一种Ka/C双频高度计消除电离层误差方法及系统

文档序号:1140388 发布日期:2020-09-11 浏览:12次 >En<

阅读说明:本技术 一种Ka/C双频高度计消除电离层误差方法及系统 (Method and system for eliminating ionosphere error of Ka/C dual-frequency altimeter ) 是由 翟振和 杨双宝 李楠 管斌 于 2020-06-15 设计创作,主要内容包括:本发明公开了一种Ka/C双频高度计消除电离层误差方法及系统,Ka/C双频雷达高度计的Ka频段中心频率为35.7GHz,C频段中心频率为5.3GHz。该方法包括:根据Ka/C双频雷达高度计的回波波形测量值建立误差方程;采用最小二乘平差方法确定误差方程中的参数值;根据参数值得到Ka/C双频段测距改正值和双频段海况偏差改正值;根据Ka/C双频高度计观测值、Ka/C双频段测距改正值和Ka/C双频段海况偏差改正值综合确定Ka频段的电离层误差改正值。采用本发明的方法及系统,能够大幅减小电离层对卫星测高的影响,提高卫星测高精度。(The invention discloses a method and a system for eliminating an ionosphere error by a Ka/C dual-frequency altimeter, wherein the Ka-frequency band center frequency of the Ka/C dual-frequency radar altimeter is 35.7GHz, and the C-frequency band center frequency is 5.3 GHz. The method comprises the following steps: establishing an error equation according to the echo waveform measurement value of the Ka/C dual-frequency radar altimeter; determining parameter values in an error equation by adopting a least square adjustment method; obtaining a Ka/C double-frequency range measurement correction value and a double-frequency sea condition deviation correction value according to the parameter values; and comprehensively determining the ionospheric error correction value of the Ka frequency band according to the observed value of the Ka/C dual-frequency altimeter, the Ka/C dual-frequency range measurement correction value and the Ka/C dual-frequency band sea state deviation correction value. By adopting the method and the system, the influence of the ionized layer on the satellite height measurement can be greatly reduced, and the satellite height measurement precision is improved.)

一种Ka/C双频高度计消除电离层误差方法及系统

技术领域

本发明涉及海洋卫星测高技术领域,特别是涉及一种Ka/C双频高度计消除电离层误差方法及系统。

背景技术

海洋卫星测高技术是获取全球海洋区域海面变化、重力场、海底地形的重要手段。电离层误差是卫星测高中的主要误差之一,目前,多数测高卫星一般采用Ku/C双频体制消除电离层,少数测高卫星采用单频Ka体制,上述两种体制在改正电离层误差方面都存在一定的不足。Ku/C双频体制虽能大幅降低电离层误差影响,但对于厘米级测高而言还存在0.5-1cm的噪声误差,且Ku频段对于近岸、冰区测量精度较Ka频段偏低;Ka频段虽然测距精度高但易受降雨影响导致数据失效,且单一Ka频段测距无法完全消除电离层影响。

发明内容

本发明的目的是提供一种Ka/C双频高度计消除电离层误差方法及系统,能够减小电离层对卫星测高的影响,提高卫星测高精度。

为实现上述目的,本发明提供了如下方案:

一种双频雷达高度计组合消除卫星测高电离层误差方法,包括:

获取Ka频段高度计观测值、C频段高度计观测值和雷达回波波形测量值;

根据所述雷达回波波形测量值建立误差方程;

采用最小二乘平差方法确定所述误差方程中参数的值;

根据所述参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值;根据所述参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值;所述参数值为所述误差方程中参数的值;

根据所述参数值采用最小二乘法确定Ka频段海况偏差改正值和C频段海况偏差改正值;

根据所述Ka频段高度计观测值、所述C频段高度计观测值、所述Ka频段测距改正值、所述C频段测距改正值、所述Ka频段海况偏差改正值和所述C频段海况偏差改正值确定Ka频段的电离层误差改正值。

可选的,所述根据所述雷达回波波形测量值建立误差方程,具体包括:

根据如下公式建立误差方程:

V=Aδx-L

式中,δx表示参数的改正值,所述参数包括PN、A0、tx、σ,PN表示热噪声水平,A0表示信号幅度,tx表示高度计真实跟踪时间,σ表示高度计回波波形合成上升时间,L表示雷达回波波形测量值,A表示雷达回波波形函数p(t)对待估参数的偏导数在初始值处的值,V表示残差;

其中,

δx=(AT·A)-1(AT·L)

Figure BDA0002539088370000021

Figure BDA0002539088370000022

Figure BDA0002539088370000023

Figure BDA0002539088370000024

式中,γa表示天线波束宽度参数,ξ表示偏天底点角,τ表示时间历元,erf表示误差函数,t表示每个回波波形中每个距离门对应的跟踪时间,d表示中间变量,h表示相对于参考椭球高度,c表示光速,R表示地球半径。

可选的,

所述根据所述参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值,具体包括:

根据所述参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段波形上升前缘的实际跟踪时间;

根据所述Ka频段波形上升前缘的实际跟踪时间确定Ka频段测距改正值;确定所述Ka频段测距改正值的公式如下:

式中,

Figure BDA0002539088370000032

表示Ka频段测距改正值,表示Ka频段波形上升前缘的实际跟踪时间,Nort表示正常跟踪点对应的时间;

所述根据所述参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值,具体包括:

根据所述参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段波形上升前缘的实际跟踪时间;

根据所述C频段波形上升前缘的实际跟踪时间确定C频段测距改正值;确定所述C频段测距改正值的公式如下:

式中,表示C频段测距改正值,表示C频段波形上升前缘的实际跟踪时间。

可选的,所述根据所述参数值采用最小二乘法确定Ka频段海况偏差改正值和C频段海况偏差改正值,具体包括:

根据如下公式确定Ka频段海况偏差改正值:

Figure BDA0002539088370000037

swhka=2c(σka 2-2.57)1/2

式中,

Figure BDA0002539088370000038

表示Ka频段海况偏差改正值,swhka表示Ka频段的有效波高,U表示风速,σka表示Ka频段高度计回波波形合成上升时间,a1、a2、a3、a4均为常参数;

根据如下公式确定C频段海况偏差改正值:

Figure BDA0002539088370000039

swhc=2c(σc 2-2.57)1/2

式中,

Figure BDA00025390883700000310

表示C频段海况偏差改正值,swhc表示C频段的有效波高,σc表示C频段高度计回波波形合成上升时间。

可选的,所述根据所述Ka频段高度计观测值、所述C频段高度计观测值、所述Ka频段测距改正值、所述C频段测距改正值、所述Ka频段海况偏差改正值和所述C频段海况偏差改正值确定Ka频段的电离层误差改正值,具体包括:

根据如下公式确定Ka频段的电离层误差改正值:

Figure BDA0002539088370000041

式中,I(fka)表示Ka频段的电离层误差改正值,表示Ka频段高度计观测值,表示C频段高度计观测值,fka表示Ka频段的频率,fc表示C频段的频率。

本发明还提供一种Ka/C双频高度计消除电离层误差系统,包括:

数据获取模块,用于获取Ka频段高度计观测值、C频段高度计观测值和雷达回波波形测量值;

误差方程建立模块,用于根据所述雷达回波波形测量值建立误差方程;

参数值确定模块,用于采用最小二乘平差方法确定所述误差方程中参数的值;

测距改正值确定模块,用于根据所述参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值;根据所述参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值;所述参数值为所述误差方程中参数的值;

海况偏差改正值确定模块,用于根据所述参数值采用最小二乘法确定Ka频段海况偏差改正值和C频段海况偏差改正值;

电离层误差改正值确定模块,用于根据所述Ka频段高度计观测值、所述C频段高度计观测值、所述Ka频段测距改正值、所述C频段测距改正值、所述Ka频段海况偏差改正值和所述C频段海况偏差改正值确定Ka频段的电离层误差改正值。

可选的,所述误差方程建立模块,具体包括:

误差方程建立单元,用于根据如下公式建立误差方程:

V=Aδx-L

式中,δx表示参数的改正值,所述参数包括PN、A0、tx、σ,PN表示热噪声水平,A0表示信号幅度,tx表示高度计真实跟踪时间,σ表示高度计回波波形合成上升时间,L表示雷达回波波形测量值,A表示雷达回波波形函数p(t)对待估参数的偏导数在初始值处的值,V表示残差;

其中,

δx=(AT·A)-1(AT·L)

Figure BDA0002539088370000052

Figure BDA0002539088370000053

Figure BDA0002539088370000054

式中,γa表示天线波束宽度参数,ξ表示偏天底点角,τ表示时间历元,erf表示误差函数,t表示每个回波波形中每个距离门对应的跟踪时间,d表示中间变量,h表示相对于参考椭球高度,c表示光速,R表示地球半径。

可选的,所述测距改正值确定模块,具体包括:

Ka频段测距改正值确定单元,用于根据所述参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值;

所述Ka频段测距改正值确定单元,具体包括:

第一实际跟踪时间确定子单元,用于根据所述参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段波形上升前缘的实际跟踪时间;

Ka频段测距改正值确定子单元,用于根据所述Ka频段波形上升前缘的实际跟踪时间确定Ka频段测距改正值;确定所述Ka频段测距改正值的公式如下:

Figure BDA0002539088370000055

式中,表示Ka频段测距改正值,表示Ka频段波形上升前缘的实际跟踪时间,Nort表示正常跟踪点对应的时间;

C频段测距改正值确定单元,用于根据所述参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值;

所述C频段测距改正值确定单元,具体包括:

第二实际跟踪时间确定子单元,用于根据所述参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段波形上升前缘的实际跟踪时间;

C频段测距改正值确定子单元,用于根据所述C频段波形上升前缘的实际跟踪时间确定C频段测距改正值;确定所述C频段测距改正值的公式如下:

式中,表示C频段测距改正值,表示C频段波形上升前缘的实际跟踪时间。

可选的,所述海况偏差改正值确定模块,具体包括:

Ka频段海况偏差改正值确定单元,用于根据如下公式确定Ka频段海况偏差改正值:

swhka=2c(σka 2-2.57)1/2

式中,表示Ka频段海况偏差改正值,swhka表示Ka频段的有效波高,U表示风速,σka表示Ka频段高度计回波波形合成上升时间,a1、a2、a3、a4均为常参数;

C频段海况偏差改正值确定单元,用于根据如下公式确定C频段海况偏差改正值:

swhc=2c(σc 2-2.57)1/2

式中,表示C频段海况偏差改正值,swhc表示C频段的有效波高,σc表示C频段高度计回波波形合成上升时间。

可选的,所述电离层误差改正值确定模块,具体包括:

电离层误差改正值确定单元,用于根据如下公式确定Ka频段的电离层误差改正值:

式中,I(fka)表示Ka频段的电离层误差改正值,表示Ka频段高度计观测值,表示C频段高度计观测值,fka表示Ka频段的频率,fc表示C频段的频率。

与现有技术相比,本发明的有益效果是:

本发明提出了一种Ka/C双频高度计消除电离层误差方法及系统,Ka/C双频雷达高度计的Ka频段中心频率为35.7GHz,C频段中心频率为5.3GHz,本发明根据Ka/C双频雷达高度计的回波波形测量值建立误差方程;采用最小二乘平差方法确定误差方程中参数的值;根据参数值得到Ka/C双频段测距改正值和双频段海况偏差改正值;根据Ka/C双频高度计观测值、Ka/C双频段测距改正值和Ka/C双频段海况偏差改正值综合确定Ka频段的电离层误差改正值。采用本发明的方法及系统,能够大幅减小电离层对卫星测高的影响,提高卫星测高精度,能够消除电离层影响至0.8-1mm量级,满足海洋卫星测高1cm精度要求。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例中Ka/C双频雷达高度计组合消除卫星测高电离层误差方法流程图;

图2为本发明实施例中电离层误差改正计算流程图;

图3为本发明实施例中ka频段海洋测高回波波形图;

图4为本发明实施例中C频段海洋测高回波波形图;

图5为本发明实施例中Ka/C双频雷达高度计组合消除卫星测高电离层误差系统结构图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种Ka/C双频高度计消除电离层误差方法及系统,能够减小电离层对卫星测高的影响,提高卫星测高精度。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

实施例

图1为本发明实施例中Ka/C双频雷达高度计组合消除卫星测高电离层误差方法流程图,图2为本发明实施例中电离层误差改正计算流程图,如图1-2所示,一种Ka/C双频高度计消除电离层误差方法,包括:

步骤101:获取Ka频段高度计观测值、C频段高度计观测值和雷达回波波形测量值。

本发明在宽阔海域、近海等非降雨显著区域,采用Ka、C双频组合后的Ka频段测量值进行测高可极大消除电离层误差,采用Ka、C双频高度计分别测量卫星到海面的垂直距离,其测量原理是沿垂线方向向海面发射微波脉冲,并接收从海面反射回来的信号,利用卫星上的计时系统及信号捕捉系统可以求解获得雷达天线相位中心到瞬时海面的垂直距离Rfka(Ka频段高度计观测值)、Rfc(C频段高度计观测值)。

步骤102:根据雷达回波波形测量值建立误差方程。

步骤102,具体包括:

根据如下公式建立误差方程:

V=Aδx-L

式中,δx表示未知参数的改正值,未知参数包括PN、A0、tx、σ,PN表示热噪声水平,A0表示信号幅度,tx表示高度计真实跟踪时间,σ表示高度计回波波形合成上升时间,L表示雷达回波波形测量值,A表示雷达回波波形函数p(t)对待估参数的偏导数在初始值处的值,V表示残差;

其中,

Figure BDA0002539088370000082

式中,γa表示天线波束宽度参数,ξ表示偏天底点角,τ表示时间历元,erf表示误差函数,t表示每个回波波形中每个距离门对应的跟踪时间,d表示中间变量,h表示相对于参考椭球高度,c表示光速,R表示地球半径。

步骤103:最小二乘平差方法确定误差方程中参数的值。即确定未知参数PN、A0、tx、σ的值。

本发明采用VTPLV=最小的估计原则基于误差方程公式得到未知参数估计值如下:

δx=(AT·PL·A)-1(AT·PL·L)

假设观测值等权即PL为单位矩阵,则上式转化为下式:

δx=(AT·A)-1(AT·L)

步骤104:根据参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值;根据参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值。

利用公式δx=(AT·A)-1(AT·L)分别对Ka、C双频高度计测量获得的回波波形分别进行参数估计(即波形重跟踪)。通过两个频段的波形重跟踪,分别得到两个频段波形上升前缘的真实跟踪时间再计算得到两个频段的测距改正值

其中,

根据参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值,具体包括:

根据参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段波形上升前缘的实际跟踪时间;

根据Ka频段波形上升前缘的实际跟踪时间确定Ka频段测距改正值;确定Ka频段测距改正值的公式如下:

式中,表示Ka频段测距改正值,表示Ka频段波形上升前缘的实际跟踪时间,Nort表示正常跟踪点对应的时间;

根据参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值,具体包括:

根据参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段波形上升前缘的实际跟踪时间;

根据C频段波形上升前缘的实际跟踪时间确定C频段测距改正值;确定C频段测距改正值的公式如下:

式中,表示C频段测距改正值,

Figure BDA0002539088370000106

表示C频段波形上升前缘的实际跟踪时间。

步骤105:根据参数值采用最小二乘法确定Ka频段海况偏差改正值和C频段海况偏差改正值。

分别采用Ka/C双频高度计回波波形利用雷达回波波形函数p(t)的模型采用最小二乘估计分别计算得到两个频段的有效波高swhka、swhc、σka、σc和风速U,进而得到两个频段的海况偏差改正值

Figure BDA0002539088370000107

风速U采用(Wirier,D L,1991)提出的模式函数计算求解。

步骤105,具体包括:

根据如下公式确定Ka频段海况偏差改正值:

Figure BDA0002539088370000108

swhka=2c(σka 2-2.57)1/2

式中,

Figure BDA0002539088370000109

表示Ka频段海况偏差改正值,swhka表示Ka频段的有效波高,U表示风速,σka表示Ka频段高度计回波波形合成上升时间,a1、a2、a3、a4均为常参数;

根据如下公式确定C频段海况偏差改正值:

swhc=2c(σc 2-2.57)1/2

式中,表示C频段海况偏差改正值,swhc表示C频段的有效波高,σc表示C频段高度计回波波形合成上升时间。

步骤106:根据Ka频段高度计观测值、C频段高度计观测值、Ka频段测距改正值、C频段测距改正值、Ka频段海况偏差改正值和C频段海况偏差改正值确定Ka频段的电离层误差改正值。

步骤106,具体包括:

根据如下公式确定Ka频段的电离层误差改正值:

式中,I(fka)表示Ka频段的电离层误差改正值,

Figure BDA0002539088370000113

表示Ka频段高度计观测值,

Figure BDA0002539088370000114

表示C频段高度计观测值,fka表示Ka频段的频率,fc表示C频段的频率。

上式完整的包括了电离层改正与频率相关的改正量,假设Ka、C两个频率的测距误差为1.8cm、4cm,利用偶然误差传播定律通过上式计算的电离层误差精度为0.8mm量级,满足1cm测高精度要求。

算例数据主要为仿真生成的ka频段、C频段雷达波形数据,仿真条件:4m有效波高,回波幅度平均2.5,姿态角为0,其中ka频段256门值(正常跟踪点129),C频段104门值(正常跟踪点33),卫星高度1000km,天线波束宽度1.2°。计算海况偏差的a1、a2、a3、a4常参数数值分别取-0.034376,0.001145,-0.001969,0.00008。120组仿真波形图见图3、图4。图3和图4中x轴表示波形距离门数,y轴表示波形个数,z轴表示波形归一化幅度。

利用Ka/C双频组合计算Ka频段电离层误差改正值部分结果如表1所示。

表1电离层误差改正值结果

Figure BDA0002539088370000115

Figure BDA0002539088370000121

图5本发明实施例中Ka/C双频雷达高度计组合消除卫星测高电离层误差系统结构图。如图5所示,一种Ka/C双频高度计消除电离层误差系统,包括:

数据获取模块201,用于获取Ka频段高度计观测值、C频段高度计观测值和雷达回波波形测量值。

误差方程建立模块202,用于根据雷达回波波形测量值建立误差方程。

误差方程建立模块202,具体包括:

误差方程建立单元,用于根据如下公式建立误差方程:

V=Aδx-L

式中,δx表示未知参数的改正值,未知参数包括PN、A0、tx、σ,PN表示热噪声水平,A0表示信号幅度,tx表示高度计真实跟踪时间,σ表示高度计回波波形合成上升时间,L表示雷达回波波形测量值,A表示雷达回波波形函数p(t)对待估参数的偏导数在初始值处的值,V表示残差;

其中,

δx=(AT·A)-1(AT·L)

Figure BDA0002539088370000122

Figure BDA0002539088370000124

式中,γa表示天线波束宽度参数,ξ表示偏天底点角,τ表示时间历元,erf表示误差函数,t表示每个回波波形中每个距离门对应的跟踪时间,d表示中间变量,h表示相对于参考椭球高度,c表示光速,R表示地球半径。

参数值确定模块203,用于采用最小二乘平差方法确定误差方程中参数的值。即确定未知参数PN、A0、tx、σ的值。

测距改正值确定模块204,用于根据参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值;根据参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值。

测距改正值确定模块204,具体包括:

Ka频段测距改正值确定单元,用于根据参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段测距改正值;

Ka频段测距改正值确定单元,具体包括:

第一实际跟踪时间确定子单元,用于根据参数值对Ka频段高度计的回波波形进行波形重跟踪,得到Ka频段波形上升前缘的实际跟踪时间;

Ka频段测距改正值确定子单元,用于根据Ka频段波形上升前缘的实际跟踪时间确定Ka频段测距改正值;确定Ka频段测距改正值的公式如下:

Figure BDA0002539088370000132

式中,

Figure BDA0002539088370000133

表示Ka频段测距改正值,表示Ka频段波形上升前缘的实际跟踪时间,Nort表示正常跟踪点对应的时间;

C频段测距改正值确定单元,用于根据参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段测距改正值;

C频段测距改正值确定单元,具体包括:

第二实际跟踪时间确定子单元,用于根据参数值对C频段高度计的回波波形进行波形重跟踪,得到C频段波形上升前缘的实际跟踪时间;

C频段测距改正值确定子单元,用于根据C频段波形上升前缘的实际跟踪时间确定C频段测距改正值;确定C频段测距改正值的公式如下:

Figure BDA0002539088370000141

式中,表示C频段测距改正值,

Figure BDA0002539088370000143

表示C频段波形上升前缘的实际跟踪时间。

海况偏差改正值确定模块205,用于根据参数值采用最小二乘法确定Ka频段海况偏差改正值和C频段海况偏差改正值。

海况偏差改正值确定模块205,具体包括:

Ka频段海况偏差改正值确定单元,用于根据如下公式确定Ka频段海况偏差改正值:

Figure BDA0002539088370000144

swhka=2c(σka 2-2.57)1/2

式中,

Figure BDA0002539088370000145

表示Ka频段海况偏差改正值,swhka表示Ka频段的有效波高,U表示风速,σka表示Ka频段高度计回波波形合成上升时间,a1、a2、a3、a4均为常参数;

C频段海况偏差改正值确定单元,用于根据如下公式确定C频段海况偏差改正值:

swhc=2c(σc 2-2.57)1/2

式中,表示C频段海况偏差改正值,swhc表示C频段的有效波高,σc表示C频段高度计回波波形合成上升时间。

电离层误差改正值确定模块206,用于根据Ka频段高度计观测值、C频段高度计观测值、Ka频段测距改正值、C频段测距改正值、Ka频段海况偏差改正值和C频段海况偏差改正值确定Ka频段的电离层误差改正值。

电离层误差改正值确定模块206,具体包括:

电离层误差改正值确定单元,用于根据如下公式确定Ka频段的电离层误差改正值:

式中,I(fka)表示Ka频段的电离层误差改正值,

Figure BDA0002539088370000149

表示Ka频段高度计观测值,

Figure BDA0002539088370000151

表示C频段高度计观测值,fka表示Ka频段的频率,fc表示C频段的频率。

对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

本发明采取Ka/C双频体制组合在全球海域进行海面高度测量,其中Ka频段设计中心频率为35.7GHz,C频段设计中心频率为5.3GHz,给出了双频改正的严密计算公式,可消除电离层影响至0.8-1mm量级,可满足海洋卫星测高1cm精度要求。

本发明基于海洋卫星测高技术理论,针对现有测高体制不足,提出了Ka、C双频高度计消除电离层误差的严密方法。该方法可使高度计测距中的电离层误差影响降至0.8mm量级,在同等测距误差条件下,比Ku、C双频高度计组合的电离层改正精度提高约1cm,完全满足未来卫星测高技术对1cm测高精度要求。同时,如果电离层改正忽略波形重跟踪改正值,则会带来5-10cm误差,如果忽略海况偏差改正值,则会带来最大8mm的误差。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:实现针对城市地上轨道交通GPS测量数据进行处理的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类