多取代n-芳基吡咯类化合物及其制备方法

文档序号:1333133 发布日期:2020-07-17 浏览:16次 >En<

阅读说明:本技术 多取代n-芳基吡咯类化合物及其制备方法 (Polysubstituted N-arylpyrrole compound and preparation method thereof ) 是由 黄文博 柯少勇 王开梅 方伟 万中义 于 2020-04-29 设计创作,主要内容包括:本发明提供了一种多取代N-芳基吡咯类化合物及其制备方法,其结构为:&lt;Image he="329" wi="236" file="DDA0002473227810000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;其制备方法由芳香胺、溴乙醛缩二乙醇、1,3-二羰基化合物为原料在有机溶剂及催化条件下合成。该化合物结构新颖,具有酯基、羧基等活性位点,有利于进一步进行结构优化,开发出具有重要抗菌、杀虫和抗病毒活性的吡咯类化合物。同时,本发明中的制备方法使用的原料廉价易得、操作简单、工业应用价值大。(The invention provides a polysubstituted N-aryl pyrrole compound and a preparation method thereof, and the polysubstituted N-aryl pyrrole compound has the following structure:)

多取代N-芳基吡咯类化合物及其制备方法

技术领域

本发明属于有机合成领域,更具体地涉及一种多取代N-芳基吡咯类化合物及其合成方法。

背景技术

吡咯类生物碱是药物化学和天然产物化学研究中非常重要一类化合物,作为一种重要的含氮五元杂环,吡咯类化合物具有广泛的生物活性和药理活性,是许多天然产物和药物分子的核心骨架结构,吡咯类化合物在抗菌、杀虫、抗病毒、抗癌等领域起着非常关键的作用,下式列出了几个代表性的含吡咯单元的药物及天然产物分子。

由于多取代吡咯类化合物具有独特的生物活性和在药物及天然产物中的广泛应用,关于多取代吡咯类化合物的合成制备一直是有机合成和药物化学中的研究热点。如经典的人名反应Knorr reaction,Hantzsch reaction和 Paal-Knorr reaction,以及近年来发展的多组分串联反应(Jad,Y.E.; Gudimella,S.K.;Govender,T.;de la Torre,B.G.;Albericio,F.ACS Comb. Sci.2018,20,187.Estévez,V.;Villacampa,M.;Menéndez,J.C.Chem.Soc. Rev.2010,39,4402.),过渡金属催化(Bunrit,A.;Sawadjoon,S.;S.;P.J.R.;Samec,J.S.M.J.Org.Chem.2016,81,1450.)以及C-H活化(Lade,D.M.;Pawar,A.B.Org.Chem.Front.2016,3,836.)等。但是,这些现有合成多取代吡咯的方法往往存在底物需要预官能团化、高温高压以及贵金属催化等缺点,因此迫切需要找到一种底物廉价易得、反应选择性好、经济成本低的合成方法。

发明内容

针对现有合成多取代吡咯方法存在的以上缺陷或改进的需求,本发明的目的是提供一种简单高效、成本低廉的多取代N-芳基吡咯类化合物及其制备方法。

为实现上述目的,本发明的多取代N-芳基吡咯类化合物,结构如通式 I所示:

其中:R1为吡啶基、取代吡啶基、噁唑基、异噁唑基、萘基、噻吩基、呋喃基、喹啉基、苯基或取代的苯基中的一种,所述取代苯基及取代吡啶基上的取代基为烷基、烷氧基、卤素、羧基、乙酰基、三氟甲基、氰基中的一种、二种或三种;

R2为甲基、乙基、丙基、苯基、取代苯基、三氟甲基、吡啶基、呋喃基、萘基中的一种;

R3为烷基、烷氧基、三氟甲氧基、三氟甲基、呋喃基、噻吩基、吡啶基、萘基、乙酰基、苯基中的一种。

优选地,所述R1为吡啶基、取代吡啶基、苯基或取代苯基中的一种。

进一步优选地,R2为甲基、苯基、三氟甲基、吡啶基中的一种。

再进一步优选地,R3优选为烷基或烷氧基中的一种。

本发明还提供了所述多取代N-芳基吡咯类化合物的制备方法,由芳香胺、溴乙醛缩二乙醇、1,3-二羰基化合物为原料在有机溶剂及催化条件下合成,合成路线如下述反应式:

其中,所述催化剂为酸催化剂,所述有机溶剂为二氯甲烷、1,2-二氯乙烷、乙腈、四氢呋喃、乙醇、甲苯中的任意一种。所述酸催化剂为三氯化铁、三氟化硼乙醚、氯化铝、醋酸、溴化铜、对甲苯磺酸中的一种。

所述芳香胺和溴乙醛缩二乙醇的摩尔比为1:2~2:1,所述芳香胺和所述 1,3-二羰基化合物的摩尔比为1:1~1:2。

制备时的反应温度为0℃~100℃,优选温度为60℃~80℃,反应时间为4~10小时。

所述芳香胺与所使用催化剂的摩尔比为20:1~5:1。

反应所得的多取代N-芳基吡咯类化合物粗品,经过硅胶柱层析,分离得到多取代N-芳基吡咯类化合物,其中,所述硅胶柱层析的洗脱剂的体积比为石油醚:乙酸乙酯=20:1~5:1。

本发明所提供的多取代N-芳基吡咯结构新颖,具有酯基、羧基等活性位点,有利于进一步进行结构优化,开发出具有重要抗菌、杀虫和抗病毒活性的吡咯类化合物。同时,本发明中的制备方法使用的原料廉价易得、操作简单、工业应用价值大,此外,通过对反应条件进行优化(尤其是针对反应物的量、反应温度及时间等),使得反应选择性好,收率高,与现有合成多取代吡咯的方法相比,具有明显的优势。

具体实施方式

以下结合具体实施例,对本发明的多取代N-芳基吡咯类化合物及其制备方法作进一步详细说明。

实施例1

本发明的部分多取代N-芳基吡咯类化合物的结构式如以下所列的具体结构,但并不限定于以下实施例所列举的结构:

实施例2

实施例1中编号为4a的化合物制备,其反应式为:

具体制备时,分别取苯胺(0.5mmol)、溴乙醛缩二乙醇(0.5mmol)和乙酰丙酮(0.5mmol)溶于有机溶剂甲苯(2mL)中,再加入催化剂三氯化铁 (0.05mmol),将上述反应液于配有磁力搅拌的反应器中60℃下搅拌反应6小时。反应结束后减压浓缩,进行硅胶柱层析(V石油醚:V乙酸乙酯=20: 1),纯化得产品4a为51.76mg,分离收率为52%。所得到的4a的波谱数据如下:

1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.50–7.46(m,2H),7.44– 7.41(m,1H),7.28–7.26(m,2H),6.68(d,J=3.1Hz,1H),6.62(d,J=3.1Hz, 1H),2.46(s,3H),2.46(s,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ= 195.4,139.0,135.7,129.5,128.3,126.4,122.1,121.3,110.6,28.8,12.9ppm

实施例3

实施例1中编号为4b的化合物制备,其反应式为:

具体制备时,分别取苯胺(0.5mmol)、溴乙醛缩二乙醇(1.0mmol)和乙酰乙酸甲酯(0.5mmol)溶于有机溶剂1,2-二氯乙烷(2mL)中,再加入催化剂三氯化铝(0.10mmol),反应液于配有磁力搅拌的反应器中80℃下搅拌反应4小时。反应结束后减压浓缩,进行硅胶柱层析(V石油醚:V乙酸乙酯=10:1),纯化得产品4b为72.05mg。分离收率为67%。所得的4b的波谱数据如下:

1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.49–7.46(m,2H),7.43 –7.40(m,1H),7.28–7.26(m,2H),6.67(d,J=3.1Hz,1H),6.65(d,J=3.1Hz, 1H),3.83(s,3H),2.44(s,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=166.0,139.2,136.2,129.3,128.0,126.3,121.4,113.0,110.1,50.9,12.2ppm。

实施例4

实施例1中编号为4c的化合物制备,其反应式为:

具体制备时,分别取苯胺(0.5mmol)、溴乙醛缩二乙醇(1.0mmol)和乙酰乙酸苄酯(1.0mmol)溶于有机溶剂乙腈(2mL)中,再加入催化剂对甲苯磺酸(0.10mmol),将上述反应液于配有磁力搅拌的反应器中80℃下搅拌反应6小时。反应结束后减压浓缩,进行硅胶柱层析(V石油醚:V乙酸乙酯=20:1),纯化得产品4c为117.86mg,分离收率为81%。所得到的4c 的波谱数据如下:

1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.47–7.43(m,4H),7.40(t, J=7.4Hz,1H),7.36(t,J=7.5Hz,2H),7.30(t,J=7.3Hz,1H),7.25(dd,J= 12.7,5.2Hz,2H),6.71(d,J=3.1Hz,1H),6.66(d,J=3.1Hz,1H),5.31(s,2H), 2.45(s,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.3,139.2,137.1, 136.5,129.3,128.5,128.1,128.0,127.9,126.3,121.5,113.0,110.4,65.3,12.3 ppm.

实施例5

实施例1中编号为4d的化合物制备,其反应式为:

具体制备时,分别取苯胺(1.0mmol)、溴乙醛缩二乙醇(0.5mmol)和乙酰乙酸叔丁酯(1.0mmol)溶于有机溶剂四氢呋喃(2mL)中,再加入催化剂溴化铜(0.05mmol),将上述反应液于配有磁力搅拌的反应器中60℃下搅拌反应8小时。反应结束后减压浓缩,进行硅胶柱层析(V石油醚:V乙酸乙酯=15:1),纯化得产品4d为96.38mg,分离收率为75%。所得4d的波谱数据如下:

1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.48–7.44(m,2H),7.42– 7.38(m,1H),7.27–7.25(m,2H),6.65(d,J=3.1Hz,1H),6.63(d,J=3.1Hz, 1H),2.42(s,3H),1.58(s,9H)ppm.13C NMR(150MHz,CDCl3,25℃)δ= 165.1,139.3,135.4,129.3,127.9,126.3,121.0,114.9,110.4,79.4,28.5,12.3 ppm.

实施例6

实施例1中编号为4ab的化合物制备,其反应式为:

具体制备时,分别取2-氯-5-氨基吡啶(0.5mmol)、溴乙醛缩二乙醇(0.5 mmol)和乙酰乙酸乙酯(1.0mmol)溶于有机溶剂乙醇(2mL)中,再加入催化剂三氯化铝(0.05mmol),将上述反应液于配有磁力搅拌的反应器中60 ℃下搅拌反应6小时。反应结束后减压浓缩,进行硅胶柱层析(V石油醚:V 乙酸乙酯=20:1),纯化得产品4ab为99.47mg,分离收率为85%。所得到的 4ab的波谱数据如下:

1H NMR(600MHz,CDCl3,TMS,25℃)δ=8.38(d,J=2.6Hz,1H),7.62 (dd,J=8.4,2.8Hz,1H),7.53–7.47(m,1H),6.71(d,J=3.1Hz,1H),6.66(d, J=3.1Hz,1H),4.30(q,J=7.1Hz,2H),2.46(s,3H),1.36(t,J=7.1Hz,3H) ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.1,150.6,147.3,146.9,136.2, 128.6,124.8,121.1,114.6,111.3,59.7,14.5,12.0ppm.

实施例7

参照实施例2~6所述的基本合成方法,并结合实施例1中所列举化合物4e~4ad的结构特征,分别选用不同的常规化工原料,可制备所述化合物 4e~4ad等含有不同取代基的其它N-芳基吡咯化合物,并进行检测。上述化合物4e~4ad的波谱数据如下:

化合物4e的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.27 –7.23(m,2H),7.18–7.14(m,2H),6.66(d,J=3.1Hz,1H),6.63(d,J=3.1 Hz,1H),4.30(q,J=7.1Hz,2H),2.42(s,3H),1.36(t,J=7.1Hz,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.5,162.5(d,J=246.0Hz),136.1,135.2 (d,J=3.1Hz),128.1(d,J=8.7Hz),121.4,116.2(d,J=22.5Hz),113.4,110.3, 59.5,14.6,12.1ppm.19F NMR(565MHz,CDCl3,25℃)δ=-113.2ppm.

化合物4f的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.46 –7.44(m,1H),7.44–7.43(m,1H),7.23–7.22(m,1H),7.21–7.19(m,1H), 6.67(d,J=3.1Hz,1H),6.64(d,J=3.1Hz,1H),4.30(q,J=7.1Hz,2H),2.43 (s,3H),1.36(t,J=7.1Hz,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.5,137.7,135.9,133.9,129.5,127.5,121.2,113.7,110.5,77.3,77.1, 59.5,14.6,12.2ppm.

化合物4g的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ= 7.59(d,J=8.5Hz,2H),7.15(d,J=8.5Hz,2H),6.67(d,J=3.1Hz,1H),6.63 (d,J=3.1Hz,1H),4.29(q,J=7.1Hz,2H),2.43(s,3H),1.36(t,J=7.1Hz, 3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.4,138.2,135.8,132.5, 127.8,121.8,121.1,113.7,110.6,59.5,14.6,12.2ppm.

化合物4i的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.20 –7.16(m,2H),6.98–6.95(m,2H),6.64(d,J=3.0Hz,1H),6.62(d,J=3.1 Hz,1H),4.29(q,J=7.1Hz,2H),3.85(s,3H),2.40(s,3H),1.36(t,J=7.1Hz, 3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.6,159.2,136.3,132.1, 127.5,121.5,114.4,112.9,109.8,59.4,55.6,14.6,12.1ppm.

化合物4p的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.37 –7.32(m,2H),7.28(t,J=7.3Hz,1H),7.16(d,J=7.6Hz,1H),6.67(t,J=7.9 Hz,1H),6.52(d,J=2.9Hz,1H),4.30(q,J=7.0Hz,2H),2.01(s,3H),1.37(t, J=7.1Hz,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.7,138.2, 136.5,136.0,130.9,128.9,127.9,126.7,120.9,112.5,109.9,59.4,17.2,14.6, 11.6ppm.

化合物4r的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.53 (dd,J=7.8,1.1Hz,1H),7.42–7.36(m,2H),7.30(dd,J=7.6,1.6Hz,1H), 6.70(d,J=3.1Hz,1H),6.55(d,J=3.1Hz,1H),4.30(q,J=7.1Hz,2H),2.31 (s,3H),1.36(t,J=7.1Hz,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ= 165.5,137.0,136.8,132.7,130.4,130.2,129.6,127.7,121.1,112.9,110.3,59.5, 14.6,11.6ppm.

化合物4t的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.50 (dtd,J=8.9,7.7,1.5Hz,2H),7.42(td,J=7.5,1.8Hz,1H),7.27(dd,J=7.8, 1.0Hz,1H),7.25–7.20(m,3H),7.06–7.02(m,2H),6.56(d,J=3.1Hz,1H), 6.49(d,J=3.1Hz,1H),4.22(qd,J=7.1,3.2Hz,2H),2.10(s,3H),1.30(t,J= 7.1Hz,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.6,139.6,138.0, 136.8,136.6,131.0,129.0,128.6,128.5,128.2,127.6,121.7,112.5,110.1,59.3, 14.5,11.8ppm.

化合物4u的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.44 (td,J=8.1,6.3Hz,1H),7.12(tdd,J=8.4,2.4,0.7Hz,1H),7.08(dd,J=7.9, 1.0Hz,1H),7.01(dt,J=9.3,2.2Hz,1H),6.67(dd,J=7.3,3.1Hz,2H),4.30 (q,J=7.1Hz,2H),2.47(s,3H),1.36(t,J=7.1Hz,3H)ppm.13C NMR(150 MHz,CDCl3,25℃)δ=165.4,162.7(d,J=247.5Hz),140.6(d,J=9.8Hz), 135.8,130.5(d,J=9.2Hz),122.0(d,J=3.2Hz),121.1,115.0(d,J=21.0Hz), 113.8(d,J=24.0Hz),113.7,110.6,59.5,14.5,12.2ppm.19F NMR(565MHz,CDCl3,25℃)δ=-110.8ppm.

化合物4v的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=7.15 (dd,J=8.5,6.2Hz,1H),6.78–6.70(m,2H),6.66(d,J=3.0Hz,1H),6.52(d, J=3.0Hz,1H),4.29(q,J=7.1Hz,2H),3.78(s,3H),2.29(s,3H),1.35(t,J= 7.1Hz,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.6,163.3(d,J=246.0Hz),156.2(d,J=10.6Hz),137.6,129.7(d,J=10.4Hz),123.9(d,J= 3.4Hz),121.6,112.5,109.9,107.1(d,J=22.7Hz),100.3(d,J=27.2Hz),59.4, 56.0,14.6,11.6ppm.19F NMR(565MHz,CDCl3,25℃)δ=-109.0ppm.

化合物4w的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ=8.08 (d,J=8.5Hz,2H),7.39(d,J=8.5Hz,2H),6.72–6.69(m,2H),4.30(q,J= 7.1Hz,2H),2.66(s,3H),2.49(s,3H),1.37(t,J=7.1Hz,3H)ppm.13C NMR (150MHz,CDCl3,25℃)δ=196.8,165.4,143.0,136.2,135.7,129.5,126.0, 121.0,114.3,110.9,59.6,26.7,14.5,12.4ppm.

化合物4x的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ= 10.44(s,1H),8.10(s,1H),8.04(dd,J=8.1,1.5Hz,1H),7.29(d,J=8.1Hz, 1H),6.73(d,J=3.1Hz,1H),6.54(d,J=3.1Hz,1H),4.32(q,J=7.1Hz,2H), 2.28(s,3H),2.10(s,3H),1.38(t,J=7.1Hz,3H)ppm.13C NMR(150MHz, CDCl3,25℃)δ=171.1,165.8,142.9,136.5,136.3,132.9,129.9,128.7,128.3, 120.6,113.0,110.6,59.7,20.9,14.5,11.7ppm.

化合物4ac的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ= 8.57(d,J=2.3Hz,1H),7.89(d,J=2.3Hz,1H),6.71(d,J=3.2Hz,1H),6.58 (d,J=3.2Hz,1H),4.30(q,J=7.0Hz,2H),2.35(s,3H),1.37(t,J=7.1Hz, 3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.0,150.7,148.5,140.5, 136.7,134.4,120.9,118.8,114.0,111.4,59.7,14.5,11.7ppm.

化合物4ad的波谱数据:1H NMR(600MHz,CDCl3,TMS,25℃)δ= 7.83(dd,J=11.4,8.3Hz,2H),7.45–7.41(m,2H),7.35(ddd,J=8.1,6.9,1.2 Hz,1H),7.30(dd,J=7.2,1.0Hz,1H),7.15(d,J=8.2Hz,1H),6.68(d,J=3.0 Hz,1H),6.59(d,J=3.0Hz,1H),4.24(q,J=7.1Hz,2H),2.15(s,3H),1.28(t, J=7.1Hz,3H)ppm.13C NMR(150MHz,CDCl3,25℃)δ=165.8,137.7, 135.7,134.1,130.8,129.3,128.2,127.5,126.9,125.3,125.2,122.9,122.4, 112.8,110.0,59.5,14.6,11.8ppm.

参照实施例1~6所述的基本合成方法,并结合所述化合物的结构特征选用不同的常规化工原料,可便利制备结构多样性的多取代N-芳基吡咯类化合物。本发明所公开的各种反应原料如芳胺、溴乙醛缩二乙醇等、1,3- 二羰基化合物,均可为商业购得,纯度优选为分析纯级别。本发明所采用的有机溶剂的沸点,均需低于对应的处理温度。而所制备获得的化合物,可作为前体分子或关键的中间体用于进一步构建和制备一些药物分子如 TRPM8拮抗剂(WO2015136947)、鸟苷酸环化酶激活剂(WO2009071504)。

如以下反应式所示:

采用实施例1~6中所获得的N-芳基吡咯类化合物4b与氟代环己胺醇中间体经多步反应可制备代表性的TRPM8拮抗剂(TRPM8 antagonist),采用4ag与3,4-二氯苯硼酸经多步反应,也可制备代表性的鸟苷酸环化酶激活剂(Guanylate cyclase activator)。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种1H-3-吡咯烷酮类化合物的合成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类