一种多取代吡咯衍生物及其制备方法

文档序号:1443773 发布日期:2020-02-18 浏览:20次 >En<

阅读说明:本技术 一种多取代吡咯衍生物及其制备方法 (Polysubstituted pyrrole derivative and preparation method thereof ) 是由 金毅 罗开秀 林军 于翔林 程鹏 于 2019-11-27 设计创作,主要内容包括:一种多取代吡咯衍生物及其制备方法,涉及有机合成领域,该制备方法利用重氮类化合物或苯腙类化合物与氨基取代的不饱和羰基化合物反应,经过碳碳插入、环化反应及[1,5]迁移串级反应,成功构建吡咯环,高效高产率地得到了一系列的多取代吡咯衍生物。该制备方法的原料均可以通过简单反应得到,具有原料廉价易得的优势。同时,该制备方法条件温和、环境友好,适合进行规模化的生产,具有较好的应用价值。(A polysubstituted pyrrole derivative and its preparation method, relate to the organic synthetic field, said preparation method utilizes diazo compound or phenylhydrazone compound to react with unsaturated carbonyl compound substituted by amino, through carbon insertion, cyclization reaction and [1,5] migration cascade reaction, construct pyrrole ring successfully, have got a series of polysubstituted pyrrole derivatives with high efficiency and high yield. The raw materials of the preparation method can be obtained through simple reaction, and have the advantages of low price and easy obtainment of the raw materials. Meanwhile, the preparation method is mild in condition, environment-friendly, suitable for large-scale production and high in application value.)

一种多取代吡咯衍生物及其制备方法

技术领域

本发明涉及有机合成领域,具体而言,涉及一种多取代吡咯衍生物及其制备方法。

背景技术

吡咯是一类重要的五元含氮杂环化合物,广泛存在于天然产物及药物分子中,并且在材料科学的应用也逐渐深入。1857年,吡咯首次从骨热解的产物中分离得到,含有吡咯环的亚铁血红素、叶绿素、胆色素、吡咯双烷类生物碱以及维生素B12等在动、植物界生命过程中起着不可替代的重要作用。此外,含有吡咯环的化合物广泛地存在于生物碱、蛋白质等天然化合物中,在天然染料和药物中有许多化合物也含有吡咯环。吡咯结构单元是天然产物的常见构成组,是数量众多的天然产物中非常重要的一类化合物,含吡咯环的化合物表现出各种生理活性,在医药及材料科学方面有极其广泛的应用价值。

吡咯类化合物具有独特的生物活性和广泛的用途,因此近年来对该类化合物的合成研究有了较大的进展,常见的传统经典的合成方法有Knorr合成法、Paal-Knorr合成法、Hantzseh合成法等。近几十年,各种各样的合成吡咯的方法被相继报道然而,随着吡咯的应用领域越来越广泛,简单有效的比略合成法一直是科学家们所追求的目标。现代合成多取代吡咯的方法主要是依据过渡金属催化环化和多组分偶联反应([4+1], [3+2], [2+2+1]加成反应)来进行的。但是这些反应中原料制备复杂,而理想的合成策略应当是原料易得,催化剂廉价,反应条件温和、对环境污染小。

因此,开发一种通过简单易得原料有效合成多取代吡咯衍生物策略是非常有价值的。

发明内容

本发明的目的在于提供一种多取代吡咯衍生物,其结构新颖,制备简单易得,在药物及材料科学等领域具有较佳的应用潜力。

本发明的另一目的在于提供一种多取代吡咯衍生物的制备方法,其原料简单易得,反应环境友好、便捷高效,具有较好的工业应用前景。

本发明的实施例是这样实现的:

一种多取代吡咯衍生物,其结构式为

Figure 999563DEST_PATH_IMAGE001

Figure 780437DEST_PATH_IMAGE002

式中,R1、R3、R6彼此相同或不同,均独立地选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基;R1、R3、R6的数量均可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个;R2选自C1~C6烷基、C1~C8取代烷基、苯基或取代苯基;R4、R5彼此相同或不同,均独立地选自C1~C6烷基或C1~C6取代烷基。

一种多取代吡咯衍生物的制备方法,其包括:

将化合物I与化合物II进行环化反应,重排得到多取代吡咯衍生物;

其中,化合物I的结构式为

Figure 500131DEST_PATH_IMAGE003

,化合物II的结构式为

Figure 341048DEST_PATH_IMAGE004

,多取代吡咯衍生物的结构式为

Figure 693663DEST_PATH_IMAGE001

式中,R1、R3彼此相同或不同,均独立地选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基;R1、R3的数量均可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个;R2选自C1~C6烷基、C1~C8取代烷基、苯基或取代苯基;R4选自C1~C6烷基或C1~C6取代烷基。

一种多取代吡咯衍生物的制备方法,其包括:

将化合物I与化合物III进行环化反应,重排得到多取代吡咯衍生物;

其中,化合物I的结构式为

Figure 120971DEST_PATH_IMAGE003

,化合物II的结构式为,多取代吡咯衍生物的结构式为

式中,R1、R6彼此相同或不同,均独立地选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基;R1、R6的数量均可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个;R2选自C1~C6烷基、C1~C8取代烷基、苯基或取代苯基;R5选自C1~C6烷基或C1~C6取代烷基。

本发明实施例的有益效果是:

本发明实施例提供了一种多取代吡咯衍生物及其制备方法,该制备方法利用重氮类化合物或苯腙类化合物与氨基取代的不饱和羰基化合物反应,经过碳碳***、环化反应及[1,5]迁移串级反应,成功构建吡咯环,高效高产率地得到了一系列的多取代吡咯衍生物。该制备方法的原料均可以通过简单反应得到,具有原料廉价易得的优势。同时,该制备方法条件温和、环境友好,适合进行规模化的生产,具有较好的应用价值。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

下面对本发明实施例的一种多取代吡咯衍生物及其制备方法进行具体说明。

本发明实施例提供了一种多取代吡咯衍生物,其结构式为

Figure 592907DEST_PATH_IMAGE007

Figure 731895DEST_PATH_IMAGE008

式中,R1、R3、R6彼此相同或不同,均独立地选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基。R2选自C1~C6烷基、C1~C8取代烷基、苯基或取代苯基;R4、R5彼此相同或不同,均独立地选自C1~C6烷基或C1~C6取代烷基。C1~C6烷基可以是直链烷基也可以是支链烷基,包括但不限于甲基、乙基、正丙基、异丙基、叔丁基等。C1~C6取代烷基是指C1~C6烷基中的至少一个氢原子被卤素、羟基、烷氧基或芳基取代后的基团。C1~C6烷氧基包括但不限于甲氧基、乙氧基、丙氧基、丁氧基等。C1~C6取代烷氧基是指C1~C6烷基中的至少一个氢原子被卤素、羟基、烷氧基或芳基取代后的基团,包括但不限于2-甲氧基乙氧基、3-甲氧基丙氧基。

进一步地,R1、R3、R6的数量均可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个。以R1为例,也即是说,在同一个苯环上可以有单个R1基团取代,也可以是2个或3个R1基团取代。在有2个或3个R1基团取代,各个R1基团可以是相同的基团,也可以是不同的基团。

优选地,R1、R3、R6彼此相同或不同,均独立地选自氢、C1~C4烷基、C1~C4烷氧基、氟、氯、溴或硝基;R2选自C1~C4烷基、C1~C4取代烷基、苯基或取代苯基;R4、R5彼此相同或不同,均独立地选自C1~C4烷基或C1~C4取代烷基。

更为优选地,R1选自氢、甲基、甲氧基、氟、溴或硝基;R2选自甲基、正丁基、环丙基或苯基;R3选自氢、甲基、甲氧基、氟或氯;R4选自甲基或乙基;R5选自甲基或乙基;R6选自氢、甲基、氟或氯。

本发明实施例还提供了一种多取代吡咯衍生物的制备方法,其包括:

将化合物I与化合物II进行环化反应,重排得到多取代吡咯衍生物;

其中,化合物I的结构式为,化合物II的结构式为

Figure 140060DEST_PATH_IMAGE004

,多取代吡咯衍生物的结构式为

Figure 919797DEST_PATH_IMAGE001

式中,R1、R3彼此相同或不同,均独立地选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基;R1、R3的数量均可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个;R2选自C1~C6烷基、C1~C8取代烷基、苯基或取代苯基;R4选自C1~C6烷基或C1~C6取代烷基。

进一步地,化合物I和化合物II的反应,是在金属催化剂的作用下进行的,金属催化剂包括醋酸钯、醋酸铑二聚体、醋酸银、三氟甲基醋酸银、碳酸银、硝酸银、三氟甲烷磺酸银和氟化银中的任一种;金属催化剂的用量为3mol%~10mol%。

可选地,上述反应是将化合物II的溶液向化合物I、金属催化剂的混合溶液中缓慢滴加反应。反应的溶剂可以是四氢呋喃、1,4-二氧六环、氯仿、二氯甲烷和甲苯中的至少一种。化合物I和化合物II的摩尔比为1:1.5~2.5。化合物I和化合物II反应的温度为0~60℃。在上述反应条件下,化合物I和化合物II反应的效果较佳,可以高效高产率地得到多取代吡咯衍生物。

本发明实施例还提供了另外一种多取代吡咯衍生物的制备方法,其包括:

将化合物I与化合物III进行环化反应,重排得到多取代吡咯衍生物;

其中,化合物I的结构式为

Figure 111744DEST_PATH_IMAGE003

,化合物II的结构式为

Figure 394958DEST_PATH_IMAGE005

,多取代吡咯衍生物的结构式为

式中,R1、R6彼此相同或不同,均独立地选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基;R1、R6的数量均可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个;R2选自C1~C6烷基、C1~C8取代烷基、苯基或取代苯基;R5选自C1~C6烷基或C1~C6取代烷基。

进一步地,化合物I和化合物III的反应,是在金属催化剂和碱的作用下进行的,金属催化剂包括醋酸钯、醋酸铑二聚体、醋酸银、三氟甲基醋酸银、碳酸银、硝酸银、三氟甲烷磺酸银和氟化银中的任一种,碱包括碳酸锂、碳酸钠、碳酸钾和碳酸铯中的任一种。优选地,金属催化剂的用量为3mol%~10mol%。碱的摩尔量为化合物I的1~1.5倍。

可选地,将化合物III向化合物I、金属催化剂、碱的混合溶液中滴加反应。反应的溶剂包括二甲苯、N,N-二甲基甲酰胺、甲苯、1,4-二氧六环中的至少一种。化合物I和化合物III的摩尔比为1:1~2,反应温度为60~130℃。在上述反应条件下,化合物I和化合物III反应的效果较佳,可以高效高产率地得到多取代吡咯衍生物。

进一步地,化合物I是由化合物IV与N,N-二甲基甲酰胺甲缩醛反应,得到化合物V;再将化合物V与化合物VI反应得到的;

其中,化合物IV的结构式为

Figure 327197DEST_PATH_IMAGE010

,化合物V的结构式为

Figure 994938DEST_PATH_IMAGE011

,化合物VI的结构式为

Figure 460555DEST_PATH_IMAGE012

式中, R1选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基;R1的数量可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个;R2选自C1~C6烷基、C1~C8取代烷基、苯基或取代苯基。

其中,N,N-二甲基甲酰胺甲缩醛的结构式为

Figure 453919DEST_PATH_IMAGE013

,其与化合物IV的反应,是在80~150℃下反应6~18 h。可选地,反应结束后通过减压蒸馏得到化合物V的粗产品,再通过重结晶进行纯化。

化合物V和化合物VI的反应,是在80~150℃下反应12~24 h。可选地,反应结束后通过减压蒸馏得到化合物I的粗产品,再通过重结晶进行纯化。

进一步地,化合物II是由化合物VII经过重氮化反应得到的,例如,将化合物VII与4-乙酰氨基苯磺酰叠氮反应。反应在-10~5℃下进行,需要用到碱进行催化,反应时间为4~10 h。反应结束后经萃取、旋蒸、柱层析分离得到化合物II。化合物VII的结构式为

Figure 473827DEST_PATH_IMAGE014

,式中, R3选自氢、C1~C6烷基、C1~C6取代烷基、C1~C6烷氧基、C1~C6取代烷氧基、卤素或硝基,R3的数量可以是1~3,其结合位点为苯环上未取代的五个位点中的至少一个;R4选自C1~C6烷基或C1~C6取代烷基。化合物VII可以直接购买得到,或者通过对应的羧酸化合物酯化得到。

进一步地,化合物III是由化合物VIII与对甲苯磺酰肼反应得到的。反应的温度为50~100℃,反应时间为2~8 h。反应结束后,抽滤得到化合物III。

以下结合实施例对本发明的特征和性能作进一步的详细描述。

实施例1

本实施例提供了一种化合物Ia的制备方法,其反应式为

Figure 23888DEST_PATH_IMAGE015

其制备方法如下:

于50 mL 圆底烧瓶中分别加入2.0 mmol苯乙酮(IV-a)和3.0mmol N,N-二甲基甲酰胺甲缩醛,加入20 mL溶剂甲苯,加热回流12 h,蒸馏,重结晶,得到(E)-3-(二甲基氨基)-1-苯基丙-2-烯-1-酮(V-a)。

取1.0mmol(E)-3-(二甲基氨基)-1-苯基丙-2-烯-1-酮(V-a)溶于15mL甲苯中,加入2.0mmol苯胺(VI-a),加热回流16h,蒸馏,重结晶得到(E)-1-苯基-3-(苯基氨基)丙-2-烯-1-酮(I-a)。

实施例2

本实施例提供了一种化合物IIa的制备方法,其反应式为

其制备方法如下:

于50 mL圆底烧瓶中加入2.0 mmol苯乙酸,加入溶剂甲醇20 ml,将反应置于冰浴中搅拌,通过恒压低液漏斗滴加氯化亚砜(2.4 mmol),0℃条件下反应3 h,淬灭,萃取,干燥,蒸馏,柱层析(石油醚/乙酸乙酯=80:1)纯化得到2-苯基乙酸甲酯(VII-a)。

取1.0mmol 2-苯基乙酸甲酯(VII-a)和1.0mmol 4-乙酰氨基苯磺酰叠氮分别加入到25 mL 圆底烧瓶中,加入溶剂乙腈15 ml,将反应置于冰浴中,通过恒压低液漏斗滴加1,8-二氮杂二环十一碳-7-烯(DBU)(1.2 mmol),0℃条件下反应6 h,萃取,干燥,蒸馏,柱层析(石油醚/乙酸乙酯=100:1)纯化得到2-重氮-2-苯基乙酸甲酯(II-a)。

实施例3

本实施例提供一种多取代吡咯衍生物的制备方法,其反应式为

Figure 242697DEST_PATH_IMAGE017

其制备方法如下:

取1.0 mmol(E)-1-苯基-3-(苯基氨基)丙-2-烯-1-酮5(I-a)和三氟甲烷磺酸银(5%mmol)加入到反应管中,加入溶剂二氯甲烷5 ml,室温搅拌1小时至溶解,将2.0mmol 2-重氮-2-苯基乙酸甲酯10(II-a)溶解在2 ml二氯甲烷中,用注射泵以1.3 ul/min的速度滴加,室温反应12 h,TLC监测反应,反应完全后用水和二氯甲烷萃取3次,然后用饱和氯化钠溶液洗涤二氯甲烷溶液3次,再用无水硫酸钠干燥,通过减压蒸馏得到粗产物,然后通过柱色谱(石油醚/乙酸乙酯=20:1)进行纯化得到所需的多取代吡咯衍生物,即化合物X-a(产率:90%)。

化合物X-a的表征如下:

白色固体:mp. 145.4-146.1 °C; IR (KBr, ν max, cm−1): 3451, 2918, 1731, 1658,1459, 1367, 1085, 947, 813, 693, 462; 3423, 2944, 1701, 1605, 1495, 1450,1363, 1282, 1231, 1166, 1124, 765, 697, 608;1H NMR (500 MHz, Chloroform-d) δ:7.55 – 7.50 (m, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.24 (dd,J = 6.6, 2.9 Hz, 2H), 7.19 – 7.14 (m, 3H), 7.11 (dd, J = 6.7, 3.1 Hz, 2H),6.48 (s, 1H), 3.47 (s, 3H); 13C NMR (125 MHz, Chloroform-d) δ: 161.83, 139.70,139.43, 136.06, 133.50, 131.84, 129.39, 128.99, 128.62, 128.52, 128.11,128.05, 127.85, 127.50, 126.97, 121.35, 112.28, 50.99. HRMS (TOF-ESI+): m/zcalcd for C24H20NO2 [M+H] +, 354.1489; found, 354.1491.

实施例4~18

实施例4~18提供了一系列多取代吡咯衍生物(X-b~X-p)的制备方法,具体步骤与实施例3相同,原料和产物如下表所示。

Figure 218743DEST_PATH_IMAGE018

Figure 290605DEST_PATH_IMAGE019

Figure 465234DEST_PATH_IMAGE020

上述多取代吡咯衍生物的表征如下:

化合物X-b

白色固体:mp. 134.6-135.4 °C; yield: 91%; IR (KBr, ν max, cm−1): 3429, 2958,1706, 1608, 1494, 1452, 1401, 1359, 1288, 1252, 1210, 1120, 1027, 821, 765,695; 1H NMR (500 MHz, Chloroform-d) δ: 7.52 (dd, J = 8.0, 1.4 Hz, 2H), 7.39(t, J = 7.6 Hz, 2H), 7.36 – 7.29 (m, 4H), 7.24 (dt, J = 5.3, 1.7 Hz, 2H),7.06 – 6.99 (m, 2H), 6.74 – 6.67 (m, 2H), 6.41 (s, 1H), 3.74 (s, 3H), 3.47(d, J = 0.9 Hz, 3H); 13C NMR (125 MHz, Chloroform-d) δ: 161.77, 158.97,139.66, 139.56, 136.16, 133.56, 130.20, 129.37, 128.64, 128.45, 127.93,127.76, 126.86, 120.89, 113.55, 111.71, 55.17, 50.86. HRMS (TOF-ESI+): m/zcalcd for C25H21NO3 [M+H] +, 384.1594; found, 384.1593.

化合物X-c

白色固体:mp. 150.7-151.9 °C; yield: 88%; IR (KBr, ν max, cm−1): 3444, 2944,1712, 1607, 1494, 1451, 1359, 1280, 1205, 1121, 1011, 819, 762, 699, 630; 1HNMR (500 MHz, Chloroform-d) δ: 7.50 (dd, J = 8.2, 1.3 Hz, 2H), 7.40 (t, J =7.6 Hz, 2H), 7.38 – 7.35 (m, 3H), 7.34 – 7.32 (m, 1H), 7.32 – 7.28 (m, 2H),7.23 (ddd, J = 5.1, 4.2, 2.0 Hz, 2H), 7.00 – 6.93 (m, 2H), 6.47 (s, 1H), 3.48(s, 3H); 13C NMR (125 MHz, Chloroform-d) δ: 161.67, 139.17, 138.29, 135.80,133.45, 131.30, 130.78, 130.34, 129.31, 128.64, 128.53, 128.22, 127.83,127.01, 121.76, 112.35, 50.98. HRMS (TOF-ESI+): m/z calcd for C24H19BrNO2 [M+H] +,432.0594; found, 432.0599.

化合物X-d

白色固体:mp. 116.9-117.8 °C; yield: 90%; IR (KBr, ν max, cm−1): 3419, 2943,1712, 1600, 1491, 1447, 1372, 1281, 1231, 1175, 1121, 874, 764, 693; 1H NMR(500 MHz, Chloroform-d) δ: 7.51 (dd, J = 8.1, 1.4 Hz, 2H), 7.40 (t, J = 7.7Hz, 2H), 7.38 – 7.35 (m, 3H), 7.33 (t, J = 7.4 Hz, 1H), 7.25 (dd, J = 6.8,2.8 Hz, 2H), 7.16 – 7.09 (m, 1H), 6.92 – 6.84 (m, 2H), 6.80 (dt, J = 10.2,2.1 Hz, 1H), 6.50 (s, 1H), 3.48 (s, 3H); 13C NMR (125 MHz, Chloroform-d) δ:163.15, 161.69, 139.12, 138.13, 135.78, 133.35, 129.59, 129.53, 129.31,128.64, 128.49, 128.28, 127.84, 127.02, 124.59, 124.57, 121.87, 115.82,115.66, 114.43, 114.29, 112.57, 51.01. HRMS (TOF-ESI+): m/z calcd forC24H19FNO2 [M+H] +, 372.1400; found, 372.1397.

化合物X-e

白色固体:mp. 143.1-144.5 °C; yield: 85%; IR (KBr, ν max, cm−1): 3430, 2953,1710, 1602, 1493, 1449, 1359, 1279, 1202, 1119, 1022, 808, 765, 692, 617; 1HNMR (500 MHz, Chloroform-d) δ: 7.51 (dd, J = 8.1, 1.4 Hz, 2H), 7.39 (t, J =7.6 Hz, 2H), 7.36 – 7.28 (m, 4H), 7.26 – 7.17 (m, 2H), 7.08 (dd, J = 8.8, 5.3Hz, 2H), 6.86 (t, J = 8.7 Hz, 2H), 6.44 (s, 1H), 3.47 (s, 3H); 13C NMR (125MHz, Chloroform-d) δ: 162.97, 161.73, 161.30, 139.28, 138.65, 135.92, 133.44,130.75, 130.70, 129.35, 128.58, 128.56, 128.12, 128.00, 127.97, 127.83,126.98, 121.42, 115.23, 115.08, 112.16, 50.95. HRMS (TOF-ESI+): m/z calcd forC24H19N2O4 [M+H] +, 399.1339; found, 399.1336.

化合物X-f

白色固体:mp. 141.8-142.5 °C; yield: 89%; IR (KBr, ν max, cm−1): 3421, 2947,1715, 1605, 1491, 1449, 1359, 1297, 1203, 1121, 1018, 803, 761, 692, 613; 1HNMR (500 MHz, Chloroform-d) δ: 7.46 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.5 Hz,2H), 7.35 – 7.32 (m, 3H), 7.26 – 7.21 (m, 2H), 7.18 (dd, J = 5.1, 2.0 Hz,3H), 7.13 – 7.08 (m, 2H), 6.44 (s, 1H), 3.48 (s, 3H); 13C NMR (125 MHz,Chloroform-d) δ: 161.55, 139.85, 139.32, 134.54, 132.85, 132.28, 131.66,130.70, 128.96, 128.54, 128.49, 128.08, 127.96, 127.57, 112.06, 50.96. HRMS(TOF-ESI+): m/z calcd for C24H19ClNO2 [M+H] +, 388.1099; found, 388.1102.

化合物X-g

白色固体:mp. 140.5-141.6 °C; yield: 91%; IR (KBr, ν max, cm−1): 3438, 2952,1706, 1600, 1493, 1450, 1359, 1279, 1201, 1121, 1022, 817, 758, 691, 597; 1HNMR (500 MHz, Chloroform-d) δ: 7.38 – 7.32 (m, 4H), 7.30 (d, J = 7.9 Hz, 1H),7.24 (dt, J = 7.0, 4.2 Hz, 3H), 7.18 (dd, J = 5.2, 2.0 Hz, 3H), 7.11 (dd, J =6.4, 3.0 Hz, 2H), 7.02 (td, J = 8.2, 2.7 Hz, 1H), 6.46 (s, 1H), 3.50 (s, 3H),2.21 (s, 3H); 13C NMR (125 MHz, Chloroform-d) δ: 161.53, 139.75, 139.25,138.26, 138.21, 132.07, 131.63, 129.12, 129.07, 128.95, 128.73, 128.53,128.49, 128.46, 128.08, 121.46, 112.03, 51.00, 21.29. HRMS (TOF-ESI+): m/zcalcd for C25H22NO2 [M+H] +, 368.1645; found, 368.1643.

化合物X-h

白色固体:mp. 169.4-170.3 °C; yield: 88%; IR (KBr, ν max, cm−1): 3439, 2948,1703, 1607, 1494, 1450, 1363, 1280, 1202, 1157, 1119, 1020, 838, 771, 695; 1HNMR (500 MHz, Chloroform-d) δ: 7.52 – 7.47 (m, 2H), 7.34 (p, J = 4.3 Hz, 3H),7.23 (dd, J = 6.4, 3.0 Hz, 2H), 7.18 (dd, J = 5.1, 2.0 Hz, 3H), 7.13 – 7.10(m, 2H), 7.08 (d, J = 8.7 Hz, 2H), 6.44 (s, 1H), 3.48 (s, 3H); 13C NMR (125MHz, Chloroform-d) δ: 162.92, 161.60, 161.30, 139.76, 139.40, 132.57, 132.01,131.99, 131.74, 130.97, 130.92, 128.95, 128.54, 128.46, 128.06, 128.01,127.52, 121.35, 114.71, 114.57, 112.17, 50.88. HRMS (TOF-ESI+): m/z calcd forC24H19FNO2 [M+H] +, 372.1394; found, 372.1400.

化合物X-i

白色固体:mp. 146.9-147.6 °C; yield: 94%; IR (KBr, ν max, cm−1): 3448, 2952,1700, 1610, 1502, 1451, 1368, 1291, 1251, 1188, 1123, 1027, 843, 807, 772,695, 608; 1H NMR (500 MHz, Chloroform-d) δ: 7.47 (dd, J = 8.8, 2.7 Hz, 2H),7.34 (d, J = 2.6 Hz, 3H), 7.28 – 7.19 (m, 3H), 7.03 (dd, J = 8.9, 2.7 Hz,2H), 6.94 (dd, J = 8.8, 2.7 Hz, 2H), 6.71 (dd, J = 8.9, 2.7 Hz, 2H), 6.38 (d,J = 2.7 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 3.48 (s, 3H); 13C NMR (125 MHz,Chloroform-d) δ: 161.81, 158.96, 158.72, 139.70, 139.65, 130.49, 130.20,128.63, 128.51, 128.42, 127.84, 124.38, 113.53, 113.25, 111.71, 55.28, 55.17,50.82. HRMS (TOF-ESI+): m/z calcd for C26H24NO4 [M+H] +, 414.1700; found,414.1700.

化合物X-j

白色固体:mp. 139.6-140.9 °C; yield: 85%; IR (KBr, ν max, cm−1): 3425, 2943,1704, 1597, 1498, 1445, 1362, 1279, 1225, 1185, 1124, 806, 765, 695; 1H NMR(500 MHz, Chloroform-d) δ: 7.48 (dd, J = 8.6, 5.6 Hz, 2H), 7.38 – 7.32 (m,3H), 7.23 (dd, J = 6.7, 2.9 Hz, 2H), 7.08 (t, J = 8.7 Hz, 2H), 7.05 – 6.99(m, 2H), 6.74 – 6.67 (m, 2H), 6.37 (s, 1H), 3.74 (s, 3H), 3.47 (s, 3H); 13CNMR (125 MHz, Chloroform-d) δ: 162.90, 161.58, 161.23, 159.05, 139.76,139.54, 132.67, 132.14, 132.12, 130.98, 130.93, 130.20, 128.60, 128.45,127.96, 124.19, 114.67, 114.53, 113.57, 111.67, 55.17, 50.82. HRMS (TOF-ESI+):m/z calcd for C25H21FNO3 [M+H] +, 402.1500; found, 402.1501.

化合物X-k

白色固体:mp. 110.2-111.5 °C; yield: 84%; IR (KBr, ν max, cm−1): 3420, 2956,1700, 1599, 1494, 1451, 1359, 1283, 1232, 1180, 1128, 800, 761, 692; 1H NMR(500 MHz, Chloroform-d) δ: 7.45 (td, J = 7.4, 1.7 Hz, 1H), 7.37 (dd, J = 5.0,2.1 Hz, 3H), 7.34 – 7.28 (m, 1H), 7.26 (dd, J = 6.4, 3.2 Hz, 2H), 7.19 (td, J= 7.5, 1.2 Hz, 1H), 7.15 – 7.09 (m, 2H), 6.92 – 6.85 (m, 2H), 6.81 (ddd, J =10.2, 2.6, 1.6 Hz, 1H), 6.50 (s, 1H), 3.49 (s, 3H); 13C NMR (125 MHz,Chloroform-d) δ: 163.16, 161.53, 161.34, 160.74, 159.10, 138.93, 138.22,133.76, 131.36, 131.33, 129.58, 129.53, 128.85, 128.80, 128.60, 128.38,126.05, 124.60, 124.58, 123.67, 123.64, 115.83, 115.68, 115.35, 115.20,114.46, 114.32, 112.63, 51.05. HRMS (TOF-ESI+): m/z calcd for C24H18F2NO2 [M+H] +,390.1300; found, 390.1304.

化合物X-l

白色固体:mp. 129.6-130.4 °C; yield: 91%; IR (KBr, ν max, cm−1): 3426, 3321,2950, 2856, 1745, 1676, 1590, 1451, 1402, 1355, 1241, 1176, 1094, 1027, 940,888, 757, 734, 691; 1H NMR (500 MHz, Chloroform-d) δ: 7.45 (dd, J = 8.2, 1.3Hz, 2H), 7.39 – 7.33 (m, 7H), 7.32 – 7.27 (m, 1H), 7.26 – 7.21 (m, 2H), 7.21– 7.14 (m, 1H), 6.95 – 6.86 (m, 2H), 6.34 (s, 1H), 5.60 (s, 2H), 3.52 (s,3H); 13C NMR (125 MHz, Chloroform-d) δ: 162.18, 140.88, 139.37, 136.55,134.20, 132.00, 129.52, 129.37, 128.57, 128.52, 128.36, 127.66, 126.89,126.72, 125.73, 119.39, 112.23, 50.82, 49.72. HRMS (TOF-ESI+): m/z calcd forC25H22NO2 [M+H] +, 368.1645; found, 368.1649.

化合物X-m

白色固体:mp.169.6-170.4 °C; yield: 84%; IR (KBr, ν max, cm−1): 3433, 3340,2959, 2861, 1750, 1681, 1598, 1455, 1406, 1359, 1243, 1176, 1094, 1025, 938,890, 762, 737, 695; 1H NMR (500 MHz, Chloroform-d) δ: 7.49 – 7.33 (m, 5H),7.26 (t, J = 7.9 Hz, 1H), 7.02 – 6.92 (m, 2H), 6.84 (ddd, J = 8.3, 2.6, 1.0Hz, 1H), 6.20 (s, 1H), 4.38 – 4.26 (m, 2H), 3.82 (s, 3H), 3.67 (s, 3H), 1.69– 1.54 (m, 2H), 1.15 (h, J = 7.4 Hz, 2H), 0.77 (t, J = 7.4 Hz, 3H); 13C NMR(125 MHz, Chloroform-d) δ: 162.48, 159.06, 140.21, 138.26, 133.58, 132.55,129.67, 128.50, 128.19, 121.97, 118.86, 114.80, 112.42, 111.91, 55.23, 50.83,46.08, 33.97, 19.78, 13.59. HRMS (TOF-ESI+): m/z calcd for C23H26NO3 [M+H] +,364.1907; found, 364.1909.

化合物X-n

白色固体:mp. 169.6-170.4 °C; yield: 89%; IR (KBr, ν max, cm−1): 3426, 3321,2949, 2850, 1747, 1681, 1597, 1451, 1403, 1357, 1243, 1172, 1097, 1028, 940,889, 757, 734, 691; 1H NMR (500 MHz, Chloroform-d) δ: 7.57 – 7.52 (m, 2H),7.45 – 7.37 (m, 4H), 7.34 (qd, J = 7.4, 1.7 Hz, 3H), 7.29 – 7.23 (m, 1H),6.22 (s, 1H), 3.72 (s, 3H), 3.67 (tt, J = 7.3, 3.9 Hz, 1H), 0.89 – 0.83 (m,2H), 0.58 – 0.48 (m, 2H); 13C NMR (125 MHz, Chloroform-d) δ: 162.28, 140.64,136.10, 132.83, 132.33, 129.15, 128.69, 128.31, 127.76, 127.64, 126.69,122.78, 110.55, 51.12, 30.34, 10.54. HRMS (TOF-ESI+): m/z calcd for C21H20NO2[M+H] +, 318.1489; found, 318.1491.

实施例19

本实施例提供了一种多取代吡咯衍生物的制备方法,其反应式为

其制备方法如下:

将2.0mmol苯乙酮(VIII-a)加入到50 ml的圆底烧瓶中,加入溶剂甲醇25 ml,加入1.8mmol对甲苯磺酰肼搅拌至溶解,之后反应回流5 h,并有大量白色固体析出,通过TLC 监测直至原料被完全消耗,将反应降至室温,抽滤,并用大量石油醚洗涤固体多次,得到(E)-4-甲基-N'-(1-苯基亚乙基)苯磺酰肼(III-a,产率为90%)。

实施例20

本实施例提供了一种化合物III的制备方法,其反应式为

Figure 309748DEST_PATH_IMAGE022

其制备方法如下:

将1.0mmol (E)-1-苯基-3-(苯基氨基)丙-2-烯-1-酮5(I-a)和三氟甲烷磺酸银(5%mmol)加入到反应管中,加入溶剂甲苯5 ml,室温搅拌1 h至溶解,加入碳酸锂(1.2 mmol),将反应回流,分批加入(E)-4-甲基-N'-(1-苯基亚乙基)苯磺酰肼(III-a),反应回流24 h,并通过TLC 监测直至原料被消耗完全,反应完成后,降至室温,抽滤,将滤液用二氯甲烷萃取(20ml x 3),通过减压蒸馏得到粗产物,然后通过柱色谱(石油醚/乙酸乙酯=100:1)进行纯化,得到所需多取代吡咯衍生物,即化合物X-q(产率:70%)。

化合物X-q的表征如下:

白色固体:mp. 195.4-195.2 °C; IR (KBr, ν max, cm−1): 3422, 1607, 1496, 1369,1107, 764, 705, 606, 562, 526.97, 489, 444; 1H NMR (600 MHz, Chloroform-d) δ:7.18 (d, J = 7.4 Hz, 2H, ArH), 7.14 (tt, J = 5.3, 3.3 Hz, 6H, ArH), 7.12 –7.10 (m, 1H, ArH), 7.07 – 7.02 (m, 4H, ArH), 6.93 (dd, J = 6.3, 3.0 Hz, 2H,ArH), 6.38 (s, 1H, pyrrol-H), 2.19 (s, 3H, CH3); 13C NMR (151 MHz, Chloroform-d) δ: 139.29, 134.01, 133.32, 132.83, 132.69, 130.69, 128.89, 128.53, 128.49,127.88, 127.66, 126.72, 126.33, 126.03, 118.03, 111.76, 11.99. HRMS (TOF-ESI+): m/z calcd for C23H20N [M+H] +, 310.1590; found, 310.1581.

实施例21~31

实施例21~31提供了一系列多取代吡咯衍生物(X-r~X-ab)的制备方法,具体步骤与实施例3相同,原料和产物如下表所示。

Figure 388562DEST_PATH_IMAGE023

Figure 417698DEST_PATH_IMAGE024

上述多取代吡咯衍生物的表征如下:

化合物X-r

白色固体:mp. 200.7-201.5 °C; yield: 75%; IR (KBr, ν max, cm−1): 3425, 1608,1498, 1367, 1103, 761, 709, 603, 557, 521, 491, 447; 1H NMR (600 MHz,Chloroform-d) δ: 7.28 – 7.25 (m, 2H, ArH), 7.20 – 7.15 (m, 6H, ArH), 7.04 –7.01 (m, 2H, ArH), 6.93 – 6.89 (m, 4H, ArH), 6.38 (s, 1H, pyrrol-H), 2.18 (s,3H, CH3); 13C NMR (151 MHz, Chloroform-d) δ: 138.98, 133.19, 132.66, 132.55,132.21, 131.04, 130.64, 129.82, 128.80, 128.66, 127.69, 126.96, 126.48,120.03, 118.18, 111.99, 11.90. HRMS (TOF-ESI+): m/z calcd for C23H19BrN [M+H] +,388.0695; found, 388.0687.

化合物X-s

白色固体:mp. 161.8-162.3 °C; yield: 62%; IR (KBr, ν max, cm−1): 3396, 1600,1487, 1368, 1240, 1110, 858, 778, 702, 616, 495, 444; 1H NMR (600 MHz,Chloroform-d) δ: 7.19 (t, J = 7.6 Hz, 2H, ArH), 7.17 – 7.13 (m, 4H, ArH),7.09 – 7.02 (m, 3H, ArH), 6.95 (dd, J = 6.2, 2.6 Hz, 2H, ArH), 6.74 – 6.64(m, 2H, ArH), 6.55 (s, 1H, ArH), 6.40 (s, 1H, pyrrol-H), 3.55 (s, 3H, OCH3),2.19 (s, 3H, CH3); 13C NMR (151 MHz, Chloroform-d) δ: 159.05, 139.33, 134.51,133.80, 132.74, 130.68, 128.89, 128.85, 128.54, 127.66, 126.75, 126.35,121.01, 118.00, 113.49, 112.41, 111.79, 54.94, 11.97. HRMS (TOF-ESI+): m/zcalcd for C24H22NO [M+H] +, 340.1696; found, 340.1687.

化合物X-t

白色固体:mp. 144.4-145.5 °C; yield: 78%; R (KBr, ν max, cm−1): 3457, 2937,2030, 1607, 1487, 1373, 1269, 1160, 1109, 873, 777, 696, 625, 561, 488, 443;1H NMR (600 MHz, Chloroform-d) δ: 7.22 – 7.14 (m, 6H, ArH), 7.12 – 7.07 (m,1H, ArH), 7.06 – 7.01 (m, 2H, ArH), 6.94 (dd, J = 7.5, 2.2 Hz, 2H, ArH), 6.84– 6.78 (m, 2H, ArH), 6.74 (dd, J = 10.6, 2.0 Hz, 1H, ArH), 6.41 (s, 1H,pyrrol-H), 2.18 (s, 3H, CH3); 13C NMR (151 MHz, Chloroform-d) δ: 163.24 (d,J C-F = 245 Hz), 138.96, 135.42, 135.36, 133.32, 132.59, 132.53, 130.65, 129.26(d, J = 9 Hz), 128.77, 128.64, 127.68, 127.02, 126.49, 123.96 (d, J = 2 Hz),118.13, 115.06 (d, J = 23 Hz), 112.80 (d, J = 21 Hz), 11.89; 19F NMR (565 MHz,Chloroform-d) δ: -113.73. HRMS (TOF-ESI+): m/z calcd for C23H19FN [M+H] +,328.1496; found, 328.1485.

化合物X-u

白色固体:mp. 210.2-211.4 °C; yield: 77%; R (KBr, ν max, cm−1): 3427, 2029,1613, 1496, 1364, 1120, 761, 701, 662, 618, 561, 549, 489, 444; 1H NMR (600MHz, Chloroform-d) δ: 7.71 (d, J = 9.2 Hz, 1H, ArH), 7.63 – 7.60 (m, 1H,ArH), 7.58 (d, J = 8.6 Hz, 1H, ArH), 7.55 – 7.52 (m, 1H, ArH), 7.41 – 7.35(m, 2H, ArH), 7.20 (d, J = 7.6 Hz, 2H, ArH), 7.15 (dd, J = 7.6, 4.0, 2H,ArH), 7.09 – 7.05 (m, 2H, ArH), 6.98 (dd, J = 7.6, 1.7 Hz, 2H, ArH), 6.51 (s,1H, pyrrol-H), 2.22 (s, 3H, CH3); 13C NMR (151 MHz, Chloroform-d) δ: 139.30,133.87, 133.31, 132.99, 132.76, 131.80, 130.75, 130.69, 128.90, 128.57,127.90, 127.67, 127.49, 127.19, 126.91, 126.80, 126.78, 126.37, 125.94,125.49, 118.22, 112.25, 11.98. HRMS (TOF-ESI+): m/z calcd for C23H19N2O2 [M+H] +,355.1441; found, 355.1449.

化合物X-v

白色固体:mp. 176.3-177.4 °C; yield: 67%; R (KBr, ν max, cm−1): 3391, 1603,1485, 1364, 1241, 1113, 855, 776, 704, 613, 497, 445; 1H NMR (600 MHz,Chloroform-d) δ: 7.17 – 7.09 (m, 6H, ArH), 7.07 – 7.04 (m, 2H, ArH), 7.00 (d,J = 7.9 Hz, 2H, ArH), 6.93 (t, J = 6.8 Hz, 4H, ArH), 6.37 (s, 1H, pyrrol-H),2.29 (s, 3H, OCH3), 2.18 (s, 3H, CH3); 13C NMR (151 MHz, Chloroform-d) δ:139.35, 135.92, 133.78, 133.35, 130.51, 129.79, 128.89, 128.47, 128.43,128.39, 127.82, 126.62, 125.91, 117.75, 111.65, 21.14, 11.96. HRMS (TOF-ESI+): m/z calcd for C24H22N [M+H] +, 324.1747; found, 324.1737.

化合物X-w

白色固体:mp. 210.1-210.9 °C; yield: 81%; R (KBr, ν max, cm−1): 3450, 1607,1499, 1372, 1112, 841, 759, 693, 606, 561, 513; 1H NMR (600 MHz, Chloroform-d) δ: 7.17 – 7.10 (m, 6H, ArH), 7.07 – 7.03 (m, 2H, ArH), 7.02 – 6.98 (m, 2H,ArH), 6.94 – 6.86 (m, 4H, ArH), 6.37 (s, 1H, pyrrol-H), 2.16 (s, 3H, CH3); 13CNMR (151 MHz, Chloroform-d) δ: 162.32 (d, J C-F = 246 Hz), 139.11, 134.06,133.16, 132.27 (d, J = 9 Hz), 131.64, 128.84, 128.56, 128.47, 127.89, 126.83,126.08, 118.04, 114.76 (d, J = 21 Hz), 111.57, 11.86; 19F NMR (565 MHz,Chloroform-d) δ -115.69. HRMS (TOF-ESI+): m/z calcd for C23H19FN [M+H] +,328.1496; found, 328.1487.

化合物X-x

白色固体:mp. 210.7-211.6 °C; yield: 77%; R (KBr, ν max, cm−1): 3444, 1606,1494, 1097, 762, 607, 562; 1H NMR (600 MHz, Chloroform-d) δ: 7.19 – 7.12 (m,8H, ArH), 7.07 – 7.02 (m, 2H, ArH), 6.95 (d, J = 8.5 Hz, 2H, ArH), 6.94 –6.90 (m, 2H, ArH), 6.37 (s, 1H, pyrrol-H), 2.18 (s, 3H, CH3); 13C NMR (151MHz, Chloroform-d) δ: 138.99, 134.39, 133.06, 132.25, 131.75, 131.27, 128.81,128.66, 128.52, 127.93, 127.90, 126.93, 126.17, 118.40, 111.79, 11.96. HRMS(TOF-ESI+): m/z calcd for C23H19ClN [M+H] +, 344.1201; found, 344.1194.

化合物X-y

白色固体:mp. 208.1-209.4 °C; yield: 73%; R (KBr, ν max, cm−1): 3435, 2926,2028, 1607, 1496, 1372, 1113, 795, 634, 607, 562, 545, 489, 444; 1H NMR (600MHz, Chloroform-d) δ: 7.18 (d, J = 2.3 Hz, 1H, ArH), 7.17 (d, J = 1.7 Hz, 1H,ArH), 7.16 (d, J = 8.4 Hz, 2H, ArH), 6.99 – 6.89 (m, 9H, ArH), 6.33 (s, 1H,pyrrol-H), 2.27 (s, 3H, Ar-CH3), 2.17 (s, 3H, CH3); 13C NMR (151 MHz,Chloroform-d) δ: 139.10, 135.87, 134.50, 132.16, 131.74, 131.35, 131.00,130.19, 128.84, 128.65, 128.62, 128.42, 127.90, 126.86, 118.32, 111.43,21.06, 11.96. HRMS (TOF-ESI+): m/z calcd for C24H21ClN [M+H] +, 358.1357;found, 358.1361.

综上所述,本发明实施例提供了一种多取代吡咯衍生物及其制备方法,该制备方法利用重氮类化合物或苯腙类化合物与氨基取代的不饱和羰基化合物反应,经过碳碳***、环化反应及[1,5]迁移串级反应,成功构建吡咯环,高效高产率地得到了一系列的多取代吡咯衍生物。该制备方法的原料均可以通过简单反应得到,具有原料廉价易得的优势。同时,该制备方法条件温和、环境友好,适合进行规模化的生产,具有较好的应用价值。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种1,3-二取代的吲哚啉的衍生物及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类