一种全球导航卫星数据校准方法、装置、终端及存储介质

文档序号:1951438 发布日期:2021-12-10 浏览:16次 >En<

阅读说明:本技术 一种全球导航卫星数据校准方法、装置、终端及存储介质 (Global navigation satellite data calibration method, device, terminal and storage medium ) 是由 史文中 包胜 于 2021-08-06 设计创作,主要内容包括:本发明公开了一种全球导航卫星数据校准方法、装置、终端及存储介质,所述方法包括:获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图;根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差;获取第二全球导航卫星数据,根据所述偏移数据对所述第二全球导航卫星数据进行校准,其中,所述第一全球导航卫星数据的获取时间早于所述第二全球导航卫星数据的获取时间。本发明无需采用惯性传感器,因此可以有效地解决现有技术中在没有惯性传感器的情况下,无法通过LiDAR对GNSS进行校准的问题。(The invention discloses a global navigation satellite data calibration method, a device, a terminal and a storage medium, wherein the method comprises the following steps: acquiring first global navigation satellite data and radar data, generating first track data according to the first global navigation satellite data, and generating second track data and a point cloud map according to the radar data; determining offset data from the point cloud map, the offset data reflecting a deviation between the first trajectory data and the second trajectory data; acquiring second global navigation satellite data, and calibrating the second global navigation satellite data according to the offset data, wherein the acquisition time of the first global navigation satellite data is earlier than the acquisition time of the second global navigation satellite data. The invention does not need to adopt an inertial sensor, thereby effectively solving the problem that the GNSS cannot be calibrated by LiDAR under the condition of no inertial sensor in the prior art.)

一种全球导航卫星数据校准方法、装置、终端及存储介质

技术领域

本发明涉及移动测量领域,尤其涉及的是一种全球导航卫星数据校准方法、装置、终端及存储介质。

背景技术

随着智慧城市和自动驾驶等技术的发展,移动测量系统以其便捷高效的特性逐渐替代了传统的定点测量方法。为了获取不同的信息,通常移动测量系统上配备了多种传感器。除了传感器本身的精度,对他们进行校准也是一种提升数据质量和精度的重要手段,是移动测量系统研究的重要方向。

GNSS和LiDAR,作为移动测量系统的常见传感器,他们之间的校准对于提升移动测量系统的精度有重要意义。目前的研究主要集中在GNSS/IMU(Inertial MeasurementUnits,惯性传感器)系统与LiDAR的校准,即现有的GNSS的校准方法需要用到LiDAR和惯性传感器,在没有惯性传感器的情况下,则无法通过LiDAR对GNSS进行校准。

因此,现有技术还有待改进和发展。

发明内容

本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种全球导航卫星数据校准方法、装置、终端及存储介质,旨在解决现有技术中在没有惯性传感器的情况下,无法通过LiDAR对GNSS进行校准的问题。

本发明解决问题所采用的技术方案如下:

第一方面,本发明实施例提供一种全球导航卫星数据校准方法,其中,所述方法包括:

获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图;

根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差;

获取第二全球导航卫星数据,根据所述偏移数据对所述第二全球导航卫星数据进行校准,其中,所述第一全球导航卫星数据的获取时间早于所述第二全球导航卫星数据的获取时间。

在一种实施方式中,所述根据所述雷达数据生成第二轨迹数据和点云地图,包括:

将所述雷达数据输入SLAM算法;

获取所述SLAM算法基于所述雷达数据输出的所述第二轨迹数据和所述点云地图。

在一种实施方式中,所述根据所述点云地图确定偏移数据,包括:

判断所述点云地图中是否存在辅助定位标志;

当所述点云地图中存在所述辅助定位标志时,获取所述辅助定位标志在世界坐标系中的第一坐标信息和所述辅助定位标志在SLAM坐标系中的第二坐标信息,其中,所述SLAM坐标系为所述点云地图对应的坐标系;

根据所述第一坐标信息和所述第二坐标信息,确定所述偏移数据。

在一种实施方式中,所述根据所述第一坐标信息和所述第二坐标信息,确定所述偏移数据,包括:

根据所述第一坐标信息和所述第二坐标信息,确定转换矩阵;

根据所述转换矩阵,将所述第一轨迹数据转换至所述SLAM坐标系中,得到转换轨迹数据;

确定所述转换轨迹数据与所述第二轨迹数据之间的偏差,得到所述偏移数据。

在一种实施方式中,所述根据所述点云地图确定偏移数据,包括:

判断所述点云地图中是否存在辅助定位标志;

当所述点云地图中未存在所述辅助定位标志时,获取预设的初始偏移数据;

对所述初始偏移数据进行参数优化,得到所述偏移数据。

在一种实施方式中,所述对所述初始偏移数据进行参数优化,得到所述偏移数据,包括:

根据所述初始偏移数据,确定标准轨迹数据,其中,所述标准轨迹数据用于反映所述第一轨迹数据在世界坐标系中对应的标准轨迹;

获取所述第一轨迹数据和标准轨迹数据的偏差值,根据所述偏差值对所述初始偏移数据进行调整,得到所述偏移数据。

在一种实施方式中,所述根据所述偏差值对所述初始偏移数据进行调整,得到所述偏移数据,包括:

根据所述偏差值执行高斯-牛顿迭代操作,通过所述高斯-牛顿迭代操作对所述初始偏移数据进行调整;

当所述偏差值基于所述高斯-牛顿迭代操作达到最小值时,得到所述偏移数据。

第二方面,本发明实施例还提供一种全球导航卫星数据校准装置,其中,所述装置包括:

数据获取模块,用于获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图;

偏移确定模块,用于根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差;

数据校准模块,用于获取第二全球导航卫星数据,根据所述偏移数据对所述第二全球导航卫星数据进行校准,其中,所述第一全球导航卫星数据的获取时间早于所述第二全球导航卫星数据的获取时间。

第三方面,本发明实施例还提供一种终端,其中,所述终端包括有存储器和一个或者一个以上处理器;所述存储器存储有一个或者一个以上的程序;所述程序包含用于执行如上述任一所述的全球导航卫星数据校准方法的指令;所述处理器用于执行所述程序。

第四方面,本发明实施例还提供一种计算机可读存储介质,其上存储有多条指令,其中,所述指令适用于由处理器加载并执行,以实现上述任一所述的全球导航卫星数据校准方法的步骤。

本发明的有益效果:本发明实施例通过获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图;根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差;获取第二全球导航卫星数据,根据所述偏移数据对所述第二全球导航卫星数据进行校准,其中,所述第一全球导航卫星数据的获取时间早于所述第二全球导航卫星数据的获取时间。本发明无需采用惯性传感器,因此可以有效地解决现有技术中在没有惯性传感器的情况下,无法通过LiDAR对GNSS进行校准的问题。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明实施例提供的全球导航卫星数据校准方法的流程示意图。

图2是本发明实施例提供的有辅助定位标志和无辅助定位标志分别不同的校准方法的流程示意图。

图3是本发明实施例提供的全球导航卫星数据校准装置的内部模块连接示意图。

图4是本发明实施例提供的终端的原理框图。

具体实施方式

为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。

随着智慧城市和自动驾驶等技术的发展,移动测量系统以其便捷高效的特性逐渐替代了传统的定点测量方法。为了获取不同的信息,通常移动测量系统上配备了多种传感器。除了传感器本身的精度,对他们进行校准也是一种提升数据质量和精度的重要手段,是移动测量系统研究的重要方向。

GNSS和LiDAR,作为移动测量系统的常见传感器,他们之间的校准对于提升移动测量系统的精度有重要意义。目前的研究主要集中在GNSS/IMU(Inertial MeasurementUnits,惯性传感器)系统与LiDAR的校准,即现有的GNSS的校准方法需要用到LiDAR和惯性传感器,在没有惯性传感器的情况下,则无法通过LiDAR对GNSS进行校准。

针对现有技术的上述缺陷,本发明提供一种全球导航卫星数据校准方法,所述方法通过获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图;根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差;获取第二全球导航卫星数据,根据所述偏移数据对所述第二全球导航卫星数据进行校准,其中,所述第一全球导航卫星数据的获取时间早于所述第二全球导航卫星数据的获取时间。本发明无需采用惯性传感器,因此可以有效地解决现有技术中在没有惯性传感器的情况下,无法通过LiDAR对GNSS进行校准的问题。

如图1所示,所述方法包括如下步骤:

步骤S100、获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图。

具体地,为了实现GNSS与LiDAR之间进行校准,本实施例需要通过GNSS传感器获取第一全球导航卫星数据,并同时通过LiDAR传感器获取雷达数据。然后,基于第一全球导航卫星数据可以生成用于反映用户移动轨迹的第一轨迹数据。同时基于雷达数据生成用于反映用户移动轨迹的第二轨迹数据和点云地图,其中,点云地图可以反映用户移动轨迹周边的环境信息。在没有误差的情况下,第一轨迹数据与第二轨迹数据应该是重合的,但是实际生活中,第一轨迹数据与第二轨迹数据之间是存在偏差的,因此需要对两者进行校准。需要说明的是,为了保证第一轨迹数据和第二轨迹数据反映的是用户的同一移动轨迹,需要保证第一轨迹数据和第二轨迹数据中对应数据点的时间戳信息相同。

在一种实现方式中,所述根据所述雷达数据生成第二轨迹数据和点云地图,具体包括如下步骤:

步骤S101、将所述雷达数据输入SLAM算法;

步骤S102、获取所述SLAM算法基于所述雷达数据输出的所述第二轨迹数据和所述点云地图。

具体地,雷达是研究最多的SLAM传感器,它可以提供机器人本体与周围环境障碍物之间的距离信息,根据雷达传感器采集到的雷达数据结合SLAM算法(即同时定位与地图构建算法),就可以解算出雷达传感器的移动轨迹,即第二轨迹数据,并同时生成用于描述雷达传感器移动路线中的周围环境的点云地图。

如图1所示,所述方法还包括如下步骤:

步骤S200、根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差。

具体地,本实施例的目的是在没有惯性传感器的情况下,通过LiDAR对GNSS进行校准,由于点云地图可以反映雷达传感器移动路线中的周围环境,因此点云地图可以连接现实环境中的信息与SLAM地图中的信息,从而用于确定第一轨迹数据和第二轨迹数据之间的偏差,得到偏移数据。

在一种实现方式中,所述根据所述点云地图确定偏移数据,具体包括如下步骤:

步骤S201、判断所述点云地图中是否存在辅助定位标志;

步骤S202、当所述点云地图中存在所述辅助定位标志时,获取所述辅助定位标志在世界坐标系中的第一坐标信息和所述辅助定位标志在SLAM坐标系中的第二坐标信息,其中,所述SLAM坐标系为所述点云地图对应的坐标系;

步骤S203、根据所述第一坐标信息和所述第二坐标信息,确定所述偏移数据。

简言之,本实施例中首先需要确定点云地图中是否存在辅助定位标志,即预先设置在雷达传感器所处环境中的标志,并根据存在辅助定位标志和不存在辅助定位标志两种情况,分别提供一种确定偏移数据的方法(如图2所示)。具体地,针对存在辅助定位标志的情况,需要确定该辅助定位标志分别在世界坐标系中与SLAM坐标系中的坐标信息,即得到第一坐标信息和第二坐标信息。由于第一坐标信息和第二坐标信息可以反映辅助定位标志在不同坐标系中的位置信息,因此可以基于第一坐标信息和第二坐标信息将第一轨迹数据和第二轨迹数据转换至同一坐标系中进行比较,进而得到偏移数据,通过该偏移数据可以反映第一轨迹数据和第二轨迹数据之间的偏差。

在一种实现方式中,所述步骤S203,具体包括如下步骤:

步骤S2031、根据所述第一坐标信息和所述第二坐标信息,确定转换矩阵;

步骤S2032、根据所述转换矩阵,将所述第一轨迹数据转换至所述SLAM坐标系中,得到转换轨迹数据;

步骤S2033、确定所述转换轨迹数据与所述第二轨迹数据之间的偏差,得到所述偏移数据。

具体地,由于第一坐标信息和第二坐标信息可以反映辅助定位标志在不同坐标系中的位置信息,因此可以基于第一坐标信息和第二坐标信息确定转换矩阵,该转换矩阵可以反映世界坐标系与SLAM坐标系之间的坐标转换关系。因此基于该转换矩阵,可以将第一轨迹数据中的所有数据点转换至SLAM坐标系中,从而得到转换轨迹数据。在理想状态下,当GNSS和LiDAR之间不存在误差时,转换轨迹数据和第二轨迹数据之间应该是重合的,然而在实际应用中,转换轨迹数据和第二轨迹数据之间或多或少均存在一定偏差,因此通过比较转换轨迹数据与第二轨迹数据,即可得到用于反映二者之间偏差的偏移数据。

举例说明,可以使用ICP算法计算出世界坐标系与SLAM坐标系之间的转换矩阵并使用转换矩阵将第一轨迹数据转换到SLAM坐标系下,如下公式(1)所示:

其中,上标s表示在SLAM坐标系下,上标l表示在世界坐标系下,的旋转矩阵,的平移分量。随后计算与SLAM过程中得到的LiDAR轨迹的差值,从而计算出第一轨迹数据与第二轨迹数据之间的偏差,得到偏移数据tla,如下公式(2)所示:

其中,i表示是配对好的LiDAR轨迹上的第i个点,是i点的旋转矩阵,是i点的位置,tla,i是相应的tla。tla计算公式(3)如下

在一种实现方式中,在计算tla的过程中,还可以使用绝对中位差剔除异常值,如公式(4)所示:

其中,Stla是所有tla,i的集合,median()是求中位数的操作,MAD是Stla的绝对中位差。

在另一种实现方式中,所述根据所述点云地图确定偏移数据,具体包括如下步骤:

步骤S204、判断所述点云地图中是否存在辅助定位标志;

步骤S205、当所述点云地图中未存在所述辅助定位标志时,获取预设的初始偏移数据;

步骤S206、对所述初始偏移数据进行参数优化,得到所述偏移数据。

具体地,当点云地图中不存在辅助定位标志时,获取系统预先存储的初始偏移数据,并对该初始偏移数据进行参数优化,使得该初始偏移数据更接近真值,参数优化完毕以后即得到偏移数据。

在一种实现方式中,所述步骤S206,具体包括如下步骤:

步骤S2061、根据所述初始偏移数据,确定标准轨迹数据,其中,所述标准轨迹数据用于反映所述第一轨迹数据在世界坐标系中对应的标准轨迹;

步骤S2062、获取所述第一轨迹数据和标准轨迹数据的偏差值,根据所述偏差值对所述初始偏移数据进行调整,得到所述偏移数据。

具体地,由于初始偏移数据可以粗略地反映第一轨迹数据与第二轨迹数据的偏差,因此基于初始偏移数据可以生成第一轨迹数据在世界坐标系对应的标准轨迹,得到标准轨迹数据。由于该标准轨迹数据可以反映第一轨迹数据在世界坐标系中对应的正确位置,因此可以基于第一轨迹数据和标准轨迹数据之间的偏差值,对初始偏移数据进行调整,以得到更符合真值的偏移数据。

在一种实现方式中,所述根据所述偏差值对所述初始偏移数据进行调整,得到所述偏移数据,具体包括如下步骤:

步骤S20621、根据所述偏差值执行高斯-牛顿迭代操作,通过所述高斯-牛顿迭代操作对所述初始偏移数据进行调整;

步骤S20622、当所述偏差值基于所述高斯-牛顿迭代操作达到最小值时,得到所述偏移数据。

具体地,本实施例对偏移数据进行参数优化主要采用的是高斯-牛顿迭代方法。由于偏差值可以反映第一轨迹数据与标准轨迹数据之间的差距,因此可以对该偏差值进行高斯-牛顿迭代操作,并在高斯-牛顿迭代操作过程中不断对初始偏移数据进行迭代更新,直至偏差值基于高斯-牛顿迭代操作达到最小值,停止高斯-牛顿迭代操作,并将此时得到的偏移数据作为最终的偏移数据。

在一种实现方式中,还可以同时获取预先设定的初始转换矩阵的欧拉角,并采用高斯-牛顿迭代操作同时对初始偏移数据和初始转换矩阵的欧拉角进行参数优化,当停止高斯-牛顿迭代操作时,得到参数优化后的偏移数据和转换矩阵的欧拉角,其中,偏移数据和转换矩阵的欧拉角均为三维的变。

举例说明,使用高斯-牛顿法来进行参数优化的公式(5)如下:

其中,i表示是第一轨迹数据上第i个点,是i点的位置,是估计的i点的正确位置。假设第一轨迹数据中各数据点在下的位姿估计为 分别是位置分量和旋转矩阵,如下公式(6)成立:

其中,是匹配的第二轨迹数据中各数据点的位姿。由于世界坐标系以第一轨迹数据中第一个数据点的位姿为原点,因此有公式(7)成立:

其中,是估计的i点在世界坐标系下的位姿,结合公式(6)和(7),可以推出公式(8):

其中,tla(由三轴参数组成)和(由欧拉角表示)是用高斯-牛顿算法估计的六维参数。的旋转矩阵即为其平移分量可由公式(6)计算。

在一种实现方式中,可以通过雷达数据对应的旋转矩阵和GNSS在Fl下的位置精确地估算出第二轨迹数据在SLAM坐标系下的位置该值可作为另外的观测值与SLAM算法得出的第二轨迹数据进行数据融合,或作为真值评估的精度,计算公式如下公式(9):

基于上述实施例,本发明还提供了一种全球导航卫星数据校准装置,如图3所示,所述装置包括:

数据获取模块01,用于获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图;

偏移确定模块02,用于根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差;

数据校准模块03,用于获取第二全球导航卫星数据,根据所述偏移数据对所述第二全球导航卫星数据进行校准,其中,所述第一全球导航卫星数据的获取时间早于所述第二全球导航卫星数据的获取时间。

基于上述实施例,本发明还提供了一种终端,其原理框图可以如图4所示。该终端包括通过系统总线连接的处理器、存储器、网络接口、显示屏。其中,该终端的处理器用于提供计算和控制能力。该终端的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该终端的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现全球导航卫星数据校准方法。该终端的显示屏可以是液晶显示屏或者电子墨水显示屏。

本领域技术人员可以理解,图4中示出的原理框图,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的终端的限定,具体的终端可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。

在一种实现方式中,所述终端的存储器中存储有一个或者一个以上的程序,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于进行全球导航卫星数据校准方法的指令。

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。

综上所述,本发明公开了一种全球导航卫星数据校准方法、装置、终端及存储介质,所述方法包括:获取第一全球导航卫星数据和雷达数据,根据所述第一全球导航卫星数据生成第一轨迹数据,根据所述雷达数据生成第二轨迹数据和点云地图;根据所述点云地图确定偏移数据,所述偏移数据用于反映所述第一轨迹数据和所述第二轨迹数据之间的偏差;获取第二全球导航卫星数据,根据所述偏移数据对所述第二全球导航卫星数据进行校准,其中,所述第一全球导航卫星数据的获取时间早于所述第二全球导航卫星数据的获取时间。本发明无需采用惯性传感器,因此可以有效地解决现有技术中在没有惯性传感器的情况下,无法通过LiDAR对GNSS进行校准的问题。

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种GBAS电离层延迟梯度的双平滑伪距域检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类