抗rna病毒药物喹啉衍生物及其应用

文档序号:56642 发布日期:2021-10-01 浏览:31次 >En<

阅读说明:本技术 抗rna病毒药物喹啉衍生物及其应用 (Quinoline derivative of anti-RNA virus medicine and application thereof ) 是由 李洪林 刁妍妍 赵振江 李诗良 朱丽丽 于 2020-03-30 设计创作,主要内容包括:本发明公开了式I所示化合物,或其药学上可接受的盐在治疗RNA病毒感染的药物中的应用。这些药物具备广谱且优异的抗RNA病毒活性,并且对正常细胞的毒性较低。(The invention discloses an application of a compound shown in a formula I or a pharmaceutically acceptable salt thereof in a medicine for treating RNA virus infection. These drugs have a broad spectrum and excellent anti-RNA virus activity and are less toxic to normal cells.)

抗RNA病毒药物喹啉衍生物及其应用

技术领域

本发明涉及药物化学领域;具体地说,本发明涉及布奎那在制备治疗RNA 病毒感染的药物以及在治疗病毒感染中的应用。

背景技术

急性病毒感染引起的疾病是公共卫生安全的重要威胁,这些病毒不仅包括熟知的流感病毒,还包括一些新发突发的新型病毒如冠状病毒。

病毒感染引起的疾病是公共卫生安全的重要威胁,这些病毒不仅包括熟知的流感病毒、埃博拉病毒、布尼亚病毒、禽流感病毒H9N2、H1N1、H7N9、沙粒病毒、狂犬病毒、HCV、HBV、HIV-1、HSV-1、HSV-2等,还包括冠状病毒如严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒 (MERS-CoV)和2019新型冠状病毒(2019-nCoV)。

冠状病毒(Coronaviruses)是自然界广泛存在的一大类家族,人和多种动物易感,因其病毒粒子表面类似日冕状的纤突而被命名。冠状病毒属于冠状病毒科。基于病毒核酸序列的系统分析,国际病毒分类委员会第九次报告中将冠状病毒分为α、β、γ以及新假定的一个属共四大类。其中β类冠状病毒7种可以感染人类的冠状病毒,分别是人冠状病毒229E(HCoV-229E)、人冠状病毒 NL63(HCoV-NL63)、人冠状病毒OC43(HCoV-OC43)、香港I型人冠状病毒 (HCoV-HKU1)、严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)和2019新型冠状病毒(2019-nCoV)。其中,2019-nCoV给人类健康带来了严重危害。

急性病毒感染引起的疾病都具有一些共同特点:1)病程短(1-2周),发展快 (发病后几天内迅速发展);2)在高危人群中很容易引发重症乃至死亡;3)容易引起人群传播;4)病毒快速复制通常会引起过度炎症反应。

目前,抗病毒药物以靶向病毒的功能性蛋白为主,即针对每一个病毒需要研发针对性的药物。这种抗病毒药物虽然可以达到很高的特异性和选择性,但长期大量使用往往会出现耐药性,而且研发成本高时间长,缺少预见性。

病毒作为寄生生活的生物体,必须依赖宿主细胞的资源进行繁殖。因此,本领域急需针对病毒赖以生存的宿主细胞设计的小分子药物以便得到广谱抗病毒药物。

发明内容

本发明的目的在于提供具备广谱且优异的抗病毒活性的药物;这些药物对正常细胞的毒性较低;从而为研开发新一代抗病毒药物奠定了物质基础。

在第一方面,本发明提供式I所示化合物,或其药学上可接受的盐在制备抗 RNA病毒感染的药物中的用途:

式中,R1选自:H、卤素、取代或未取代的C1-6烷基、取代或未取代的C1-6 烷氧基、硝基、羟基、氰基、氨基;

m是选自1-4的整数;

A环是5-7元芳环或含有1-3个选自N、O或S的杂原子的5-7元杂芳环;

R2选自:H、取代或未取代的芳基(优选苯基)、取代或未取代的C1-8烷基、取代或未取代的C1-6酰基、取代或未取代的C1-6烷氧基、卤素、硝基、羟基、氰基、氨基;或者,两个R2可结合形成含有1-3个选自N、O或S(优选O)的杂原子的5-7元杂环;

n是选自1-5的整数;

R4选自:H、羟基、氰基、取代或未取代的C1-6烷基、取代或未取代的C1-6 烷氧基。

在优选的实施方式中,R1选自:H、卤素、取代或未取代的C1-3烷基;

m是1或2;

A环是苯基或含有1-3个选自O或S的杂原子的5元杂芳环;

R2选自:H、取代或未取代的苯基、取代或未取代的C1-8烷基、取代或未取代的C1-3酰基、取代或未取代的C1-3烷氧基、卤素;或者,两个R2可结合形成含有1-3 个O原子的5元环;

n是选自1-3的整数;

R4选自:H、取代或未取代的C1-3烷基。。

在具体的实施方式中,R1选自:F、Br、取代或未取代的C1-3烷基;

m是1或2;

A环是苯基;

R2选自:取代或未取代的苯基、取代或未取代的C1-4烷基、卤素;

n是1或2;

R4选自:H、取代或未取代的C1-3烷基。

在具体的实施方式中,式I所示化合物是以下化合物:

在具体的实施方式中,式I所示化合物是以下化合物:

在具体的实施方式中,式I所示化合物是以下化合物:

在具体的实施方式中,所述RNA病毒包括但不限于:冠状病毒,如严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERSCoV)和 2019新冠病毒(2019-nCoV),埃博拉病毒、布尼亚病毒、禽流感H9N2、H1N1、H7N9、沙粒病毒、狂犬病毒、丙型肝炎HCV、乙型肝炎HBV、人类免疫缺陷病毒HIV-1、单纯疱疹病毒HSV-1、HSV-2等。

在优选的实施方式中,所述RNA病毒包括但不限于:严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)和2019新型冠状病毒(2019-nCoV),埃博拉病毒、发热伴血小板减少综合征病毒(sftsv)、禽流感病毒H9N2。

在第二方面,本发明提供一种药物组合物,所述药物组合物包含第一方面所述的式I所示化合物,或其药学上可接受的盐以及其它抗病毒药物。

在具体的实施方式中,所述式I所示化合物是以下化合物:

在具体的实施方式中,式I所示化合物是以下化合物:

在优选的实施方式中,所述药物组合物用于抗RNA病毒感染。

在优选的实施方式中,所述RNA病毒包括但不限于:冠状病毒,如严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERSCoV)和 2019新冠病毒(2019-nCoV),埃博拉病毒、布尼亚病毒、禽流感H9N2、H1N1、H7N9、沙粒病毒、狂犬病毒、丙型肝炎HCV、乙型肝炎HBV、人类免疫缺陷病毒HIV-1、单纯疱疹病毒HSV-1、HSV-2等。

在优选的实施方式中,所述RNA病毒包括但不限于:严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)和2019新型冠状病毒(2019-nCoV),埃博拉病毒、发热伴血小板减少综合征病毒(sftsv)、禽流感病毒H9N2。

在具体的实施方式中,所述其它抗病毒药物包括但不限于:洛匹那韦、利托那韦、利巴韦林、瑞德西韦、奥司他韦、达菲、拉尼米、韦帕拉米韦、阿比朵尔和氯喹(磷酸氯喹)等中的一种或多种;优选洛匹那韦、利托那韦、利巴韦林、瑞德西韦和氯喹(磷酸氯喹)中的一种或多种。

在第三方面,本发明提供一种治疗RNA病毒感染的方法,所述方法包括将治疗有效量的第一方面所述的式I所示化合物或其药学上可接受的盐或第二方面所述的药物组合物给予需要治疗病毒感染的对象。

在优选的实施方式中,所述RNA病毒包括但不限于:冠状病毒,如严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERSCoV)和 2019新冠病毒(2019-nCoV),埃博拉病毒、布尼亚病毒、禽流感H9N2、H1N1、H7N9、沙粒病毒、狂犬病毒、丙型肝炎HCV、乙型肝炎HBV、人类免疫缺陷病毒HIV-1、单纯疱疹病毒HSV-1、HSV-2等。

在优选的实施方式中,所述RNA病毒包括但不限于:严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)和2019新型冠状病毒(2019-nCoV),埃博拉病毒、发热伴血小板减少综合征病毒(sftsv)、禽流感病毒H9N2。

在第四方面,本发明提供一种包含治疗有效量的第一方面所述的式I所示化合物或其药学上可接受的盐的治疗RNA病毒感染的药物组合物。

应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例) 中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。

具体实施方式

发明人经过广泛而深入的研究,发现该类化合物具备广谱且优异的抗病毒活性,特别是对新出现的2019新冠病毒(2019-nCoV)、埃博拉病毒、布尼亚病毒、禽流感病毒H9N2等具有显著的抑制活性,同时这些化合物具有较低的毒性。在此基础上完成了本发明。

定义

本文采用的科技术语的含义与本发明所属技术领域的技术人员所理解的相同。为清晰起见,对本文采用的一些术语定义如下。

本文中,“烷基”是指饱和的支链或直链烃基。具体地说,本文所用的术语“烷基”是指具有1-10个碳原子、优选2-8个碳原子、1-6个、1-4个碳原子、1-3个碳原子不等的饱和的支链或直链烃基。烷基的具体例子包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、庚基等。在本文中,烷基可以被1个或多个取代基取代,例如被卤素或卤代烷基取代。例如,烷基可以是被 1-4个氟原子取代的烷基,例如三氟甲基,或者烷基可以是被氟代烷基取代的烷基。

本文中,“烷氧基”是指RO-所示基团,即还基团通过氧原子与分子的其余部分相连,其中R是上述的烷基。具体地说,本文所用的术语“烷氧基”是指具有1-10个碳原子、优选2-8个碳原子、1-6个、1-4个碳原子、1-3个碳原子不等的烷氧基。烷基的具体例子包括但不限于甲氧基、乙氧基、丙氧基、丁氧基、等。在本文中,烷氧基可以被1个或多个取代基取代,例如被卤素或卤代烷基取代。例如,烷氧基可以是被1-4个氟原子取代的烷氧基,例如三氟甲氧基,或者烷基可以是被氟代烷基取代的烷氧基。

本文中,“氨基”是指结构式为“NRxRy”的基团,其中,Rx和Ry可独立选自H或C1-C3烷基或C1-C3卤代烷基。在具体的实施方式中,本文所述的“氨基”是指NH2。

在本文中,“卤素”是指氟、氯、溴和碘。在优选的实施方式中,卤素是氯或氟;更优选氟。

在本文中,“芳基”或“芳环”具有相同的含义,其是指任何从简单芳香环衍生出的官能团或取代基。在具体的实施方式中,本文所述的芳基是苯基。

在本文中,“杂芳基”或“杂芳环”具有相同的含义,其是指具有一个或多个杂原子的芳基。所述杂原子可以是N、O或S原子。在具体的实施方式中,本文所述的杂芳基是噻吩基或呋喃基。

在本文中,酰基是指“R-C(O)-”所示的基团,其中R选自H或取代或未取代的低级烷基,例如C1-3烷基。

本发明的化合物

在本文中,“本发明的化合物”和“式I所示化合物”具有相同的含义,可以互换使用。

在本发明中,发明人发现该类化合物药物对冠状病毒,特别是对新出现的2019新冠病毒(2019-nCoV)、埃博拉病毒、布尼亚病毒、禽流感病毒H9N2等具备广谱且优异的抑制活性。在具体的实施方式中,本发明的化合物是式I所示化合物或其药学上可接受的盐:

式中A环、R1-R4、m和n如上文所述。

特别是,本发明人发现布奎那对冠状病毒,特别是2019新冠病毒 (2019-nCoV)、埃博拉病毒、布尼亚病毒、禽流感病毒H9N2具有非常显著的抑制活性。

布奎那(Brequinar,96187-53-0)最初受到关注是由于其对多种人类实体瘤的治疗作用,但由于其较严重的毒副作用,已在临床被叫停。该化合物还可作为强效免疫抑制剂并广泛用于治疗系统性红斑狼疮和结肠炎抑制器官移植排异反应。

此外,本领域技术人员基于本领域的公知常识和本发明的内容可以知晓,本发明化合物因其中所含的羧基而能形成盐或酯,进而可以形成前药。

病毒

本文所述的RNA病毒(RNA virus)是生物病毒的一种,它们的遗传物质由核糖核酸组成(RNA ribonucleic acid),通常核酸是单链的(ssRNA single-stranded RNA),也有双链的(dsRNA double-stranded RNA)。

本文所用的术语“冠状病毒(Coronaviruses)”是单股正链RNA病毒,属于巢病毒目(Nidovirales)冠状病毒科(Coronaviridae)正冠状病毒亚科 (Orthocoronavirinae)。该病毒可以感染人、蝙蝠、猪、老鼠、牛、马、山羊、猴子等多种物种。已知感染人的冠状病毒(HCoV)有7种,包括中东呼吸综合征相关冠状病毒(MERSr-CoV)和严重急性呼吸综合征相关冠状病毒 (SARSr-CoV)。

最新的冠状病毒为β属新型冠状病毒,WHO命名2019-nCoV,是第7个可感染人的冠状病毒。目前尚无针对冠状病毒的有效疫苗和治疗药物,主要是通过防范措施控制病毒扩散,密切监控疫情,对疑似病例进行隔离观察。目前冠状病毒尚无特效治疗方法,主要采取对症支持治疗。

在上述化合物的基础上,本发明进一步提供一种用于治疗病毒,特别是 RNA病毒,包括但不限于:冠状病毒,如严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERSCoV)和2019新冠病毒 (2019-nCoV),埃博拉病毒、布尼亚病毒、禽流感H9N2、H1N1、H7N9、沙粒病毒、狂犬病毒、丙型肝炎HCV、乙型肝炎HBV、人类免疫缺陷病毒HIV-1、单纯疱疹病毒HSV-1、HSV-2等感染的药物组合物,该组合物含有治疗有效量的本发明化合物或其药学上可接受的盐,以及药学上可接受的载体或赋形剂。在优选的实施方式中,本发明的化合物或药物组合物可以用于治疗严重急性呼吸道综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)和2019新型冠状病毒(2019-nCoV),埃博拉病毒、发热伴血小板减少综合征病毒(sftsv)、禽流感病毒 H9N2所致的感染。

本发明化合物的药学上可接受的盐的例子包括但不限于无机和有机酸盐,例如盐酸盐、氢溴酸盐、硫酸盐、柠檬酸盐、乳酸盐、酒石酸盐、马来酸盐、富马酸盐、扁桃酸盐和草酸盐;以及与碱例如钠羟基、三(羟基甲基)胺基甲烷 (TRIS,胺丁三醇)和N-甲基葡糖胺形成的无机和有机碱盐。

虽然每个人的需求各不相同,本领域技术人员可确定本发明药物组合物中每种活性成分的最佳剂量。一般情况下,本发明的化合物或其药学上可接受的盐,对哺乳动物每天口服给药,药量按照约0.0025到50毫克/公斤体重。但最好是每公斤口服给药约0.01到10毫克。例如,单位口服剂量可以包括约0.01到50 毫克,最好是约0.1到10毫克的本发明化合物。单位剂量可给予一次或多次,每天为一片或多片,每片含有约0.1到50毫克,合宜地约0.25到10毫克的本发明化合物或其溶剂化物。

本发明的药物组合物可被配制成适合各种给药途径的制剂形式,包括但不限于被配制成用于肠外,皮下,静脉,肌肉,腹腔内,透皮,口腔,鞘内,颅内,鼻腔或外用途径给药的形式,用于治疗肿瘤和其他疾病。给药量是有效地改善或消除一个或多个病症的药量。对于特定疾病的治疗,有效量是足以改善或以某些方式减轻与疾病有关的症状的药量。这样的药量可作为单一剂量施用,或者可依据有效的治疗方案给药。给药量也许可治愈疾病,但是给药通常是为了改善疾病的症状。一般需要反复给药来实现所需的症状改善。药的剂量将根据病人的年龄,健康与体重,并行治疗的种类,治疗的频率,以及所需治疗效益来决定。

本发明的药物制剂可以给予任何哺乳动物,只要他们能获得本发明化合物的治疗效果。在这些哺乳动物中最为重要的是人类。本发明的化合物或其药物组合物可用于治疗溃疡性结肠炎。

本发明的药物制剂可用已知的方式制造。例如,由传统的混合,制粒,制锭,溶解,或冷冻干燥过程制造。制造口服制剂时,可结合固体辅料和活性化合物,选择性研磨混合物。如果需要或必要时加入适量助剂后,加工颗粒混合物,获得片剂或锭剂芯。

合适的辅料特别是填料,例如糖类如乳糖或蔗糖,甘露醇或山梨醇;纤维素制剂或钙磷酸盐,例如磷酸三钙或磷酸氢钙;以及粘结剂,例如淀粉糊,包括玉米淀粉,小麦淀粉,大米淀粉,马铃薯淀粉,明胶,黄芪胶,甲基纤维素,羟丙基甲基纤维素,羧甲基纤维素钠,或聚乙烯吡咯烷酮。如果需要,可增加崩解剂,比如上面提到的淀粉,以及羧甲基淀粉,交联聚乙烯吡咯烷酮,琼脂,或褐藻酸或其盐,如海藻酸钠。辅助剂特别是流动调节剂和润滑剂,例如,硅石,滑石,硬脂酸盐类,如镁硬脂酸钙,硬脂酸或聚乙二醇。如果需要,可以給锭剂核芯提供可以抵抗胃液的合适包衣。为此,可以应用浓缩糖类溶液。此类溶液可以含有阿拉伯树胶,滑石,聚乙烯吡咯烷酮,聚乙二醇和/或二氧化钛,漆溶液和合适的有机溶剂或溶剂混合物。为了制备耐胃液的包衣,可使用适当的纤维素溶液,例如醋酸纤维素邻苯二甲酸或羟丙基甲基纤维素邻苯二甲酸。可向药片或锭剂核芯的包衣加入染料或色素。例如,用于识别或为了表征活性成分剂量的组合。

所述药物组合物的给药方法包括但不限于本领域周知的各种给药方法,可根据患者的实际情况加以确定。这些方法包括但不限于肠外、皮下、静脉、肌肉、腹腔内、透皮、口腔、鞘内、颅内、鼻腔或外用途径给药。

除了本发明的化合物外,本发明的药物组合物中还可以包含其它抗病毒药物,所述其它抗病毒药物可以选自洛匹那韦、利托那韦、利巴韦林、瑞德西韦、奥司他韦、达菲、拉尼米韦、帕拉米韦和氯喹(磷酸氯喹)中的一种或多种;优选洛匹那韦、利托那韦、利巴韦林、瑞德西韦和氯喹(磷酸氯喹)中的一种或多种。

本发明的优点

1.本发明首次发现了一系列具备广谱且优异的抗病毒活性,特别是对新出现的2019新冠病毒(2019-nCoV)、以及埃博拉病毒、布尼亚病毒、禽流感H9N2具有显著的抑制活性的药物;

2.这些药物对正常细胞的毒性较低;

3.这些药物为研究和开发新一代抗病毒药物奠定了物质基础,从而具备很重要的学术价值与现实意义。

以下结合具体实施案例对本发明的技术方案进一步描述,但以下实施例不构成对本发明的限制,所有依据本发明的原理和技术手段采用的各种施用方法,均属于本发明范围。

下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。

实施例1.本发明化合物对2019新冠病毒(2019-nCoV)、埃博拉病毒、禽流感病毒A/GuangZhou/99(H9N2)的抑制活性及其细胞毒性评价

材料与方法:布奎那市售可得,纯度98%以上,布奎那系列衍生物从化合物库购买。

检测方法和结果:

1、荧光定量PCR法检测抗2019新型冠状病毒(2019-nCoV)的药效实验:

参考文献(Wu Zhong,et al.Remdesivir and chloroquine effectivelyinhibit the recently emerged novel coronavirus(2019-nCoV)in vitro,CellResearch(2020),1–3, Zhou,P.,et al.A pneumonia outbreak associated with a newcoronavirus of probable bat origin.Nature 2020)方法,在Vero E6 cells(ATCC-1586)上以2019BetaCoV/Wuhan/WIV04/2019毒株)感染量MOI=0.03感染,同时加入不同稀释浓度的药物进行共培养,药物使用DMSO进行稀释,并以DMSO稀释液作为对照。感染液为DMEM+0.2%BSA,感染48小时后,收集细胞上清,通过病毒RNA提取试剂盒提取上清中的病毒RNA,通过实时定量反转录PCR(qRT-PCR)(Qiagen)检测细胞上清中病毒RNA的拷贝数,以此反映病毒的复制效率。通过Graphpad prism软件进行数据处理,求出化合物对病毒的半抑制浓度(IC50)。

2、Bright-Glo检测抗埃博拉病毒复制子药效实验

埃博拉病毒复制子系统(EBOV-NP、EBOV-VP35、EBOV-VP30、EBOV-MG、 EBOV-L)

由人间传染的病原微生物名录中可知,埃博拉病毒的危害程度分类为第一类,须在BSL-4生物安全等级的实验室中操作进行,为降低生物安全风险,我们选用埃博拉病毒复制子系统进行抗病毒药效测试,该系统可完全反映埃博拉病毒复制的效率,是抗埃博拉病毒药物筛选的常用系统(Jasenosky L D,Neumann G,Kawaoka Y. Minigenome-BasedReporter System Suitable for High-Throughput Screening of Compounds Able toInhibit Ebolavirus Replication and/or Transcription.Antimicrobial Agents&Chemotherapy.2010.54(7):3007)。埃博拉病毒复制子系统由重组表达T7 启动子和荧光素酶基因的迷你基因组表达质粒MG及4个分别表达L、NP、VP35、 VP30蛋白的辅助质粒组成,当该复制子系统经转染进入细胞复制后,T7 RNA聚合酶诱导T7启动子启动,进而驱动荧光素酶基因表达(Jasenosky L D,Neumann G, Kawaoka Y.Minigenome-Based ReporterSystem Suitable for High-Throughput Screening of Compounds Able to InhibitEbolavirus Replication and/or Transcription. Antimicrobial Agents&Chemotherapy.2010.54(7):3007)。复制子复制效率与荧光素酶基因表达量呈正相关,因此药物评价中可通过药物处理的细胞体系中荧光素酶基因表达量衡量复制子的复制效率,从而评价药物对埃博拉复制子的抑制程度。 Bright-Glo试剂(Promega)用于荧光素酶表达量的检测。铺板数量为2×104的BSR T7/5细胞(Generation of Bovine RespiratorySyncytial Virus(Brsv)from Cdna:Brsv Ns2 Is Not Essential for VirusReplication in Tissue Culture,and the Human Rsv Leader Region Acts as aFunctional Brsv Genome Promoter.Journal of Virology.1999.73(1): 251-259,稳定转染表达T7 RNA聚合酶基因,细胞培养液为MEM+10%FBS+1% L-Glutamine+2%MAA+1%P/S)于白底的96孔板中,待细胞长至80%满时使用。将埃博拉病毒五质粒复制体系准备如下:

转染:将上诉体系的质粒均溶于25μL Opti-MEM无血清培养基中,记为A管;将0.72μL的Lipo 2000溶于25μL Opti-MEM无血清培养基,记为B管。将A、B两管混匀记为C管,室温放置20min。50μL/孔,使用排枪加到处理好的96孔板中,(阴性对照使用不加EBOV-L质粒的体系)。800rpm振摇2小时,将化合物使用Opti-MEM 无血清培养基3倍稀释,8梯度,3复孔,每孔50μL加入振摇好的白底96孔板中,置于37℃、5%CO2培养箱内中孵育24小时后每孔加入50μL的Bright-Glo试剂,避光震荡3min混匀后静置10min。置于酶标仪读数,记录冷光(Luminescence)数值,通过 Graphpad prism软件进行数据处理,求出化合物对病毒的半抑制浓度IC50

3、Cell Titer-Glo检测抗可感染人的禽流感病毒药效实验

本实验基于Cell Titer-Glo试剂冷光检测方法,检测了化合物对可感染人的禽流感病毒A/GuangZhou/99(H9N2)的抑制活性。铺板数量为2×104的MDCK细胞于白底 96孔细胞培养板中,待细胞长成单层后,弃掉原培养液,同时加入50μL 20TCID50 的H9N2禽流感病毒悬液和50μL以倍比稀释后的药物溶液,每个浓度至少3个复孔,病毒感染液为DMEM+0.2%BSA+25mM HEPES+1μg/mL TPCK。同时设正常细胞对照组、病毒对照组。96孔细胞培养板置于37℃、5%CO2培养箱内中,每天在显微镜下观察有病毒引起的CPE。当病毒对照组出现75%-100%CPE时从培养箱中取出。每孔加入25μl的试剂,避光震荡3min混匀后静置10min。置于酶标仪读数,记录冷光(Luminescence)数值。通过Graphpad prism软件进行数据处理,求出化合物对病毒的半抑制浓度IC50

4、CellTiter-Glo检测药物毒性试验(CC50)

三磷酸腺苷(Adenosine Tri-Phosphate,ATP)参与生物体内多种酶促反应,是活细胞新陈代谢的一个指标,通过检测细胞体内ATP含量,可以检测出细胞的存活情况,CellTiter-Glo活细胞检测采用萤光素酶作检测物,发光过程中萤光素酶需要ATP 的参与,仅有代谢活性细胞的呼吸作用和其他生命活动过程可以产生ATP。向细胞培养基中加入等体积CellTiter-Glo试剂,测量冷光值,其光信号和体系中ATP量成正比,而ATP又与活细胞数正相关,由此求出细胞存活的情况。铺板数量为2×104 的细胞于白底96孔板中,待细胞长成单层后,弃掉原培养液,将化合物用感染液 (DMEM+0.2%BSA+25mM HEPES+1μg/mLTPCK)倍比稀释成不同浓度,加入96 孔板中;每孔100μl,每个浓度5个复孔,其中只加0.1mL感染液的细胞为正常对照组;置于37℃、5%CO2培养箱72小时后从培养箱中取出使之降至室温,每孔加入 25μl的CellTiter-Glo试剂,避光震荡3min混匀后静置10min,置于酶标仪读数,记录冷光(Luminescence)数值。通过Graphpad prism软件进行数据处理,求出化合物对细胞的半毒性浓度(CC50)和无毒界限浓度(MNCC);细胞存活率%=试验孔 Luminescence值/细胞对照孔Luminescence值×100%。

表1、化合物活性评价结果

表2、布奎那(化合物1)的抗病毒药效和安全性

讨论

以上结果可以看出,有些布奎那系列化合物对2019新冠病毒(2019-nCoV)、埃博拉病毒、禽流感病毒A/GuangZhou/99(H9N2)的具有很好的抑制活性,并且布奎那具备较好的安全性,具有很好的应用前景。特别是针对2019新冠病毒,有必要加快布奎那的应用研究。

实施例2、本发明化合物与其它抗病毒药物的联用的抗病毒活性评价

本发明人进一步测试了布奎那与现有技术的其它抗病毒药物,包括洛匹那韦、利托那韦、利巴韦林、瑞德西韦、奥司他韦、达菲、拉尼米韦、帕拉米韦和氯喹(磷酸氯喹)中的一种或多种联用情况。

结果发现,布奎那与这些抗病毒药物联用可以产生更佳的治疗效果;其中与洛匹那韦、利托那韦、利巴韦林、瑞德西韦和氯喹(磷酸氯喹)联用的治疗效果相对较佳。

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

29页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:盐酸安罗替尼在制备治疗多发性硬化药物中的用途

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!