, the simple bone absorption resistance can not meet the needs of patients, and the only bone-promoting medicament teriparatide has the risk of long-term osteosarcoma and other side effects and limitations, and the higenamine hydrochloride has the characteristics of oral injectability, small side effect, obvious effect of promoting osteogenesis, etc., and provides a new choice for clinical treatment of osteoporosis.)

盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用

技术领域

本发明涉及盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用,属于化学药物开发技术领域。

背景技术

骨质疏松症是一种骨骼系统全身性、退化性的病变,是以患者的骨微结构遭到破坏、骨量减少从而导致肌无力、骨强度下降、骨脆性增加及骨折危险性增大为特征的代谢性疾病。随着人口老龄化进程加快,目前我国50岁以上低骨量和骨质疏松症的患病率分别为46.4%和19.2%,诊疗花费巨大。

骨无缝地被创造和取代的一个动态的过程,称为骨重塑。骨重塑包括两个连续阶段:破骨细胞骨吸收和成骨细胞骨形成。这两个阶段必须是平衡的,以保持动态平衡和恒定的骨量。而骨质疏松症则打破了这种平衡。目前临床上的治疗药物以抑制骨吸收为主,促进骨形成药物目前仅有特立帕肽且具有局限性,因此寻找新的促进骨形成的药物意义重大。

SMAD2/3通路激活能引起细胞积聚,刺激成骨生成,并能提高碱性磷酸酶(alkaline phosphatase, ALP)、I型胶原和骨钙素的活性。中国专利文献CN108721394A(申请号201810970051.5,申请日2017.08.24)的说明书部分公开了利用BMP激动剂激活BMP-2/Smad通路活性后,可显著地减轻骨质疏松症及破骨细胞增殖,因此认为BMP-2/Smad通路在老年骨质疏松症模型中起关键作用。以上现有技术公开了骨质疏松症与Smad通路存在着密切联系。陈伟健等人综述了Smad在不同因素下通过TGF-β/BMP通路直接参与诱导成骨细胞(OB)与破骨细胞(OC)的生成、分化,在调节骨代谢方面作用显著。其中,在TGF-β通路中Smad蛋白与成骨细胞的关系:在该通路转导过程中,TGF-β先结合其II型受体,再激活其I型受体,组成受体复合物,受体复合物携带信号进入细胞膜后,因Smad受体激活锚蛋白在细胞膜及早期内涵体膜上已锚定Smad2或Smad3蛋白,激活的TGF-β识别并结合活化Smad2或Smad3蛋白,Smad2或Smad3蛋白活化后与Smad4形成复合物异位入核,启动细胞内信号反应的级联传导,通过MH1区的发夹样结构与DNA上的SBE直接结合,诱导和调节靶基因转录,影响成骨细胞的增殖、分化及I型胶原蛋白的合成。(Smad与骨质疏松症,《中国骨质疏松症杂质》,陈伟健等,2017.8(23): 1100-1104)

盐酸去甲乌药碱是从附子等中药中分离提取得到的生物碱,能使心律加快,舒张压降低,明显增加冠脉血流量,改善窦房结传导功能;对窦性心率过缓疗效良好,心肌收缩能力明显增强,因其对心脏系统的功能有较小的副作用而广受欢迎。朱锦星探索了去甲乌药碱抗心肌纤维化的作用及机理,提示去甲乌药碱是通过抑制TGF-β1诱导的Smad2/3蛋白磷酸化抑制心脏成纤维细胞激活的(去甲乌药碱抗心肌纤维化的作用及其机制探索,上海中医药大学硕士学位论文,朱锦星)。心肌纤维化与骨质疏松症的疾病种类不同,发病器官不同,发病机理也不同,去甲乌药碱在骨质疏松症中的作用仍没有相关的研究与报道。

发明内容

针对现有技术的不足,本发明提供了盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用。

本发明的技术方案如下:

盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用,去甲乌药碱的结构如式Ⅰ所示:

式Ⅰ,

盐酸去甲乌药碱的化学式为:C16H18ClNO3

根据本发明优选的,所述盐酸去甲乌药碱能够激活骨质疏松症Smad2/3通路,促进Smad2/3磷酸化,促进成骨。

根据本发明优选的,所述盐酸去甲乌药碱以IQGAP1为靶蛋白发挥其促成骨作用。

根据本发明优选的,所述药物包括盐酸去甲乌药碱,和药学上可接受的载体或者辅料。

根据本发明优选的,所述药物为骨质疏松症促成骨药物。

根据本发明优选的,所述药物的剂型包括但不限于片剂、粉剂、注射剂、胶囊剂或气雾剂。

一种用于治疗骨质疏松症的药物或保健品,含有药学上有效剂量的盐酸去甲乌药碱。

根据本发明优选的,所述药物或保健品还含有药学或食品领域中可接受的载体或者辅料。

根据本发明优选的,所述药物的剂型包括但不限于片剂、粉剂、注射剂、胶囊剂或气雾剂。

以IQGAP1为靶蛋白在筛选或制备治疗骨质疏松症的药物中的应用。

根据本发明优选的,所述药物与靶蛋白IQGAP1结合,增加靶蛋白IQGAP1的稳定性。

根据本发明优选的,所述药物为骨质疏松症促成骨药物。

有益效果:

目前临床上对骨质疏松症的治疗以抗骨吸收药物为主:如双磷酸盐等,但随着骨质疏松症的病因不同和病程的发展,单纯的抗骨吸收已经不能满足病人的需要,而唯一的促成骨药物特立帕肽有远期骨肉瘤风险和其他副作用及局限性。本发明首次发现了盐酸去甲乌药碱可以通过靶向IQGAP1蛋白,激活Smad2/3通路,促进Smad2/3磷酸化,从而促进成骨分化,有潜力成为新的治疗骨质疏松症的药物。盐酸去甲乌药碱具有可口服可注射、副作用小、促进成骨作用明显等特点,为临床治疗骨质疏松症提供了新的选择。

附图说明

图1为实施例1四组小鼠的μCT图像。

图2为实施例1四组小鼠的骨相关指标柱状图,骨相关指标依次为骨体积分数BV/TV、骨小梁间隙TB.SP、骨小梁厚度TB.TH、骨小梁数目TB.N。

图3为实施例1四组小鼠股骨组织的HE染色图。

图4为实施例1四组小鼠骨小梁相对面积柱状图。

图5为实施例1四组小鼠股骨的三点弯曲试验抗压能力柱状图。

图6为实施例1四组小鼠血清中骨形成标志物Ⅰ型前胶原氨基端原肽PINP含量柱状图。

图7为实施例2中三组间充质干细胞成骨相关指标的mRNA表达水平柱状图。

图8为实施例2中三组间充质干细胞的ALP染色结果。

图9为实施例2中三组间充质干细胞的茜素红染色结果。

图10为实施例3中Smad2/3和p-smad2/3的Western Blot图。

图11为实施例3中细胞的免疫荧光图片。

图12为实施例4的DARTS实验寻找药物靶蛋白的SDS-PAGE电泳图。

图13为实施例4中药物靶蛋白的Western Blot验证图。

图14为实施例4中固定剂量不同温度下药物与靶蛋白的结合能力验证图。

图15为实施例4中固定温度不同剂量下药物与靶蛋白的结合能力验证图。

图16为实施例4的MC3T3-E1细胞敲除IQGAP1编码基因的Western Blot验证图。

图17为实施例4敲除IQGAP1后Smad2/3和p-smad2/3的Western Blot图。

图18为实施例4敲除IQGAP1后成骨相关指标的mRNA表达水平柱状图。

具体实施方式

下面结合实施例对本发明的技术方案作进一步的说明,但本发明的保护范围并不仅限于此。实施例中涉及的试剂及药品,若无特殊说明,均为普通市售产品;实施例中涉及的步骤及实验操作,若无特殊说明,均为本领域常规技术操作。

实验材料:

C57BL/6J小鼠,购自济南朋悦动物繁育有限公司;

盐酸去甲乌药碱,购自MedChemExpress;特立帕肽:促成骨药物,普通市售;

小鼠成骨前体细胞MC3T3-E1,购自上海中乔新舟生物科技有限公司。

实施例1:盐酸去甲乌药碱的体内功能实验

实验方法:将12周的C57BL/6J雌性小鼠,随机分为四组,分别为去卵巢灌胃PBS溶液组(CONTROL组)、去卵巢皮下注射特立帕肽组(T组,药物溶剂为PBS溶液)、去卵巢灌胃盐酸去甲乌药碱组(H组,药物溶剂为PBS溶液)、假手术组灌胃PBS溶液组(SHAM组),每组10只。采用3%戊巴比妥钠(35mg/kg)腹腔注射,麻醉后,俯卧位固定于专用动物实验台,剪去手术区域局部体毛,碘伏消毒,铺无菌巾单,分别取小鼠背部侧正中旁切口,逐层分离显露双侧卵巢及输卵管。CONTROL组、T组、H组小鼠先结扎双侧输卵管及伴行血管,然后切除双侧卵巢,SHAM组小鼠只切除与其他组小鼠同质量的双侧卵巢周围少许脂肪组织;生理盐水冲洗后逐层缝合,常规饲养4周后开始实验。T组每天皮下给药特立帕肽30μg/kg,H组每天灌胃给予盐酸去甲乌药碱40mg/kg,CONTROL组、SHAM组每天灌胃给予同体积PBS溶液,60d后处死、取材,检测μCT、HE染色、三点弯曲实验、Elisa实验检测成骨相关指标。

检测方法:

μCT:小鼠用戊巴比妥钠麻醉,随后颈椎脱位处死,采集双侧股骨,去除脂肪和肌肉,并用4%多聚甲醛4℃冰箱固定24h,然后将多聚甲醛更换为70%乙醇4℃存放。用μCT对上述处理后的单侧股骨,进行360度扫描,扫描参数如下:90kV,88mA。最后,检测骨体积分数BV/TV、骨小梁数目TB.N、骨小梁间隙TB.SP、骨小梁厚度TB.TH。

HE染色:将固定好的股骨组织用梯度酒精脱水,在二甲苯中透明,包埋,并切片至4µm厚度;然后将切片在苏木精中染色,用流水冲洗掉,并用1%伊红染色,用流水再次清洗载玻片,脱水,透明,用中性口香糖封闭,干燥3天;最后,在光学显微镜下对股骨组织进行拍照。

三点弯曲实验:分别将每根股骨组织置于试验机的弯曲支座上驱动机器以5 mm/min的实验速度对试样施加弯矩,直到试样破坏。实验结束后打印机自动打印出每个试样的实验数据。

Elisa实验:收集各组小鼠血清,使用试剂盒进行PINP指标测定。

实验结果:

小鼠μCT结果如图1所示,CONTROL组比SHAM组骨小梁密度和数量明显减少,证明实验骨质疏松症模型小鼠造模成功,盐酸去甲乌药碱组(H组)和特立帕肽组(T组)比CONTROL组的骨小梁密度和数量明显增多,说明盐酸去甲乌药碱在骨质疏松症中具有促成骨作用。

小鼠的骨相关指标检测结果如图2所示,盐酸去甲乌药碱组(H组)和特立帕肽组(T组)相较于CONTROL组骨体积分数BV/TV明显上升、骨小梁数目TB.N明显增多、骨小梁间隙TB.SP明显减少、骨小梁厚度TB.TH明显增厚。

切片后的股骨组织HE染色如图3所示,盐酸去甲乌药碱组(H组)和特立帕肽组(T组)相较于CONTROL组骨小梁排列有序,数量较多。统计学显示,与CONTROL组相比,盐酸去甲乌药碱组(H组)和特立帕肽组(T组)的骨小梁相对面积明显较多(图4)。

三点弯曲实验结果如图5所示,结果证明,盐酸去甲乌药碱组(H组)和特立帕肽组(T组)的抗压能力较CONTROL组明显增强。

Elisa实验结果如图6所示,其结果显示,盐酸去甲乌药碱组(H组)和特立帕肽组(T组)小鼠血清中骨形成标志物Ⅰ型前胶原氨基端原肽水平较CONTROL组显著上升。

以上实验结果均说明,与促成骨药物特立帕肽一样,盐酸去甲乌药碱可以在骨质疏松症小鼠体内促进成骨能力增强,盐酸去甲乌药碱有成为治疗骨质疏松症中促成骨药物的潜力。

实施例2:盐酸去甲乌药碱的体外功能实验

实验方法:

(1)体外培养小鼠原代间充质干细胞

①取6-8周C57/B6小鼠,麻醉后取下小鼠股骨与胫骨,去除肌肉;

②取高压灭菌的300μL和1.5mL的离心管,将小管底部扎孔;

③将分离好的下肢骨两端剪开,置于小管中,加入100μL完全培养基后将小管放于大管中;

④12000rpm离心,将离心到大管中的细胞重悬后,1000rpm离心,弃上清,重悬细胞后种板;

⑤待细胞融合度70%-80%后,开始进行干预处理。

(2)干预间充质干细胞向成骨细胞分化

在细胞融合度70%-80%后将培养基更换为成骨诱导培养基,对间充质干细胞进行成骨诱导分化;其中,在成骨诱导培养基中,CONTROL组给予二甲基亚砜(DMSO),T组给予TGF-β蛋白(药物溶剂为DMSO,终浓度10ng/mL),H组给予盐酸去甲乌药碱(药物溶剂为DMSO,终浓度10uM)。

(3)成骨指标检测

检测方法:

①对间充质干细胞进行成骨诱导3-7天后收集细胞,使用实时荧光定量PCR(RT-PCR)进行检测,采用TRIZOL试剂提取培养细胞的总RNA,使用逆转录试剂盒将RNA逆转录为cDNA,使用RT-PCR试剂盒进行mRNA(RUNX2和SOX9)定量,以观察给药后是否有早期成骨基因的上调。

②对间充质干细胞进行成骨诱导7天后进行ALP染色,肉眼及镜下检查染色(蓝色)面积的大小,以检测细胞成骨细胞早期分化水平。

③对间充质干细胞进行成骨诱导7-21天后收集细胞,提取RNA,使用实时定量PCR法(RT-PCR)对诱导分化的细胞进行成骨中晚期指标(ALP、COL1a1、OCN、OPN)检测,以观察给药后是否有后期成骨基因的上调。

④对间充质干细胞进行成骨诱导21-28天后进行茜素红染色,肉眼及镜下检查骨矿化(红色结节)面积的大小,以检测细胞成骨矿化水平。

实验结果:

RT-PCR结果如图7所示,使用盐酸去甲乌药碱对间充质干细胞成骨诱导3-7天和7-21天后,与CONTROL组相比,H组的成骨相关mRNA(RUNX2、SOX9、ALP、COL1a1、OCN、OPN)的表达水平均显著提高,与TGF-β蛋白(T组)的诱导结果相似,证实盐酸去甲乌药碱能够促进成骨。

ALP染色结果如图8所示,与CONTROL组(图中显示为NC组)相比,给予盐酸去甲乌药碱组(H组)的蓝色着色更深,与T组(图中显示为PC组)的着色结果相似,证实盐酸去甲乌药碱能够促进成骨早期分化。

茜素红染色结果如图9所示,与CONTROL组(图中显示为NC组)相比,给予盐酸去甲乌药碱组(H组)的染色明显更深,甚至比T组(图中显示为PC组)染色更深,证实盐酸去甲乌药碱能够促进成骨细胞矿化成骨。

实施例3:盐酸去甲乌药碱的体外通路验证

实验方法:取对数生长期的小鼠成骨前体细胞MC3T3-E1,接种到6孔板中,置37℃、5%CO2及饱和湿度的培养箱中,使用培养基(a-MEM,10%FBS,1%双抗)培养细胞长至70%-80%时,CONTROL组给予DMSO,T组给予TGF-β蛋白(药物溶剂为DMSO,终浓度10ng/mL),H组给予盐酸去甲乌药碱(药物溶剂为DMSO,用于Western Blot检测的样品终浓度分别为0.08、0.4、2、10、50、250μM,用于免疫荧光检测的样品终浓度为10μM),置于培养箱中继续培养6h,通过Western Blot、免疫荧光检测TGF-β通路相关指标。

检测方法:

Western Blot:使用细胞裂解液从细胞培养液中提取蛋白,使用BCA法将各组蛋白浓度调平,Western Blot跑胶后显色。

免疫荧光:将细胞爬片后,使用Smad2/3抗体孵育爬片,然后用荧光标记Smad2/3抗体,通过激光共聚焦扫描显微镜进行荧光拍摄来显示细胞中Smad2/3的定位。

实验结果:

Western Blot结果如图10所示,Smad2/3需要进入细胞核后磷酸化为p-smad2/3后才能继续发挥作用,所以检测不同浓度的盐酸去甲乌药碱处理后的p-smad2/3的表达,可以证明smad2/3通路的激活程度,结果显示,与CONTROL组相比,经盐酸去甲乌药碱处理后,MC3T3-E1细胞p-smad2/3的含量明显提升,且随着盐酸去甲乌药碱浓度的提高,p-smad2/3的含量越高。证实盐酸去甲乌药碱能够激活Smad2/3通路,促进Smad2/3磷酸化,且具有浓度依赖性。

免疫荧光结果如图11所示,Smad2/3需要进入细胞核后发挥作用,使用荧光标记Smad2/3,观察其是否入核,可以辅助证明药物对Smad2/3通路的作用,图中蓝色标记(DIPI)为细胞核,红色标记为Smad2/3,CONTROL组中Smad2/3明显游离于细胞核之外,未进入细胞核;与CONTROL组相比,T组与H组的Smad2/3明显位于细胞核中。从细胞层面证实了盐酸去甲乌药碱可以促进Smad2/3入核,以发挥促成骨的作用。

实施例4:寻找盐酸去甲乌药碱的靶点并验证

1、寻找药物靶蛋白

采用DARTS实验找到差异条带,质谱实验找到差异蛋白,Westren Blot实验找到药物作用靶蛋白。其中,药物与靶蛋白结合稳定性实验(DARTS实验),其原理是药物通过与蛋白质结合,可以增加蛋白质对蛋白酶的稳定性。

1.1 DARTS实验具体步骤如下:

1)M-PER裂解液的配制(1mL):

10μL蛋白酶抑制剂cocktail

10μL 200 mM磷酸酯酶抑制剂sodium orthovanadate

50μL 1 M氟化钠溶液

100μL 100mMβ-甘油磷酸钠溶液

100μL 50mM焦磷酸钠溶液

730μL M-PER哺乳动物蛋白抽提试剂

2)预冷PBS溶液洗涤MC3T3-E1细胞2次,吸净PBS溶液,加入500μL M-PER裂解液,用细胞刮刮取细胞移至1.5mLEP管,4℃摇床孵育1-1.5h。

3)13000rpm、4℃离心10min,取上清,测浓度;-80℃保存或者直接进行下一步。

4)两个1.5mLEP管各自分装225μL上清蛋白,其中一管加入4μLDMSO(药物溶剂,对照组),另一管加入4μL盐酸去甲乌药碱(DMSO为药物溶剂,药物终浓度为10μM,药物组),室温避光旋转摇床孵育1-1.5h。

5)TNC的配制:

10×TNC(1 mL):

500μL 1 M Tris-HCl缓冲液,pH 8.0

100μL 5 M 氯化钠溶液

100μL 1 M 氯化钙溶液

300μL 超纯水

使用时用超纯水将10×TNC稀释至1×TNC。

6)将每管蛋白分为4管(共8管),每管50μL;使用1×TNC配制不同浓度的蛋白酶液,按照蛋白酶/蛋白=0、1:1600、1:800、1:400,质量比,将配制好的蛋白酶液分别加入相对应的蛋白管内(分组为-0、+0、-1:1600、+1:1600、-1:800、+1:800、-1:400、+1:400,-为对照组、+为药物组,跑胶加样顺序也按此),其中0组加入1×TNC;室温孵育10min,每管加入1μLcocktail,冰上孵育5min终止消化。

7)按蛋白:loading buffer为4:1比例加入loading buffer,水浴锅煮沸10min后-80℃保存或进行直接下一步。

8)按上述顺序加样,SDS-PAGE电泳后不转膜直接考马斯蓝染色1h,更换脱色液洗脱至出现清晰条带。

SDS-PAGE电泳图如图12所示,在180kDa左右出现一条差异条带。

1.2 将上述差异条带切胶回收,进行质谱分析,并通过Western Blot验证,Western Blot验证结果如图13,结果表明该差异条带对应的是IQGAP1蛋白,盐酸去甲乌药碱可能通过结合IQGAP1蛋白发挥其促进Smad2/3激活的作用。

2、药物靶蛋白验证

2.1药物与靶蛋白的结合验证

靶蛋白在结合药物分子后通常变得结构稳定。细胞热转移实验(CETSA实验):该实验可以量化目标蛋白在不同温度及不同药物浓度条件下目标蛋白热变性的变化,将不同处理组蛋白和对照组蛋白分别处理后,Western Blot显色。

2.1.1 固定剂量不同温度下药物与靶蛋白的结合

1)取对数生长期的小鼠成骨前体细胞MC3T3-E1,使用培养基(a-MEM,10%FBS,1%双抗)培养细胞长至70%-80%时,CONTROL组给予DMSO,H组给予盐酸去甲乌药碱(溶剂为DMSO,终浓度20μM),置于培养箱中孵育1h。

2)重悬细胞,将细胞悬液分配到9个200μL PCR管中,100μL/管,每管中约有300万个细胞,用指定温度标记每个管子,指定温度分别为50、55、60、65、70、75、80、85℃。

3)使用96孔板热循环仪在九个温度下加热管子3min,立即取出管子,室温孵育3min;然后置于液氮中快速冷冻。

4)使用液氮和设置为25℃的热循环器将细胞冷冻-解冻两次,确保管子之间温度均匀。

5)短暂震荡管子,4℃、2000g离心20min,使细胞碎片和聚集的蛋白质一起沉淀。

6)新的200μL PCR管中加入40μL细胞裂解上清液和20μL Reducing loadingbuffer,震荡,短暂离心,100℃加热10min;再次震荡试管,并短暂离心,上样,Western Blot检测靶蛋白。

靶蛋白检测结果如图14所示,在不同温度(50-85℃)时,相比较于二甲基亚砜(DMSO),盐酸去甲乌药碱可以减少靶蛋白IQGAP1的变性,尤其是在75℃最为明显,表明盐酸去甲乌药碱可以与IQGAP1结合,对IQGAP1的变性起抑制作用。

2.1.2 固定温度不同剂量下药物与靶蛋白的结合

1)取对数生长期的小鼠成骨前体细胞MC3T3-E1的细胞悬液,细胞悬液浓度约为4×107细胞/mL,分配到7个200μL PCR管中,100μL/管;分别加入5μL浓度梯度盐酸去甲乌药碱溶液(溶剂为DMSO),使得盐酸去甲乌药碱的终浓度分别为0、0.016、0.08、0.4、2、10、50μM。

2)37℃、5%CO2及饱和湿度的培养箱中培养30min,每隔10min摇动一次。

3)将PCR管子放入Techne热循环仪中,在75°C下加热3分钟,取出后室温孵育3分钟,然后置于液氮中快速冷冻。

4)使用液氮和设置为25℃的热循环器将细胞冷冻-解冻两次,确保管子之间温度均匀。

5)短暂震荡管子,4℃、2000g离心20min,使细胞碎片和聚集的蛋白质一起沉淀。

6)新的200μL PCR管中加入40μL细胞裂解上清液和20μL Reducing loadingbuffer,震荡,短暂离心,100℃加热10min;再次震荡试管,并短暂离心,上样,Western Blot检测靶蛋白。

靶蛋白检测结果如图15所示,在75°C时,盐酸去甲乌药碱以剂量依赖的方式阻止IQGAP1变性,表明盐酸去甲乌药碱对IQGAP1的变性抑制作用呈现出药物剂量依赖性。

2.2靶蛋白敲除验证

CRISPR-Cas9系统:CRISPR/Cas9是一种能够对任何物种基因组的特定位点进行精确编辑的技术,使用该技术能够进行细胞水平单基因或多基因敲除,其原理是核酸内切酶Cas9蛋白通过导向性RNA(guide RNA,gRNA)对目标DNA序列的PAM依赖性识别并在PAM区(5’-NGG)上游3bp的特定位点启动DNA切割。Cas9核酸内切酶生成的双链断裂可通过同源介导的修复(HDR,Homology directed repair)或非同源末端连接途径(NHEJ,Non-homologous end joining)进行修复。HDR这种基于同源重组的修复机制保真性高,但是发生概率低;NHEJ修复机制非常容易发生错误。NHEJ修复会在DSB位点随机引入碱基的插入或者缺失(Indel),如果这些Indel不是3的倍数就会导致后续的阅读框发生移码,这种移码往往会产生提前终止密码子(premature termination codon,PTC),导致蛋白功能的丧失(提前翻译终止的多肽一般会被降解),实现基因敲除(KO,Loss of Function)。

使用CRISPR-Cas9系统敲除MC3T3-E1细胞IQGAP1编码基因,使用Western Blot验证IQGAP1编码基因的敲除情况,结果如图16所示,IQGAP1编码基因敲除后MC3T3-E1细胞不再表达IQGAP1,说明通过CRISPR-Cas9系统,成功在MC3T3-E1细胞系中实现IQGAP1的敲除。

将IQGAP1编码基因敲除后得到IQGAP1敲除细胞系(KO),并以空转细胞系(KONC)为对照,将其分为4组:空转组(KONC)、空转加药组(KONC+H)、IQGAP1敲除组(KO)、IQGAOP1敲除后加药组(KO+H)。将两种稳转细胞系接种到6孔板中,37℃、5%CO2及饱和湿度的培养箱中培养细胞长至70%-80%时,KONC组和KO组给予DMSO,KONC+H组和KO+H组给予盐酸去甲乌药碱(药物溶剂为DMSO,终浓度10mM),置于培养箱中继续培养6h。Western Blot和RT-PCR验证敲除靶蛋白IQGAP1编码基因后加药是否还能激活Smad2/3和促进成骨分化。

Western Blot结果如图17所示,敲除IQGAP1后,即使加入盐酸去甲乌药碱(KO+H组),MC3T3-E1细胞中的Smad2/3也不再进行磷酸化,说明靶蛋白IQGAP1被敲除后,盐酸去甲乌药碱的Smad2/3激活作用被取消。

RT-PCR结果如图18所示,敲除IQGAP1后,即使加入盐酸去甲乌药碱(KO+H组),成骨相关mRNA(RUNX2、SOX9、ALP、COL1a1、OCN、OPN)的表达水平并没有明显变化,说明靶蛋白IQGAP1被敲除后,盐酸去甲乌药碱的促成骨作用被取消。

以上结果均表明,在骨质疏松症中,盐酸去甲乌药碱的作用靶点为IQGAP1,敲除IQGAP1后,盐酸去甲乌药碱的促成骨作用被取消。

19页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:拉帕替尼和/或其可药用衍生物在制备抗肠道病毒药物中的应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!