具有用于分子识别的纳米孔的隧道结的制造

文档序号:1009069 发布日期:2020-10-23 浏览:12次 >En<

阅读说明:本技术 具有用于分子识别的纳米孔的隧道结的制造 (Fabrication of tunnel junctions with nanopores for molecular recognition ) 是由 J·托普兰奇克 Z·马吉克 F·米切尔 于 2019-04-09 设计创作,主要内容包括:本技术的实施例可允许改进的和更可靠的隧道结以及制造隧道结的方法。电气短路问题可通过沉积不具有尖锐侧壁和拐角而是相反地具有倾斜或弯曲侧壁的电极来减少。沉积在电极层顶部上的层可然后能够充分覆盖下面的电极层,并且从而减少或防止短路。另外,两个绝缘材料可用作介电层,可减少不完全的覆盖的可能性和剥落的可能性。此外,电极可从接触区域到结区域逐渐减小,以提供薄的电极,在该薄的电极处,孔被图案化,而较厚的接触区域减少薄层电阻。电极还可被图案化为在接触区域处较宽并且在结区域处较窄。(Embodiments of the present technology may allow for improved and more reliable tunnel junctions and methods of fabricating tunnel junctions. Electrical shorting problems can be reduced by depositing electrodes that do not have sharp sidewalls and corners, but instead have sloped or curved sidewalls. The layer deposited on top of the electrode layer may then be able to sufficiently cover the underlying electrode layer and thereby reduce or prevent short circuits. In addition, two insulating materials may be used as dielectric layers, reducing the likelihood of incomplete coverage and the likelihood of flaking. Further, the electrodes may taper from the contact area to the junction area to provide a thin electrode where the holes are patterned, while a thicker contact area reduces sheet resistance. The electrodes may also be patterned to be wider at the contact regions and narrower at the junction regions.)

具有用于分子识别的纳米孔的隧道结的制造

相关申请的交叉引用

本申请要求2018年4月9日提交的美国临时申请号62/654,894的优先权,出于任何和所有目的,其内容通过引用全部并入本文。

技术领域

本申请涉及使用隧道结来对分子进行分析的系统、制造这种系统的方法以及使用这种系统的方法。这种对分子的分析可以包括对生物聚合物(诸如核酸)进行测序。

背景技术

纳米孔具有检测单个分子的能力,这是化学和生物检测领域中很有前途的技术。例如,纳米孔可用于核酸测序。固态纳米孔是用于快速进行生物感测的分子感测技术的一种类型。在一些情况下,固态纳米孔在两个电极之间的离子液体中形成通道。这两个电极可不是纳米孔自身的一部分,但是可定位在离子液体中。当分子穿过纳米孔通道时,通过通道的电流和其他电特性发生变化。这些电特性可以提供关于分子的信息,但是制造问题可能使鉴定核酸分子中的单独的核苷酸变得困难。

纳米孔装置使用隧道效应识别。隧道效应识别基于将核酸的核苷酸放置在电极之间,电极可能在纳米孔装置自身中。核苷酸的轨道将允许电子从一个电极转移到另一个电极,从而产生隧道电流。固态纳米孔的尺寸和其他特性可能难以适应大规模生产工艺。为了用离子电流对核酸分子进行测序,纳米孔尺寸可能需要在纳米量级,例如小于2 nm。产生这样大小的通道可能需要精确且昂贵的技术。然而,减小纳米孔的尺寸可能导致纳米孔用作感测装置所需的不完全或不良润湿。仍然需要用于化学和生物检测的含纳米孔装置的设计和可制造性方面以及涉及该装置的工艺的改进。设计和可制造性改进不应以牺牲准确和精确的分析为代价。这些和其他问题通过本文档中描述的技术来解决。

发明内容

对于隧道结,两个金属电极之间的薄电介质是期望的。隧道结可包括穿过电极和电介质的孔。制造具有纳米量级的尺寸的这些隧道结是困难的。为了对准的目的,电极可以彼此垂直地图案化。然而,电极的垂直对准可导致由电极的尖锐侧壁和覆盖尖锐侧壁的薄电介质造成的短路。另外,薄电介质自身可能是短路的不良屏障。来自电极的金属可嵌入在电介质中。金属和介电材料可能剥落,从而产生空隙和短路的可能性。此外,电极厚度也可能带来挑战。因为孔可在电极中被图案化,所以薄电极可使图案化更容易。然而,薄电极也导致薄层电阻增加。

本技术的实施例可允许改进的且更可靠的隧道结以及制造隧道结的方法。通过沉积不具有尖锐侧壁和拐角而是相反地具有倾斜或弯曲侧壁的电极,可以减少电短路问题。沉积在电极层顶部上的层可然后能够充分覆盖下面的电极层,并因此减少或防止短路。另外,两种绝缘材料可用作介电层,从而降低不完全覆盖的可能性和剥落的可能性。此外,电极可从接触区域到结区域逐渐减小,以在孔将要被图案化的地方提供薄电极,而较厚的接触区域减小了薄层电阻。电极也可以被图案化为在接触区域处较宽,并且在结区域处较窄。

参考以下详细描述和随附附图,可获得对本发明实施例的本质和优点更好地理解。

附图说明

图1A示出了根据本发明实施例的金属-绝缘体-金属结。

图1B和1C示出了根据本发明实施例的固态纳米孔装置的视图。

图1D图示了根据本发明实施例的固态纳米孔装置的区域。

图2示出了根据本发明实施例的系统200的示意图,该系统200具有不带有竖直侧壁的电极的装置201。

图3A示出了根据本发明实施例的用于沉积绝缘体层的工艺流程。

图3B、3C和3D示出了根据本发明实施例的在用于形成纳米孔的工艺期间的横截面。

图4A和4B示出了根据本发明实施例的结区和接触区的视图。

图5示出了根据本发明实施例沉积具有非竖直侧壁的电极的工艺流程。

图6A示出了根据本发明实施例使用不同大小的抗蚀剂开口来沉积金属层。

图6B示出了根据本发明实施例的抗蚀剂开口的俯视图。

图7A示出了根据本发明实施例的制造用于对分子进行分析的系统的方法。

图7B和7C示出了根据本发明实施例的抗蚀剂层中的沟槽的横截面。

图8示出了根据本发明实施例的对分子进行分析的方法。

图9A示出了根据本发明实施例的被测试装置的配置。

图9B示出了根据本发明实施例的针对不同直径的电流-电压曲线。

图9C示出了根据本发明实施例的针对不同直径的恒定电压下的电流。

图10A示出了根据本发明实施例的被测试装置的配置。

图10B示出了根据本发明实施例的针对绝缘体的不同厚度的电流-电压特性。

图11示出了根据本发明实施例的隧道结装置的SEM图像。

图12示出了根据本发明实施例的计算机系统。

图13示出了根据本发明实施例的分析系统。

图14示出了根据本发明实施例的计算机系统。

具体实施方式

术语

术语“接触”可以指使一个物体靠近另一个物体,使得电子可以从一个物体隧穿通过另一个物体。在亚原子水平下,两个物体可能永远不会彼此物理接触,因为来自物体中电子云的排斥力可阻止物体更紧密地靠近。

“核酸”可以指呈单链抑或双链形式的脱氧核糖核苷酸或核糖核苷酸及其聚合物。该术语可涵盖包含合成的、天然存在的和非天然存在的已知核苷酸类似物或修饰的主链残基或连接的核酸,它们具有与参考核酸类似的结合性质,并且以与参考核苷酸类似的方式代谢。这种类似物的示例包括但不限于硫代磷酸酯、亚磷酰胺、甲基膦酸酯、手性甲基膦酸酯、2-氧甲基核糖核苷酸、肽核酸(PNA)。

除非另有指示,否则特定的核酸序列也隐含地涵盖其保守修饰的变体(例如简并密码子替换)和互补序列,以及明确指示的序列。具体地,简并密码子替换可以通过生成序列来实现,其中一个或多个所选择的(或所有的)密码子的第三位置被混合碱基和/或脱氧肌苷残基取代(Batzer等人,Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al.,J. Bio l. Chem. 260:2605-2608 (1985); Rossolini et al.,Mol. Cell. Probes 8:91-98(1994))。术语核酸可与基因、cDNA、mRNA、寡核苷酸和多核苷酸互换使用。

术语“核苷酸”除了指天然存在的核糖核苷酸或脱氧核糖核苷酸单体,也可以理解为指其相关的结构变体,包括衍生物和类似物,它们相对于其中使用核苷酸的特定环境(例如,与互补碱基的杂交)在功能上等同,除非上下文中明确指示不同。

术语“振荡”可以指物体由于布朗运动或其他力而在流体中的运动。物体可在没有人或机器主动干预的情况下振荡。在一些情况下,物体可由于所施加的电场或压力驱动的流动而振荡。

用于半导体加工层和步骤的方向术语(诸如“上方”或“在……的顶部上”)可使用参考坐标系,其中这些术语表示更远离由基底表面限定的平面的位置。“底部”可以是基底的下侧或者朝向基底的下侧。本领域技术人员将理解,即使基底被倒置地加工,层的“底部”仍然可指最靠近基底下侧或非加工侧的层的一侧。

术语“电气特性”可以理解为指与电路相关的任何性质。电特性可指电压、电流、电阻、阻抗、电感或电容及其时间变化(例如,电流频率)。

详细描述

目前市场上常规的基于纳米孔的装置可包含***亚稳态脂质双层中的蛋白质纳米孔。脂质双层可能是易碎的,并可能破坏装置的稳定性。固态原子尺度纳米孔层可能比蛋白质纳米孔更不易碎,并且具有改进的可制造性的潜力。涉及这些装置的可能方法包括将核酸分子约束在电极之间2 nm或更小的间隙中,并使用隧穿通过电极和核酸分子的电子来识别核苷酸和核苷酸序列。常规的固态方法可能难以适应纳米孔、包含纳米孔的装置和分析仪器的可靠大规模生产。即使在纳米孔被图案化之前,通过常规方法制造的装置也可能被电短路。在图案化之后,其余的装置可能在操作期间迅速劣化。

本技术的实施例可以允许改进的且更可靠的隧道结以及制造隧道结的方法。通过沉积不具有尖锐侧壁和拐角而是相反地具有倾斜或弯曲侧壁的电极,可减少电短路问题。沉积在电极层顶部上的层可然后能够充分覆盖下面的电极层,并因此减少或防止短路。另外,两种绝缘材料可用作介电层,由此降低不完全覆盖的可能性和剥落的可能性。此外,电极可以从接触区域到结区域逐渐减小,以在孔将被图案化的地方提供薄电极,而较厚的接触区域减小薄层电阻。电极也可以被图案化为在接触区域处较宽,并且在结区域处较窄。

I .使用隧道效应的纳米孔

图1A示出了可用于分子的隧道效应识别的简单装置100。绝缘层102将金属104和金属106分开。金属104和金属106可以是电极。可从电源108向金属104和金属106施加电压。当分子接触金属104和106两者时,电子可通过核酸分子从一个电极隧穿到另一个电极,从而生成电流。电流可以由仪表110测量。分子可振荡,并且所测量的电流可具有幅度和频率。幅度和频率可以是可变的。电流的特性可有助于鉴定特定的分子或分子的一部分。电特性几乎可用作鉴定分子或分子的一部分的指纹。

图1B示出了通过常规技术制造的固态纳米孔装置120。装置120具有孔口122。孔口122可以一次只允许一个分子通过,这可简化对分子的识别。孔口122可形成在顶部金属电极124、绝缘层126和底部金属电极128中。底部金属电极128可在基底130上。顶部金属电极124可连接到电源132。底部金属电极128可连接到电气仪表134。顶部电极136和底部电极138可产生电场来帮助驱动分子进入到孔口122中。底部电极138可连接到电源140。顶部电极136可以连接到电气仪表142。

图1C示出了装置120的剖视图。金属电极的尖锐侧壁的影响在区域150中更明显。可以看到由底部金属电极128形成的台阶顶部上的层。在底部金属电极128的顶表面上,绝缘层126可具有纳米量级的厚度(例如,1-2 nm)。示意图中的绝缘层126示出了对底部金属电极128的保形覆盖。然而,绝缘体在实践中可能保形地覆盖台阶。底部金属电极128的侧壁覆盖可比底部金属电极128的顶表面上的覆盖更薄。薄覆盖可以是顶部金属电极124和底部金属电极128之间更可能发生短路的区域。

图1D示出了装置120的二维视图。该图还示出了结区域是顶部金属电极124和底部金属电极128交叠的区域。接触区域是电极不交叠的区域。

II. 用于改进可靠性和可制造性的技术

描述了三种技术来改进纳米孔装置的可靠性和可制造性。如上所述,图1B和1C中纳米孔装置的可靠性和可制造性的潜在薄弱处可以是电极的尖锐侧壁和电极之间的薄绝缘层覆盖。首先,可沉积具有倾斜侧壁的电极,使得电极上的绝缘层覆盖更厚,由此降低短路的可能性。第二,绝缘层可包括多个绝缘体层,这可防止空隙形成以及形成短路。第三,电极层可在两个维度上逐渐减小,使得电极更容易制造,并且对于正常操作将不会具有太高的薄层电阻。

A .带有倾斜侧壁的电极

通过形成不具有竖直或基本竖直的侧壁的电极,可降低短路的可能性。电极可具有倾斜的侧壁,或者可以是弯曲的或圆状的。这里介绍了电极的结构。用于沉积电极的工艺将在后面讨论。

图2示出了具有装置201系统200的示意图,装置201具有不带有竖直侧壁的电极。顶部金属电极202位于底部金属电极204上方。第一绝缘体层206和第二绝缘体层208将顶部金属电极202和底部金属电极204分开。底部金属电极204在基底210的顶部上。孔口212可以穿过顶部金属电极202、第二绝缘体层208、第一绝缘体层206、底部金属电极204和基底210。如在区域214可以看到,没有底部金属电极204的竖直侧壁呈现为被第一绝缘体层206覆盖。相反,底部金属电极204具有渐进的曲线或斜率,其可以比竖直侧壁更容易地被绝缘体层保形地覆盖。

顶部金属电极202也可具有倾斜的侧壁。倾斜的侧壁可确保对于覆盖该电极的绝缘体层的合适覆盖。利用倾斜的侧壁,沉积在顶部金属电极202上方的绝缘体层可避免空隙和接缝的形成。在纳米孔装置的操作期间,待分析的分子可在液体介质中。空隙和接缝可允许液体渗透到电极,这可允许从离子液体到顶部金属电极202的不想要的电路径。换言之,具有顶部金属电极202的倾斜侧壁可有助于顶部金属电极与液体隔离。

B .多个绝缘体层

在电极之间期望薄的绝缘层,使得当分子接触两个电极时,通过分子的隧道电流可以通过分子的足够小的部分,以便于分析。例如,如果要分析的分子是DNA分子,则绝缘层应当是薄的,使得当DNA分子接触两个电极时,电流只能通过一个核苷酸。然而,薄的绝缘层在电极之间提供的屏障比厚绝缘层所提供的屏障更少。在底部电极的边缘处,可能存在金属颗粒。在沉积电极期间或之后不久,金属颗粒可能已经从电极边缘剥落。如果使用薄的绝缘层来覆盖底部电极边缘处的这些金属颗粒,则在沉积另一个电极之前,可去除或蚀刻掉薄的绝缘层。当另一个电极沉积到底部电极上时,这些金属颗粒可能然后不再被绝缘层覆盖。底部电极和顶部电极可接触并形成短路。存在于电极边缘处的金属颗粒在具有竖直侧壁的几何形状中也可能更普遍。

图3A图示了可保持电极之间的薄绝缘层完整性的工艺流程。在步骤300处,基底302以顶部上的金属电极304开始。在步骤320处,沉积第一绝缘体材料以形成第一绝缘体层306。

在步骤340处,可以在第一绝缘体层306中蚀刻接触过孔308。接触过孔308的底部可以是金属电极304的暴露部分。图3B示出了穿过步骤340处的接触过孔308的横截面。

在步骤360处,可沉积第二绝缘体材料以形成第二绝缘体层310。第二绝缘体层310可包括用作结绝缘体的材料。第二绝缘体材料可沉积在限定接触过孔308的表面上,包括在金属电极304的暴露部分上和第一绝缘体层306的部分上。接触过孔308也被第二绝缘体层310覆盖,以形成第二过孔312。第二过孔312可具有比接触过孔308更小的直径,因为接触过孔308被沉积的第二绝缘体的厚度减小。第二过孔312的底部是第二绝缘体层310的一部分。图3C示出了穿过步骤360处的第二过孔312的横截面。

在步骤380处,可沉积金属材料以形成顶部电极314。同样在步骤380处,可穿过所有层(包括顶部电极314、第二绝缘体层310、第一绝缘体层306、金属电极304和基底302)来蚀刻孔316。孔316的大小可小于接触过孔308和第二过孔312两者。图3D示出了通孔316的横截面。第二绝缘体层310将金属电极304与顶部电极314分开,并形成隧道结的宽度。

图3中的两个绝缘体层可允许对金属电极304的更好覆盖,并且可以降低短路的可能性。第一绝缘体层306覆盖金属电极304的边缘,其作为厚绝缘体层,可提供对从金属电极304的侧面剥落的任何金属颗粒的充分覆盖。另外,蚀刻穿过第一绝缘体层306的接触过孔可以便于纳米孔自身的后续蚀刻,并减少对准和加工问题。

C .从接触区域到结区域逐渐减小

期望用于纳米孔的电极更薄,以使制造更容易。与厚电极相比,通过薄电极蚀刻或以其他方式形成孔更容易。较薄的电极还会增加薄层电阻。在某种程度上,期望更大的薄层电阻,使得可以更容易检测到在分子接触电极时的电流或电压变化。然而,增加薄层电阻可增加热量,并且可导致装置故障。为了解决这些问题,电极可在从接触区到结区的至少两个方向上逐渐减小。电极的结构描述如下。使电极逐渐减小的工艺流程将在后面描述。

图4A并排示出了结区和接触区的视图。结区可具有高度为H1且宽度为W1的电极402。接触区可具有相同的电极402,但是该电极具有高度H2和宽度W2。宽度W2可大于宽度W1。高度H2可大于高度H1

图4B示出了高度和宽度两者可如何从接触区到结区逐渐减小。逐渐减小可以从宽度W2连续地或单调地减小到宽度W1。逐渐减小可从H2连续地或单调地减小到H1。在一些实施例中,逐渐减小可以是线性的。在其他实施例中,逐渐减小可遵循曲线。在一些实施例中,宽度的逐渐减小可在两侧上对称,如图4B所示。在其他实施例中,宽度的逐渐减小可以是不对称的。例如,一侧可以是平坦的,而另一侧是逐渐减小的。对于高度,逐渐减小可仅发生在一侧,因为电极的底部由下面的层固定。

使厚度逐渐减小可允许通过电极的薄的部分来形成纳米孔。使宽度逐渐减小将允许薄层电阻在结区附近更高,而在接触区附近较低。

即使当绝缘层大约为2 nm厚时,本技术的实施例可导致接近100%的工艺成品率。装置中的隧道电流可与结的横截面积成比例,这与标准的金属-绝缘体-金属结模型一致。在至少两个方向上逐渐减小的方法可独立于形成具有倾斜侧壁的电极或沉积多个绝缘体层。

III. 系统

实施例可以包括用于对分子进行分析的系统。该系统可类似于图2中的系统200。该系统可包括装置201。装置201可包括第一电极,诸如底部金属电极204。底部金属电极204可包括第一导电材料。导电金属可包括贵金属,其包括例如金、铂和钯。可使用在水溶液中具有化学稳定的金属氧化物的任何金属,所述水溶液用作用于待分析的分子的介质。其他金属可包括过渡金属,包括周期4的元素(例如,铬、镍和铜)、周期5的元素(例如,钯)和周期6的元素(例如,钽)。在一些实施例中,其他金属可包括难熔金属(例如,铌、钼、钽、钨、铼、钛、钒、铬、锆、铪、钌、铑、锇、铱)。底部金属电极204可接触基底210的表面。基底210可以是半导体基底,包括硅晶片或绝缘体上硅晶片。

底部金属电极204可以具有非竖直侧壁。技术人员将会认识到,完全竖直的侧壁在半导体加工技术中是不常见的。然而,意图是底部金属电极204的侧壁是非竖直的,这与当意图是侧壁竖直时的其他半导体加工但是加工缺陷导致非竖直侧壁不同。因此,电极的侧壁可比正常工艺变动的情况下更倾斜。侧壁可具有0 nm至1 nm、1 nm至2 nm、2 nm至5 nm、5nm至10 nm、10 nm至20 nm、20 nm至25 nm、25 nm至50 nm或大于50 nm的曲率半径。更大的曲率半径可允许更好的侧壁覆盖。侧壁可以以大于0度至10度、从10度至20度、从20度至30度、从30度至40度、从40度至45度、从45度至50度、从50度至60度、从60度至70度、从70度至80度或从80度至小于90度的角度倾斜。弯曲侧壁的倾斜角度可以测量为平均角度或在金属电极厚度一半处与侧壁相切的线的角度。较小的角度可允许更好的侧壁覆盖。底部金属电极204可通过在形成抗蚀剂层之后在旋转基底的同时以非垂直角度沉积第一导电材料来形成。稍后描述用于第一电极的示例沉积工艺。

装置201可包括包含第二导电材料的第二电极。第二电极可以是顶部金属电极202。第二导电材料可以是与第一导电材料相同或不同的材料。顶部金属电极202可具有非竖直侧壁,类似于用于底部金属电极204的侧壁。顶部金属电极202可通过在形成抗蚀剂层之后在旋转基底的同时以非垂直角度沉积第一导电材料来形成。用于第二电极的沉积工艺将在本文件中稍后描述。

该装置可包括设置在底部金属电极204和顶部金属电极202之间的绝缘层。绝缘层可包括第一绝缘材料和第二绝缘材料。换言之,绝缘层可以包括两层绝缘材料。第一绝缘材料可以是第一绝缘体层206。第二绝缘材料可以是第二绝缘体层208。第二绝缘体层208的第一部分可设置在第一绝缘体层206和顶部金属电极202之间。第二绝缘体层208的第二部分可设置在底部金属电极204和顶部金属电极202之间。第二绝缘体层208的该第二部分可限定隧道结的宽度。

绝缘材料可以是电介质,包括氧化铝(Al2O3)、氧化铪(HfO2)、氮化硅(Si3N4)或氧化硅(SiO2)、玻璃或石英。绝缘材料可以是金属氧化物,包括本文所述的金属的氧化物。绝缘材料可以是低k电介质或高k电介质。低k电介质可具有小于或等于4.0、小于或等于3.9、小于或等于3.5、小于或等于3.0、小于或等于2.5、小于或等于2.0、或小于或等于1.5的介电常数。高k电介质可具有大于4.0、大于或等于5.0、大于或等于10、大于或等于20或大于或等于50的介电常数。用作隧道结的绝缘层的厚度可取决于材料和/或介电常数。对于氧化铝,厚度可以是大约2 nm,这导致大约100pA的隧道电流。厚度也可取决于待分析的分子。厚度不能太大,否则隧道电流可能穿过分子的大于感兴趣部分的部分(例如,隧道电流可能穿过多个核苷酸而不是单个核苷酸)。第一绝缘材料可以是与第二绝缘材料相同或不同的材料。第二绝缘材料可以是粘附到导电材料的材料。例如,如果导电材料是铂,则绝缘材料可以是氧化铝。

在实施例中,用作隧道结的绝缘层的厚度(例如,第二绝缘材料的厚度)可以是1nm或更小、从1 nm至2 nm、从2 nm至3 nm、从3 nm至4 nm、从4 nm至5 nm或大于5 nm。第一绝缘材料的厚度可大于第二绝缘材料的厚度。第一绝缘材料的厚度可以是第二绝缘材料厚度的从2至5倍、5至10倍或10至20倍(包括10倍)。厚度是指材料的高度。

纳米孔可以是穿过电极、绝缘层和基底的孔口。纳米孔可以是孔口212。第二绝缘体层208可构成限定孔口212的一部分的绝缘层。

底部金属电极204、顶部金属电极202和绝缘层可限定孔口的一部分。基底210也可限定孔口的一部分。总的孔口可由基底210、底部金属电极204、第二绝缘体层208和顶部金属电极202限定。孔口212可以是圆柱形的。如果孔口212不是圆柱形的,则孔口212可以通过特性尺寸来描述。该特性尺寸可描述长度、宽度、长轴的长度、或短轴的长度。特性尺寸可以在平行于基底的平面中。如果孔口212不是圆柱形的,则特性尺寸可以是具有与孔口212相同体积和相同高度的圆柱的直径。孔口的直径或特性尺寸可以为从0.9 nm至30 nm,包括从0.9 nm至1.0 nm、1.0 nm至1.5 nm、1.5 nm至2.0 nm、2.0 nm至2.5 nm、2.5 nm至5 nm、5 nm至10 nm、10 nm至15 nm、15 nm至20 nm或20 nm至30 nm。在一些实施例中,孔口212可以是狭缝。狭缝的形状可以类似于矩形固体,其特征在于在平行于基底平面的平面中的长度和宽度。

底部金属电极204和顶部金属电极202可以以交叉的图案沉积。然而,因为底部金属电极204和顶部金属电极202被绝缘层分开,所以底部金属电极204和顶部金属电极202彼此不接触。底部金属电极204可具有第一纵向轴线。第一纵向轴线可以是轴线250。纵向轴线可以沿着底部金属电极204的长度。底部金属电极204可以关于轴线250对称或基本对称。顶部金属电极202可具有第二纵向轴线。第二纵向轴线可以是轴线252。类似于第一纵向轴线,第二纵向轴线可沿着顶部金属电极202的长度,并且顶部金属电极202可关于轴线252对称或基本对称。

具有轴线250的第一平面可正交于基底210的表面。具有轴线252的第二平面可正交于基底210的表面。第一平面和第二平面可以以非零度角度相交。这两条轴线可能不在同一平面上,因为电极在基底上方处于不同的高度。如果轴线被投影到平行于基底210表面的平面上,则所述轴线可以以非零度角度相交。非零度角度可以是从45度至95度,包括从45度至55度、从55度至65度、从65度至75度、从75度至85度、从85度至95度、或90度。

电极的端部可以比电极的具有孔口的区域更厚且更宽。电极的端部可以是用于电连接的接触区。具有孔口的区域可被称为结区。接触区和结区可以是图4A和图4B所示的区。结区可以在孔口中心的5 nm、10 nm、15 nm、20 nm、30 nm、40 nm或50 nm内。结区可以是电极的宽度基本上等于电极在孔口位置处的宽度的区域。基本相等的宽度是另一宽度的5%、10%或15%以内的宽度。电极在结区中的宽度可以是电极的最小宽度。接触区可包括电极的最大宽度。接触区可以包括比最大宽度位置更远离孔口的电极的任何部分。

电极的厚度可以是电极的高度。电极区域中的电极厚度可以是最大厚度、平均厚度或中位数厚度。电极的厚度可以为从2 nm到5 nm、从5 nm到10 nm、或者大于10 nm。区域中电极的宽度可以是最大宽度、平均宽度或中位数宽度。电极的宽度可以是从10 nm至50nm、从50 nm至100 nm、从100 nm至200 nm、从200 nm至500 nm或大于500 nm。

该系统可包括与第一电极或第二电极中的至少一者电连通的电源。电源可以是图2中的电源254。电源可提供恒定电压或恒定电流。电源可提供从0到1 V的电压,包括从10mV到100 mV、从100 mV到200 mV、从200 mV到300 mV、从300 mV到500 mV、或从500 mV到1 V的电压。在一些实施例中,电源可以提供0到30 nA的电流,包括从1 pA到10 pA、从10 pA到100 pA、从100 pA到1 nA、1 nA到10 nA、或从10 nA到30 nA。作为示例,电源254可供应直流电压、交流电压或不同的波形(例如,脉冲、正弦、正方形、三角形或锯齿)。

该系统可包括与第一电极或第二电极中的至少一者电连通的电气仪表。电气仪表可以是仪表256。电气仪表可以是电压表或电流表。

该系统可以包括第二电源。第二电源可以是电源258。第二电源可被配置成施加通过孔口的电场。第二电源可能不与第一电极电连通,并且可能不与第二电极电连通。第二电源可与第三电极电连通。第三电极可以是电极260。另外,第二电源可以与第四电极(诸如,电极262)电连通。第三电极和第四电极可被定位成使得穿过孔口中心的纵向轴线(例如,轴线264)与第三电极和第四电极相交。

单个装置可指系统的固态部分或系统的通过半导体加工技术制造的部分。该装置可以包括第一电极、第二电极、绝缘层和基底。该系统可以包括多个装置。这些装置可以布置成阵列。这些装置可具有从每个装置中的每对电极到多个电源或单个电源的电连接。这些装置可具有到多个电气仪表的连接。使用多个分析系统可允许多路复用。所述多个装置可包括从50至100、从100至500、从500至1000、从1000至5000、从5000至10000或超过10000个装置。

在2017年7月27日提交的美国专利公开号US 2018/0031523A1中描述了测序系统的附加的细节,其内容出于所有目的并入本文。

IV. 制造方法

制造装置和系统的方法可包括沉积具有非竖直侧壁的电极的工艺以及使电极的高度和厚度逐渐减小的工艺。

A .倾斜侧壁

如上所述,倾斜侧壁可用于允许上面的绝缘层更容易覆盖下面的导电材料层,由此降低短路或剥落的可能性。

图5示出了沉积具有非竖直侧壁的电极的工艺流程。在第一步骤550中,在下面的层504上沉积剥离抗蚀剂502。下面的层504可以是基底或基底上方先前沉积的层。在剥离抗蚀剂502的顶部上沉积另一抗蚀剂层506。将抗蚀剂层506图案化以暴露剥离抗蚀剂502。剥离抗蚀剂502然后被图案化,以在抗蚀剂层506下方和下层504上方形成底切。可通过使用显影剂来形成底切,该显影剂去除剥离抗蚀剂502的在抗蚀剂层506下方的一部分。抗蚀剂层506悬伸于剥离抗蚀剂502之上。显影剂可以是用于在抗蚀剂的一部分已经通过图案化的掩模曝光之后去除抗蚀剂的液体。显影剂可以是光刻中使用的任何合适的显影剂。显影剂可包括I-线抗蚀剂,诸如TMAH(四甲基氢氧化铵基)基MIF(不含金属离子)和MIB(含金属离子)显影剂。显影剂可包括AZ 300MIF、MF-24A、M452以及其他显影剂。

如图5中的工艺流程的第二步骤560所示,可使用以45度角度偏置的靶沉积来沉积金属。角度可包括从30度到70度的角度,包括例如从30度到40度、从40度到50度、从50度到60度、从60度到70度、或45度。在沉积工艺期间,晶片可围绕竖直轴线连续旋转。

在第三步骤570中,可在下面的层504上沉积金属层508。由于抗蚀剂中的悬伸、成角度的沉积、以及旋转的晶片,金属层508的侧壁可不是竖直的。侧壁可以是倾斜的或弯曲的。可在抗蚀剂层506的悬伸部下方沉积金属。偏置的靶沉积可允许高品质、无针孔的超薄层,同时避免界面混合。

在第四步骤580中,可去除或“剥离”剥离抗蚀剂502,这去除了抗蚀剂层506和沉积在抗蚀剂层506顶部上的金属510。可通过有机溶剂去除剥离抗蚀剂,包括N-甲基-2-吡咯烷酮(NMP)。结果可以是具有金属层508的下面的层504。金属层508可以是装置的电极。

在本发明的实施例中也可使用不同于图5中所使用的形成倾斜侧壁的技术。其他技术包括电感耦合等离子体反应离子刻蚀(ICP RIE)、以一定角度的离子铣削和随后的RIE的灰度光刻。

B .宽度和厚度逐渐减小

如图4A和4B所示,电极的宽度和厚度的逐渐减小也可以使用剥离抗蚀剂来实现。

图6A示出了不同大小的抗蚀剂开口会如何导致金属层的不同厚度和宽度。可使用类似于图5所示的工艺来沉积金属层。然而,抗蚀剂层之间的开口可变化以改变金属层的宽度和厚度。

在下面的层606上沉积抗蚀剂层602和剥离抗蚀剂604并将其图案化。然而,在结区中,抗蚀剂层602之间的开口的宽度W3比接触区中的对应宽度W4更窄。较小的宽度W3可导致沉积在结区中的金属层608比沉积在接触区中的金属层610更窄。此外,因为可通过更窄的开口沉积更少的材料,所以结区中金属层608的高度H3也可小于接触区中金属层610的高度H4

图6B示出了抗蚀剂开口可如何逐渐减小以实现图4B所示的电极的几何形状的俯视图。抗蚀剂层602中的开口可沿着稍后沉积的金属层608的预期长度从宽度W4单调地或连续地减小到宽度W3。抗蚀剂开口的宽度与沉积的电极的宽度可相同或可不同。例如,W4可与W2不同,并且W3可与W1不同。因为电极以一定角度沉积,所以某些电极可形成在抗蚀剂层602中的悬伸部下方。结果,电极的宽度可比抗蚀剂开口的对应宽度更宽。在去除剥离抗蚀剂604和抗蚀剂层602之后,可实现图4B所示的几何形状。

C .示例方法

图7A示出了制造用于对分子进行分析的系统的方法700。方法700可包括具有倾斜侧壁和两个绝缘体层的电极。另外,方法700还可包括使电极在两个维度上逐渐减小,使得电极更容易制造。方法700可被视为形成类似于图2中的结构。框705-720可用于形成底部金属电极204。框725-740可用于形成第一绝缘体层206和第二绝缘体层208。框745可用于形成顶部金属电极202。框750和755可以用于形成孔口212。

在框705处,可在沉积第一导电层之前在基底上形成第一抗蚀剂层。第一抗蚀剂层可包括两个不同的抗蚀剂子层。第一抗蚀剂层的第一部分可以是第一抗蚀剂层的第二部分下方的子层。第一抗蚀剂层的第一部分可以是剥离抗蚀剂,并且第一抗蚀剂层的第二部分可以是除剥离抗蚀剂之外的抗蚀剂。例如,在图5中,第一抗蚀剂层的第一部分可以是剥离抗蚀剂502,并且第一抗蚀剂层的第二部分可以是抗蚀剂层506。

在框710处,可在第一抗蚀剂层中限定第一沟槽。图7B和7C示出了与框710相关的可能结构770。第一沟槽可以是第一沟槽772。第一抗蚀剂层可包括顶部部分774和底部部分776。顶部部分774可以是抗蚀剂层,类似于图5中的抗蚀剂层506,并且底部部分776可以是剥离抗蚀剂502。第一抗蚀剂层可以在基底778上。第一沟槽772可部分地由第一抗蚀剂层的顶部部分774的悬伸部780限定。第一沟槽772可包括第一侧壁781和第二侧壁782,其中第一侧壁781与第二侧壁782相对或面对第二侧壁782。第一侧壁781和第二侧壁782可以是限定第一沟槽772的侧面的侧壁。由于悬伸部,所以这些侧壁可能至始至终不完全竖直。第一侧壁781可包括第一抗蚀剂层的顶部部分774和第一抗蚀剂层的底部部分776。第二侧壁782还可包括第一抗蚀剂层的顶部部分774和第一抗蚀剂层的底部部分776。

第一沟槽772顶部处的宽度可比第一沟槽772底部处的宽度更窄,因为第一抗蚀剂层的顶部部分774悬伸超过第一抗蚀剂层的底部部分776。第一沟槽772的第一宽度784可由从具有底部部分776的第一侧壁781到具有底部部分776的第二侧壁782的距离来限定。第一沟槽772的第二宽度786可由从具有顶部部分774的第一侧壁781到具有顶部部分774的第二侧壁782的距离来限定。第一宽度784大于第二宽度786。第一宽度784和第二宽度786可在正交于沟槽且正交于基底的平面上测量。沟槽的两个部分可通过任何合适的光刻方法来图案化。第一抗蚀剂层的底部部分776可用湿化学物质(例如,显影剂)图案化,与第一抗蚀剂层的顶部部分774相比,该湿化学物质更快地去除第一沟槽772的底部部分776。

沟槽顶部处的沟槽宽度可沿沟槽长度变化。更宽的沟槽可导致更宽的第一电极。沟槽可在沿着沟槽长度的两端处终止。沟槽顶部处的宽度可从沟槽的端部到中心逐渐减小至更窄的宽度。沟槽可类似于图6B所示的抗蚀剂开口。沟槽顶部处的较窄宽度可导致沉积的第一电极中的较窄宽度。第一电极的具有较窄宽度的区可以是装置的结区,其中可稍后限定孔口。结区域可以是第一电极和第二电极交叠的区域。

在框715处,可将第一导电材料沉积在基底的表面上,以形成具有非竖直侧壁的第一电极。沉积第一导电材料可包括在旋转基底的同时以非垂直角度沉积第一导电材料。所述非垂直角度可以是从30度至60度,包括从40度至50度以及以45度。第一导电材料可通过偏置的靶沉积来沉积。第一导电材料可以是本文所述的任何导电材料或任何金属。

作为框705-715中描述的沟槽和成角度沉积的结果,具有非竖直侧壁的第一电极可以单独通过沉积形成,而不需要蚀刻所沉积的第一导电材料。

在框720处,可在沉积第一导电层之后去除第一抗蚀剂层。第一抗蚀剂层包括底部部分776和顶部部分774。可以用有机溶剂去除第一抗蚀剂层。在去除抗蚀剂之后,第一电极可以保留在基底上。

在框725处,可在第一电极上形成绝缘层。绝缘材料可以是任何绝缘材料,例如,如本文所述的任何绝缘材料。绝缘层可以足够厚,使得电极之间没有或只有很少的隧道电流。

在实施例中,可使用框730-740的步骤来执行框725。在框730处,为了形成绝缘层,可将第一绝缘材料作为第一绝缘体层沉积在第一电极上。作为示例,可通过离子束沉积(IBD)或原子层沉积(ALD)来沉积第一绝缘材料。第一绝缘材料可以是本文描述的任何绝缘材料。

在框735处,可将第一绝缘材料中的第一过孔限定成暴露第一电极的顶表面的一部分。可以通过使用电子束光刻和湿法蚀刻第一绝缘材料的图案化来限定第一过孔。可以通过绝缘材料的湿法蚀刻来限定第一电极的顶表面的部分。可使用湿法蚀刻,因为干法蚀刻可能溅射金属材料,从而增加短路的可能性。

在框740处,可将第二绝缘材料作为第二绝缘体层沉积在第一绝缘材料上。第二绝缘材料可以是本文所述的任何绝缘材料或电介质。可将第二绝缘材料沉积在第一过孔的表面上以限定第二过孔。结果,第二过孔可以具有比第一过孔更小的尺寸。在第一过孔的底部处,第二绝缘材料可接触第一电极的顶表面。第一绝缘材料的厚度可大于第二绝缘材料的厚度。可通过原子层沉积来沉积第二绝缘材料。第一和第二绝缘材料可以是本文描述的任何绝缘材料。多层绝缘层可降低不完全覆盖的可能性和剥落的可能性。

在框745处,可在绝缘层上沉积第二导电材料以形成具有非竖直侧壁的第二电极。第二导电材料可以是本文所述的任何导电材料或金属。第二电极可以是顶部金属电极202。沉积第二导电材料之前可以形成第二抗蚀剂层,其中第二抗蚀剂层类似于第一抗蚀剂层。可在沉积第二绝缘材料之后去除第二抗蚀剂层。形成第二电极的工艺可使用与用于第一电极的步骤基本类似的步骤,包括框705、710、715和720。

可相对于第一导电金属以处于非零度角度下的取向沉积第二导电材料。第一电极可具有第一纵向轴线。第二电极可具有第二纵向轴线。第一平面可包括第一纵向轴线,并且可正交于基底的表面。第二平面可包括第二纵向轴线,并且可正交于基底的表面。第一平面和第二平面可以以非零度角度相交。非零度角度可以是从85度到95度,包括90度。在旋转基底的同时,可通过偏置的靶沉积来沉积第二导电材料。第一电极和第二电极可在第一电极或第二电极中的至少一者在沿着相应电极的长度的一个方向上逐渐减小或者朝向相应电极的中心逐渐减小之后处于最小宽度的区域中交叠。

在框750处,可在基底、第一电极、绝缘层和第二电极中限定孔口。该孔口可以是图2中的孔口212,其可以是纳米孔。限定孔口可包括去除一部分第二导电材料。

在框755处,可去除限定第二过孔的底表面的一部分的材料。去除第二过孔的底部可有助于限定孔口。第二过孔的底表面可包括第二绝缘材料,但是可排除第一绝缘材料。在去除第二过孔的底表面之后,可去除第一电极的一部分。还可去除基底的一部分。该孔口可以延伸穿过基底的厚度。该孔口可具有比第二过孔更小的直径或特性尺寸。

方法700可进一步包括将第一电极或第二电极中的至少一者连接到电源(例如,电源254)。该方法还可包括将第一电极或第二电极中的至少一者连接到电气仪表。电源可以是本文描述的任何电源。电气仪表可以是本文描述的任何电气仪表。电源和/或电气仪表可连接成与计算机系统通信。

VI. 对分子进行分析的方法

图8示出了对分子进行分析的方法800。方法800可以使用本文所述的任何系统或装置。

在框810处,可以跨被绝缘层分开的第一电极和第二电极施加电压。绝缘层可包括第一绝缘材料和第二绝缘材料。第二绝缘材料可设置在第一绝缘材料和第二电极之间。第一绝缘材料的厚度可大于第二绝缘材料的厚度。包括电压源的电源可施加电压。电源可以由计算机系统控制。第一电极、第二电极和绝缘层可以是本文描述的任何一种。

方法800可包括通过电泳或压力驱动的流动将分子移动到第一电极和第二电极。如本文所述,可通过跨第二对电极施加电压来诱导电泳。压力驱动的流动可通过泵、叶轮或其他合适的仪器来实现。分子的运动可部分地由计算机通过控制电极或泵或叶轮来控制。

在框820处,可使分子跨孔口中的绝缘层接触到第一电极和第二电极。第一电极可具有非竖直侧壁。第二电极可具有非竖直侧壁。绝缘层可设置在第一电极和第二电极之间。孔口的一部分可由第一绝缘材料和第二绝缘材料限定。

分子可以是核酸分子或任何生物聚合物分子。例如,可以分析蛋白质以确定蛋白质中的氨基酸。

第一电极可以具有第一纵向轴线。第一电极可以以第一纵向轴线为中心。第二电极可以具有第二纵向轴线。第二电极可以以第二纵向轴线为中心。第一平面可以包括第一纵向轴线,并且可正交于基底的表面。第二平面可包括第二纵向轴线,并且可正交于基底的表面。第一平面和第二平面可以以非零度角度相交,该角度可以是本文所述的任何角度。

在框830处,可测量通过第一电极和第二电极的电特性。电特性可以是电流、电压或电阻。电特性的测量可包括测量幅度、脉冲宽度和频率中的至少一者。脉冲宽度也可以被认为是停留时间,其可以与核酸分子的某一部分保持与两个电极接触的持续时间相关。在一些实施例中,电特性可以通过数学运算(诸如傅立叶变换)进行变换,并且可对该变换进行分析。在实施例中,可将所测量的电特性与所施加的电压进行比较,并对其进行调节以剔除核酸分子的振荡。

可相对于背景电特性来确定电特性的变化。如本领域技术人员将理解的,电特性可以由电气仪表测量,电气仪表可以采取各种形式。电特性包括电流、电压和本文描述的任何其他特性。该测量可以由计算机系统接收。

在框840处,可基于电特性来鉴定分子的一部分。可将电特性与校准电特性进行比较。例如,可将电流与从已知分子或分子的一部分测量的校准电流进行比较。例如,核苷酸或序列可具有用作指纹的电流图案,以鉴定核苷酸或序列。所测量电流的幅度、频率和/或脉冲宽度可用于基于已知的核苷酸或序列来鉴定未知的核苷酸或序列。幅度可取决于单个核苷酸和核苷酸的电阻。频率可取决于核苷酸和/或相邻核苷酸在孔口中如何振荡。

可识别图案并将其与已知的核苷酸或序列进行匹配。可不需要精确匹配。相反,如果从未知核苷酸或序列测量的电流具有某一阈值水平的幅度、频率和/或脉冲宽度,则可鉴定该核苷酸或序列。分析电流特性可能类似于分析共振隧穿二极管的电特性。核苷酸的隧道效应识别可能类似于如Zhao等人所描述的氨基酸的隧道效应识别,“Single-moleculespectroscopy of amino acid and peptide by recognition tunneling”,NatureNanotech. 9,(2014)466-73,其内容出于所有目的通过引入并入本文。

鉴定分子的一部分可以包括鉴定分子序列的一部分(例如,核苷酸或氨基酸)或官能团的存在与否。鉴定分子的该部分可包括将测量的电特性或电特性的变化与参考值或校准值进行比较。电特性可以是电流、电压或本文描述的任何特性。例如,DNA的四种核苷酸中的每一种或蛋白质的20种氨基酸中的每一种都可具有先前表征的电流或电流变化。四种核苷酸或20种氨基酸可以是预先确定的集合,从该集合中可鉴定分子的一部分。区分分子的不同部分可使用几十皮安培数量级的电流差。校准电流或参考电流可基于多个读数。例如,参考电流可基于装置或类似装置上的数百、数千或数万个电流测量值。这种测量值可以被平均,并且该平均值可以与参考值或校准值进行比较。除了平均值之外,还可以使用其他统计值,例如中位数或众数。分子部分的鉴定可使用计算机系统。计算机系统可以具有存储在系统内的参考电流或其他电特性。

方法800可以包括用第二测序装置(例如,作为装置阵列的一部分)重复这些步骤。装置的阵列可以是上述任何阵列。分子的重复电特性测量可以改进读数的统计,并且可便于鉴定分子或分子的一部分。方法800可包括使分子接触到多个装置。所述多个可以包括从50至100、从100至500、从500至1000、从1000至5000、从5000至10000或超过10000个装置。可使用统计测试来确定来自分子的一部分的电特性分布是否与参考电特性相同或不同。

在2017年5月31日提交的美国专利申请序列号15/610,186中描述了对分子进行分析的附加细节,其内容出于所有目的并入本文。

VI. 示例

制造隧道结并针对电流和电压特性进行测试。电流和电压特性指示隧道电流的存在。

图9A示出了被测试装置的配置。出于说明目的,简化了该配置。被测试装置具有非竖直侧壁。该装置类似于图3A的步骤380中的装置,其中隧道结由底部电极、绝缘体和顶部电极形成。然而,没有孔被蚀刻穿过任何层。直径“D”表示在另一种绝缘体材料中蚀刻的接触过孔(例如,接触过孔308)的宽度。

图9B示出了针对接触过孔的不同直径的电流-电压曲线。通过隧道结的电流在y轴上示出,并且两个电极之间的电压在x轴上示出。在底部和顶部电极之间施加电压。通过绝缘体和电极的电流是在-1 V到1 V的电压下测量的。电流预计与过孔的面积成比例。因此,对于较大直径的过孔(图9A中的“D”),预期较高的电流。该曲线图示出了随着直径从100 nm增加到800 nm,电流增加。该曲线图示出该装置如对于隧道结所预期的那样表现。

图9C示出了0.9 V偏置下的电流相对于结直径(即接触过孔直径)的关系。电流在y轴上示出。在图9A中为“D”的图案化结直径在x轴上示出。针对具有不同直径的装置,绘制了针对到顶部电极的0.9 V恒定电压的电流。该曲线图示出了电流与结直径的二次相关性,这是所预期的,因为电流与过孔面积成比例,并且过孔的面积与直径的平方成比例。

图10A示出了被测试装置的配置。该配置与图9A的相同。该装置的特征在于电极之间绝缘体的厚度“H”。该厚度是在接触过孔被蚀刻之后沉积的绝缘体的厚度,并且是两个电极之间绝缘体的最薄量。

图10B示出了针对不同厚度的绝缘体(Al2O3)的电流-电压特性。电流的绝对值在y轴上示出。施加在顶部和底部电极之间的电压在x轴上示出。没有电压施加到底部电极。隧道结包括夹着氧化铝电介质的两个铂电极。不同的曲线示出了针对电极之间氧化铝电介质的不同厚度(即,图10A中的“H”)的电流和电压。如预期的那样,较厚的绝缘体导致较低的电流。

在所测试的126个结中,124个结示出指示隧道二极管的电流-电压特性。两个结示出指示短路的欧姆响应。这些测试结果示出,可以获得高产量的隧道结。

图11示出了隧道结装置的扫描电子显微镜图像。图片1102示出了三个结装置的电极。图片1104示出了单个结装置的更加放大的图像。图片1106示出了在结装置中限定的纳米狭缝的图像。图片1108示出了在结装置中限定的纳米孔的图像。圆1110和1112示出了蚀刻的接触过孔的形貌。这些图像显示,可以在接触过孔内部蚀刻出孔口(狭缝或孔隙)。

VII. 计算机系统

本文提到的任何计算机系统可利用任何合适数量的子系统。这种子系统的示例在图12中在计算机系统10中的示出。在一些实施例中,计算机系统包括单个计算机设备,其中子系统可以是计算机设备的部件。在其他实施例中,计算机系统可以包括多个计算机设备,每个都是具有内部部件的子系统。计算机系统可以包括台式和膝上型计算机、平板电脑、移动电话和其他移动装置。

图12所示的子系统经由系统总线75互连。示出了附加的子系统,诸如打印机74、键盘78、存储装置79、耦合到显示适配器82的监视器76以及其他子系统。耦合到I/O控制器71的***装置和输入/输出(I/O)装置可以通过本领域已知的任何数量的手段连接到计算机系统,诸如输入/输出(I/O)端口77(例如,USB、FireWire®、迅雷)。例如,I/O端口77或外部接口81(例如,以太网、Wi-Fi等)可以用于将计算机系统10连接到广域网,诸如互联网、鼠标输入装置或扫描仪。经由系统总线75的互连允许中央处理器73与每个子系统通信,并控制对来自系统存储器72或存储装置79(例如,诸如硬盘驱动器或光盘的固定盘)的指令的执行,以及子系统之间的信息交换。系统存储器72和/或存储装置79可以包含计算机可读介质。另一个子系统是数据收集装置85,诸如相机、麦克风、加速度计等。本文提到的任何数据都可以从一个部件输出到另一个部件,并且可以输出给用户。

计算机系统可以包括多个相同的部件或子系统(例如通过外部接口81或内部接口连接在一起)。在一些实施例中,计算机系统、子系统或设备可以通过网络通信。在这种情况下,一台计算机可以被认为是客户机,并且另一台计算机可以被认为是服务器,其中每台计算机都可以是同一计算机系统的一部分。客户机和服务器可以各自包括多个系统、子系统或部件。

应当理解,本发明的任何实施例可以使用硬件(例如,专用集成电路或现场可编程门阵列)和/或以模块化或集成的方式使用具有一般可编程处理器的计算机软件以控制逻辑的形式实施。如本文所使用的,处理器包括单核处理器、在同一集成芯片上的多核处理器、或者在单个电路板上或联网的多个处理单元。基于本文提供的公开和教导,本领域普通技术人员将知道并理解使用硬件和硬件与软件的组合来实施本发明的实施例的其他方式和/或方法。

在本申请中描述的任何软件部件或功能可以被实施为由处理器使用任何合适的计算机语言执行的软件代码,所述计算机语言诸如,例如是Java、C、C++、C#、Objective-C、Swift,或者使用例如常规或面向对象技术的脚本语言(诸如Perl或Python)。软件代码可以作为一系列指令或命令存储在计算机可读介质上,以用于存储和/或传输。合适的非暂时性计算机可读介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、磁介质(诸如硬盘或软盘)、或光学介质(诸如光盘(CD)或数字多功能盘(DVD)、闪存)等。计算机可读介质可以是这种存储或传输装置的任何组合。

这种程序也可使用适于经由有线、光学和/或符合各种协议(包括互联网)的无线网络传输的载波信号进行编码和传输。这样,根据本发明实施例的计算机可读介质可以使用用这样的程序编码的数据信号来形成。用程序代码编码的计算机可读介质可与兼容的装置一起打包,或者与其他装置分开提供(例如,经由互联网下载)。任何这样的计算机可读介质可驻留在单个计算机产品(例如,硬盘驱动器、CD或整个计算机系统)上或在其内,并且可存在于系统或网络内的不同计算机产品上或其内。计算机系统可包括监视器、打印机或其他合适的显示器,用于向用户提供本文提到的任何结果。

本文描述的任何方法可全部或部分地用包括一个或多个处理器的计算机系统来执行,该计算机系统可以被配置成执行这些步骤。因此,实施例可以涉及被配置成执行本文描述的任何方法的步骤的计算机系统,其潜在地具有执行相应步骤或相应步骤组的不同部件。尽管以编号的步骤呈现,但是本文的方法的步骤可以同时执行或者以不同的顺序执行。另外,这些步骤的部分可与来自其他方法的其他步骤的部分一起使用。另外,步骤的全部或部分可以是任选的。另外,任何方法的任何步骤都可以用模块、单元、电路或用于执行这些步骤的其他装置来执行。

图13示出了示例性分析系统1300。图13中描绘的系统包括测序装置1302和作为计算机系统1306的一部分的智能模块1304。测序装置1302可包括系统200或本文描述的任何系统。跨电极施加电压(例如,的图8中的框810)、使分子接触到电极(例如,图8中的框820)和/或测量通过电极的电特性(例如,图8中的框830)可由测序装置1302来执行。计算机系统1306可包括计算机系统10的部分或全部。在一些实施例中,计算机系统1306可测量通过电极的电特性(例如,图8中的框830)。例如,原始模拟或数字输出信号可由计算机系统1306转换成电流或电压。计算机系统1306可基于电特性来鉴定分子的一部分(例如,图8中的框840)。数据集(电特性数据集)经由网络连接或直接连接从测序装置1302传输到智能模块1304,或反之亦然。数据集可例如被处理以鉴定核苷酸。鉴定步骤可通过存储在计算机系统1306的硬件上的软件来实施。数据集可以由在处理器上运行并被存储在智能模块的存储装置上的计算机代码处理,并且在处理之后被传送回到测序装置的存储装置,在那里,被修改的数据可以显示在显示装置上。在一些实施例中,智能模块也可在测序装置中实施。

图14示出计算机系统1400可包括施加装置1410,其可以包括,例如,跨被绝缘层分开的第一电极和第二电极施加电压(例如,图8的框810)。计算机系统1400可向测序装置(例如,图13的测序装置1302)发送指令,以跨电极施加电压。计算机系统1400可以是现场可编程门阵列(FPGA)或专用集成电路(ASIC)计算机。计算机系统1400还可包括测量装置1420,其可包括测量通过第一电极和第二电极的电特性(例如,图8的框820)。计算机系统1400可进一步包括接收装置1430,其可包括从测序系统(例如,图8的框830)接收电特性数据。计算机系统1400还可包括鉴定装置1440,其可包括例如基于电特性鉴定分子的一部分(例如,图8的框840)。

在不脱离本发明实施例的精神和范围的情况下,可以以任何合适的方式组合特定实施例的具体细节。然而,本发明的其他实施例可涉及与每个单独方面相关的特定实施例,或者这些单独方面的具体组合。

已经出于说明和描述的目的,呈现了对本发明的示例实施例的上述描述。它并不旨在是详尽的或将本发明限制于所描述的精确形式,并且根据上述教导,许多修改和变型是可能的。

在前面的描述中,出于解释的目的,已经阐述了许多细节,以便提供对本技术的各种实施例的理解。然而,对于本领域技术人员来说将显而易见的是,某些实施例可以在没有这些细节中的一些或者具有附加细节的情况下实践。

已经描述了几个实施例,本领域技术人员将会认识到,在不脱离本发明的精神的情况下,可使用各种修改、替代构造和等同物。另外,为了避免不必要地模糊本发明,没有描述许多众所周知的工艺和元件。另外,任何具体实施例的细节可能不总是存在于该实施例的变型中,或者可能被添加到其他实施例中。

在提供值的范围的情况下,应当理解,除非上下文另有清楚规定,每一个至在该范围的上限和下限之间的下限单位的十分之一之间的中间值也是具体公开的。任何所陈述的值或所陈述的范围内的中间值与该所陈述的范围内的任何其他所陈述的值或中间值之间的每个较小范围都被涵盖。这些较小范围的上限和下限可独立地包括或排除在该范围之外,并且其中任一个、没有一个或两个极限都被包括在较小范围内的每个范围也被涵盖在本发明内,受到所陈述的范围内的任何具体排除的限制。如果所陈述的范围包括所述极限中的一者或两者,则排除其中这两个极限中的任一者或两者的范围也被包括在内。

如本文和所附权利要求中所使用的,单数形式“一个”、“一”和“该”包括复数指代物,除非上下文另有明确规定。因此,例如,对“方法”的引用包括多种这样的方法,并且对“分子”的引用包括本领域技术人员已知的一种或多种分子及其等同物,等等。为了清楚和理解的目的,现在已经详细描述了本发明。然而,应当理解,在所附权利要求的范围内,可实践某些改变和修改。

本文引用的所有出版物、专利和专利申请在此出于所有目的全部通过引用并入。没有一者被认为是现有技术。

39页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于体液鉴定的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!