Zero compensation method and device for electric power steering system EPS

文档序号:1386907 发布日期:2020-08-18 浏览:4次 中文

阅读说明:本技术 电动助力转向系统eps的零点补偿方法及装置 (Zero compensation method and device for electric power steering system EPS ) 是由 朱时斌 颜波 徐成 张放 李晓飞 张德兆 王肖 霍舒豪 于 2020-04-10 设计创作,主要内容包括:本发明提供了一种EPS的零点补偿方法及装置,方法包括:当车辆在理想路径上行驶时,获取每个控制周期下的横向距离值并得到每个控制周期的平滑处理后的横向距离值;根据车辆匀速行驶的速度和经过的控制周期数,计算车辆在每个控制周期的纵向距离值;线性拟合得到纵向和平滑处理后的横向距离值的线性关系;根据线性关系中的第一参数和预设的方向盘传动比,计算EPS的零点补偿角度,并对转向控制角度进行补偿;当最小残差小于预设的可接受偏差时,确定EPS的零点补偿角度通过验证并生成用于标识通过验证的标志位;将EPS的零点补偿角度写入标定文件。由此,减少了标定的时间,提高了控制算法的精确性和有效性。(The invention provides a zero compensation method and a zero compensation device for EPS, wherein the method comprises the following steps: when the vehicle runs on an ideal path, acquiring a transverse distance value under each control period and acquiring a transverse distance value after smoothing treatment of each control period; calculating the longitudinal distance value of the vehicle in each control period according to the speed of the vehicle running at a constant speed and the number of passed control periods; linear fitting is carried out to obtain a linear relation between longitudinal and transverse distance values after smoothing treatment; calculating a zero point compensation angle of the EPS according to a first parameter in the linear relation and a preset steering wheel transmission ratio, and compensating a steering control angle; when the minimum residual error is smaller than a preset acceptable deviation, determining that the zero compensation angle of the EPS passes verification and generating a flag bit for identifying passing verification; and writing the zero compensation angle of the EPS into a calibration file. Therefore, the calibration time is reduced, and the accuracy and the effectiveness of the control algorithm are improved.)

1. A zero point compensation method of an electric power steering system EPS, characterized by comprising:

when a vehicle runs on an ideal path, acquiring a transverse distance value under each control period, wherein the transverse distance is the distance between the midpoint of the vehicle and the ideal path;

smoothing the transverse distance values of a plurality of control periods to obtain a smoothed transverse distance value of each control period;

calculating the longitudinal distance value of the vehicle in each control period according to the speed of the vehicle running at a constant speed and the number of passed control periods;

according to the transverse distance value after the smoothing processing of each control period and the corresponding longitudinal distance value of each control period, linear fitting is carried out to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing processing;

calculating a zero point compensation angle of the EPS according to a first parameter in the linear relation and a preset steering wheel transmission ratio;

compensating the steering control angle according to the zero point compensation angle of the EPS to obtain a compensated steering control angle;

calculating a minimum residual error according to a path point of an actual driving path obtained by performing steering control at a compensated steering control angle and a path point on a preset automatic driving verification path during driving of the vehicle;

when the minimum residual error is smaller than a preset acceptable deviation, determining that the zero compensation angle of the EPS passes verification;

generating a flag bit for identifying that the zero compensation angle of the EPS passes the verification;

and writing the zero compensation angle of the EPS into a calibration file.

2. The method according to claim 1, wherein the obtaining a lateral distance value at each control cycle when the vehicle travels on the ideal path, the lateral distance being a distance from a midpoint of the vehicle to the ideal path specifically comprises:

determining a first path point and a second path point according to the middle point and the ideal path of the vehicle; the first path point and the second path point are the path points on the ideal path closest to the middle point;

multiplying the first direction vector by the second direction vector, and dividing by the distance between the first path point and the second path point to obtain a transverse deviation value; the first direction vector is a direction vector of the midpoint and the first path point, and the second direction vector is a direction vector of the midpoint and the second path point.

3. The method according to claim 1, wherein the smoothing the lateral distance values of the plurality of control periods to obtain the smoothed lateral distance value of each control period specifically comprises:

and performing sliding average smoothing according to a preset smoothing window to obtain the smoothed transverse distance value of each control period.

4. The method according to claim 1, wherein calculating the longitudinal distance value of the vehicle in each control cycle according to the speed of the vehicle at the constant speed and the number of control cycles passed comprises:

and multiplying the speed of the vehicle running at the constant speed by the sampling period, and then multiplying by the number of the passed control periods to obtain the longitudinal distance value of the vehicle in each control period.

5. The method according to claim 1, wherein the linear fitting to obtain the linear relationship between the longitudinal distance value and the smoothed transverse distance value according to the smoothed transverse distance value of each control cycle and the corresponding longitudinal distance value of each control cycle specifically comprises:

and fitting by using the longitudinal distance value of each control period as an abscissa and the transverse distance value after the smoothing processing of each control period as an ordinate through a least square method or a point-slope method to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing processing, wherein the linear relation is represented by a first parameter and a second parameter.

6. The method according to claim 1, wherein calculating the zero compensation angle of the EPS, based on the first parameter in the linear relationship and a preset steering wheel transmission ratio, specifically comprises:

and the tangent value of the first parameter is inverted and multiplied by the transmission ratio of the steering wheel to obtain the zero compensation angle of the EPS.

7. The method according to claim 1, wherein the calculating the minimum residual error specifically includes, according to a path point of an actual travel path obtained by performing steering control at a compensated steering control angle during vehicle travel and a path point on a preset section of the automatic driving verification path:

and subtracting the abscissa of each path point on the preset automatic driving verification path from the abscissa of each path point in the actual driving path, then squaring, subtracting the ordinate of the corresponding path point on the preset automatic driving verification path from the ordinate of the path point in the actual driving path, then squaring, and then summing to obtain the minimum residual error.

8. A zero point compensation device of EPS, characterized by comprising:

the vehicle control device comprises an acquisition unit, a control unit and a control unit, wherein the acquisition unit is used for acquiring a transverse distance value under each control period when a vehicle runs on an ideal path, and the transverse distance is the distance between the middle point of the vehicle and the ideal path;

the processing unit is used for smoothing the transverse distance values of a plurality of control periods to obtain a smoothed transverse distance value of each control period;

the calculating unit is also used for calculating the longitudinal distance value of the vehicle in each control period according to the speed of the vehicle running at a constant speed and the number of the passed control periods;

the fitting unit is used for linearly fitting to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing treatment according to the transverse distance value after the smoothing treatment of each control period and the corresponding longitudinal distance value of each control period;

the calculation unit is further used for calculating a zero compensation angle of the EPS according to the first parameter in the linear relation and a preset steering wheel transmission ratio;

the compensation unit is used for compensating the steering control angle according to the zero point compensation angle of the EPS to obtain a compensated steering control angle;

the calculation unit is also used for calculating the minimum residual error according to the path point of the actual running path obtained by carrying out steering control at the compensated steering control angle and the path point on the preset automatic driving verification path during the running of the vehicle;

a determining unit, configured to determine that a zero compensation angle of the EPS passes verification when the minimum residual is smaller than a preset acceptable deviation;

a generating unit configured to generate a flag bit indicating that a zero compensation angle of the EPS passes verification;

and the writing unit is used for writing the zero point compensation angle of the EPS into a calibration file.

9. An apparatus, comprising a memory for storing a program and a processor for performing the method of any of claims 1-7.

10. A computer-readable storage medium, characterized in that the computer-readable storage medium has stored thereon a computer program which, when being executed by a processor, carries out the method according to any one of claims 1-7.

Technical Field

The present invention relates to the field of data processing, and in particular, to a zero compensation method and device for an Electric Power Steering (EPS).

Background

With the rapid development of the unmanned technology in recent years, the unmanned algorithm takes great progress from the height and the effectiveness. In the development of the transverse control algorithm, the calibration method of the related parameters of the vehicle is complex or inaccurate, and the accuracy and the adaptive capacity of the design of the control algorithm are reduced, so that the calibration of the transverse control parameters of the vehicle is significant in the success and rationality of the design of the control algorithm.

Disclosure of Invention

The embodiment of the invention aims to provide a zero compensation method and device for EPS (electric power steering), so as to solve the problems that the accuracy is to be studied, the labor consumption is high, and the intelligence of a control algorithm cannot be embodied in the prior art.

In order to solve the above problem, in a first aspect, the present invention provides a zero point compensation method for an electric power steering system EPS, including:

when a vehicle runs on an ideal path, acquiring a transverse distance value under each control period, wherein the transverse distance is the distance between the midpoint of the vehicle and the ideal path;

smoothing the transverse distance values of a plurality of control periods to obtain a smoothed transverse distance value of each control period;

calculating the longitudinal distance value of the vehicle in each control period according to the speed of the vehicle running at a constant speed and the number of passed control periods;

according to the transverse distance value after the smoothing processing of each control period and the corresponding longitudinal distance value of each control period, linear fitting is carried out to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing processing;

calculating a zero point compensation angle of the EPS according to a first parameter in the linear relation and a preset steering wheel transmission ratio;

compensating the steering control angle according to the zero point compensation angle of the EPS to obtain a compensated steering control angle;

calculating a minimum residual error according to a path point of an actual driving path obtained by performing steering control at a compensated steering control angle and a path point on a preset automatic driving verification path during driving of the vehicle;

when the minimum residual error is smaller than a preset acceptable deviation, determining that the zero compensation angle of the EPS passes verification;

generating a flag bit for identifying that the zero compensation angle of the EPS passes the verification;

and writing the zero compensation angle of the EPS into a calibration file.

In a possible implementation manner, the obtaining a lateral distance value at each control cycle when the vehicle travels on the ideal path specifically includes:

determining a first path point and a second path point according to the middle point and the ideal path of the vehicle; the first path point and the second path point are the path points on the ideal path closest to the middle point;

multiplying the first direction vector by the second direction vector, and dividing by the distance between the first path point and the second path point to obtain a transverse deviation value; the first direction vector is a direction vector of the midpoint and the first path point, and the second direction vector is a direction vector of the midpoint and the second path point.

In a possible implementation manner, the smoothing the lateral distance values in the plurality of control periods to obtain the smoothed lateral distance value in each control period specifically includes:

and performing sliding average smoothing according to a preset smoothing window to obtain the smoothed transverse distance value of each control period.

In a possible implementation manner, the calculating a longitudinal distance value of the vehicle in each control cycle according to the speed of the vehicle at a constant speed and the number of elapsed control cycles specifically includes:

and multiplying the speed of the vehicle running at the constant speed by the sampling period, and then multiplying by the number of the passed control periods to obtain the longitudinal distance value of the vehicle in each control period.

In a possible implementation manner, the obtaining, by linear fitting, a linear relationship between the longitudinal distance value and the transverse distance value after the smoothing processing according to the transverse distance value after the smoothing processing in each control period and the corresponding longitudinal distance value in each control period specifically includes:

and fitting by using the longitudinal distance value of each control period as an abscissa and the transverse distance value after the smoothing processing of each control period as an ordinate through a least square method or a point-slope method to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing processing, wherein the linear relation is represented by a first parameter and a second parameter.

In a possible implementation manner, the calculating a zero point compensation angle of the EPS according to the first parameter in the linear relationship and a preset steering wheel transmission ratio specifically includes:

and the tangent value of the first parameter is inverted and multiplied by the transmission ratio of the steering wheel to obtain the zero compensation angle of the EPS.

In a possible implementation manner, the calculating the minimum residual error according to a path point of an actual driving path obtained by performing steering control at a compensated steering control angle during driving of the vehicle and a path point on a preset section of the automatic driving verification path specifically includes:

and subtracting the abscissa of each path point on the preset automatic driving verification path from the abscissa of each path point in the actual driving path, then squaring, subtracting the ordinate of the corresponding path point on the preset automatic driving verification path from the ordinate of the path point in the actual driving path, then squaring, and then summing to obtain the minimum residual error.

In a second aspect, the present invention provides a zero point compensation apparatus of an EPS, the apparatus including:

the vehicle control device comprises an acquisition unit, a control unit and a control unit, wherein the acquisition unit is used for acquiring a transverse distance value under each control period when a vehicle runs on an ideal path, and the transverse distance is the distance between the middle point of the vehicle and the ideal path;

the processing unit is used for smoothing the transverse distance values of a plurality of control periods to obtain a smoothed transverse distance value of each control period;

the calculating unit is also used for calculating the longitudinal distance value of the vehicle in each control period according to the speed of the vehicle running at a constant speed and the number of the passed control periods;

the fitting unit is used for linearly fitting to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing treatment according to the transverse distance value after the smoothing treatment of each control period and the corresponding longitudinal distance value of each control period;

the calculation unit is further used for calculating a zero compensation angle of the EPS according to the first parameter in the linear relation and a preset steering wheel transmission ratio;

the compensation unit is used for compensating the steering control angle according to the zero point compensation angle of the EPS to obtain a compensated steering control angle;

the calculation unit is also used for calculating the minimum residual error according to the path point of the actual running path obtained by carrying out steering control at the compensated steering control angle and the path point on the preset automatic driving verification path during the running of the vehicle;

a determining unit, configured to determine that a zero compensation angle of the EPS passes verification when the minimum residual is smaller than a preset acceptable deviation;

a generating unit configured to generate a flag bit indicating that a zero compensation angle of the EPS passes verification;

and the writing unit is used for writing the zero point compensation angle of the EPS into a calibration file.

In a third aspect, the invention provides an apparatus comprising a memory for storing a program and a processor for performing the method of any of the first aspects.

In a fourth aspect, the present invention provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method according to any one of the first aspect.

In a fifth aspect, the invention provides a computer readable storage medium having stored thereon a computer program which, when executed by a processor, performs the method of any of the first aspects.

By applying the zero compensation method and the zero compensation device for the EPS, provided by the embodiment II of the invention, zero compensation angles of EPS of different vehicles can be calibrated, personnel and time investment are reduced, the steering control angle of the vehicle is compensated through the compensated EPS zero compensation angle, the effectiveness of a control algorithm can be improved, and the feedforward mode is superior to the feedback mode in time and can compensate the steering control angle in advance.

Drawings

Fig. 1 is a schematic flow chart of an EPS zero compensation method according to an embodiment of the present invention;

fig. 2 is a schematic diagram of an actual driving path and an ideal path according to a first embodiment of the present invention;

FIG. 3 is a schematic diagram of a control period and a fitting of lateral distance values according to an embodiment of the present invention;

fig. 4 is a schematic structural diagram of an EPS zero compensation device according to a second embodiment of the present invention.

Detailed Description

The present application will be described in further detail with reference to the following drawings and examples. It is to be understood that the specific embodiments described herein are merely illustrative of the relevant invention and not restrictive of the invention. It should be further noted that, for the convenience of description, only the portions related to the related invention are shown in the drawings.

It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict. The present application will be described in detail below with reference to the embodiments with reference to the attached drawings.

Fig. 1 is a schematic flow chart of an EPS zero compensation method according to an embodiment of the present invention. The execution subject of the application is a terminal, a server or a processor with a computing function. The present application will be described by taking an example of applying the method to an unmanned Vehicle, and when the method is applied to an unmanned Vehicle, an execution subject of the method is an electric Vehicle Control Unit (AVCU), that is, a central processing Unit of the unmanned Vehicle corresponds to a "brain" of the unmanned Vehicle. As shown in fig. 1, the present application includes the steps of:

step 101, when the vehicle runs on the ideal path, acquiring a transverse distance value under each control period, wherein the transverse distance is the distance between the midpoint of the vehicle and the ideal path.

For a vehicle with a zero point compensation angle of the EPS to be calibrated, automatic driving data of the vehicle in a distance of an ideal path can be recorded, wherein the automatic driving data comprises upper-layer planned path information and positioning information. In the planning path information, a plurality of path points of the vehicle on an ideal path are planned, each path point comprises a speed and a direction, and for the positioning information, real-time vehicle position information of the vehicle can be included. The calculation of the lateral distance value of each control cycle of the vehicle can be carried out in real time through a plurality of path points on the ideal path and the real-time position of the vehicle, and the calculation is specifically as follows:

determining a first path point and a second path point according to the middle point and the ideal path of the vehicle; the first path point and the second path point are path points which are closest to the middle point on the ideal path;

multiplying the first direction vector by the second direction vector, and dividing by the distance between the first path point and the second path point to obtain a transverse deviation value; the first direction vector is a direction vector of the midpoint and the first path point, and the second direction vector is a direction vector of the midpoint and the second path point.

In one example, assuming that the position of the midpoint of the vehicle is point O, the position of the first path point on the ideal path is a, and the position of the second path point is B, one lateral distance value calculated is as follows:

wherein, before step 110, the method further comprises: and a step of judging whether the vehicle meets the calibration condition, and if the vehicle meets the calibration condition, executing the step 101.

The calibration condition is met, namely, the vehicle runs on a straight road in an automatic driving state, and upper nodes such as the sensing module, the positioning module and the path planning module are all normal. The normal standard may be that the initialization state is normal, and each node is in a non-failure state. In the fault state, the AVCU receives fault information sent by the node.

And 102, smoothing the transverse distance values of the plurality of control periods to obtain the smoothed transverse distance value of each control period.

Specifically, for the lateral distance value of each control period, there may be jitter in the lateral distance value due to other objective conditions, and therefore, the sliding average smoothing process may be performed according to a preset smoothing window to obtain the smoothed lateral distance value of each control period. The specific formula is as follows:

ds(1)=d(1)

ds(2)=(d(1)+d(2)+d(3))/3

ds(3)=(d(1)+d(2)+d(3)+d(4)+d(5))/5

.......

where N is a defined smoothing window, and the values of N include, but are not limited to, 5 and 7. By way of example and not limitation, taking N ═ 5 as an example, when the smoothed lateral distance value of the first control period is calculated, only one lateral distance value is provided, when the smoothed lateral distance value of the second control period is calculated, one lateral distance value is found in each of the control periods before and after the second control period, and the average value is divided by 3, the smoothed lateral distance value of the second control period can be obtained, when the smoothed lateral distance value of the third control period is calculated, the lateral distance values of two control periods before and after the third control period are taken to form a window of exactly 5 values, when the smoothed lateral distance value of the fourth control period is calculated, the lateral distance values of two control periods before and after the fourth control period are taken to form an average of 5 numerical values, and so on. The transverse distance values after the smoothing processing of the last two control periods have the same processing mode as the transverse distance values after the smoothing processing of the first and second offset control periods. Assuming that there are n control cycles of the smoothed lateral distance values, the specific calculation process is as follows:

ds(1)=d(1)

ds(2)=(d(1)+d(2)+d(3))/3

ds(3)=(d(1)+d(2)+d(3)+d(4)+d(5))/5

ds(4)=(d(2)+d(3)+d(4)+d(5)+d(6))/5

.......

ds(n-2)=(d(n-4)+d(n-3)+d(n-2)+d(n-1)+d(n))/5

ds(n-1)=(d(n-2)+d(n-1)+d(n))/3

ds(n)=d(n)

the final result is the smoothed lateral distance value for each control cycle. Here, the control period may be understood as follows, the control period i may be related to a sampling frequency, the sampling frequency is a frequency when the vehicle control unit performs the arithmetic processing, and when the sampling frequency is 20Hz, i ═ 1 represents a time that has elapsed for 0.05s, and i ═ 2 represents a time that has elapsed for 0.1 s.

And 103, calculating the longitudinal distance value of the vehicle in each control period according to the speed of the vehicle running at a constant speed and the number of the passed control periods.

Specifically, the premise of calibration is that the vehicle is assumed to move at a constant speed, and therefore, the longitudinal distance value of the vehicle in the current control period is obtained by multiplying the speed of the vehicle running at the constant speed by the number of the currently passed control periods. Specifically, the longitudinal distance value of each control cycle may be calculated according to the following formula.

x=v*t

Wherein, X is a longitudinal distance value, v is a speed of the vehicle running at a constant speed, t is time, and t is i 0.05.

Taking 1m/s as an example, the vertical distance value is 0.05m when i is 1, the vertical distance value is 0.1m when i is 2, and so on …, the vertical distance value corresponding to each control cycle can be calculated.

And 104, performing linear fitting according to the transverse distance value after the smoothing processing of each control period and the corresponding longitudinal distance value of each control period to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing processing.

Specifically, referring to fig. 2, in an ideal state, the vehicle may go straight, but the actual traveling path of the vehicle may be shifted from the ideal path due to the misalignment of the zero point of the EPS. And fitting by using the longitudinal distance value of each control period as an abscissa and the transverse distance value after smoothing processing of the corresponding control period as an ordinate through a least square method or a point-slope method to obtain a linear relation between the longitudinal distance value and the transverse distance value, wherein the linear relation can be represented by a first parameter and a second parameter.

The zero point compensation angle of the EPS is generally in a small angle state, fitting may be performed by a least square method or a point-slope method to obtain a linear relationship between the longitudinal distance value and the transverse distance value after the smoothing processing, see fig. 3, and after performing the linear fitting, the obtained first parameter is K and the second parameter is D. The relationship between the longitudinal distance value and the smoothed transverse distance value can be expressed by the following formula:

ds=K*X+D

X=v*t=v*i*0.05

wherein d issFor the smoothed lateral distance value, i is the control period, and v is the speed at which the vehicle is traveling.

And 105, calculating a zero compensation angle of the EPS according to the first parameter in the linear relation and a preset steering wheel transmission ratio.

Specifically, the linear relationship between the longitudinal distance value and the transverse distance value after the smoothing process is obtained through calculation, so that the zero point compensation angle of the EPS can be obtained by taking the inverse of the tangent value of the first parameter in the calculated linear relationship and multiplying the inverse by the steering wheel transmission ratio.

θ=tan-1(K)*k

And theta is a zero point compensation angle of the EPS, K is a first parameter, and K is a steering wheel transmission ratio.

Further, for the calculated zero point compensation angle of the EPS, it is necessary to verify whether the zero point compensation angle meets the requirement of rationality, and the specific manner is as follows:

and 106, compensating the steering control angle according to the zero point compensation angle of the EPS to obtain the compensated steering control angle.

Specifically, the steering control angle is subjected to feedforward compensation through the zero point compensation angle of the EPS, the compensated steering control angle is obtained, and the vehicle is subjected to steering control through the compensated steering control angle, and the actual driving path subjected to steering control through the compensated steering control angle is obtained.

And step 107, calculating the minimum residual error according to the path point of the actual driving path obtained by performing steering control at the compensated steering control angle during the driving of the vehicle and the path point on the preset automatic driving verification path.

Specifically, the actual driving path has a plurality of path points, and for all the path points, the abscissa of each path point in the preset automatic driving verification path may be subtracted according to the abscissa of each path point in the actual driving path, and then squared, and then added, and the ordinate of each path point in the preset automatic driving verification path is subtracted from the ordinate of each path point in the actual driving path, and then squared, and summed, so as to obtain the minimum residual value. The preset automatic driving verification path is a planned path planned after the vehicle performs zero point compensation of the EPS and performs path planning. And each actually-driven path point corresponds to each path point in the preset automatic driving verification path one by one through a control period.

The specific formula is as follows:

wherein p (i) is an abscissa of a path point actually traveled, n (i) is an ordinate of a path point actually traveled, x (i) is an abscissa of a path point of a preset automatic driving verification path, y (i) is an ordinate of a path point of a preset automatic driving verification path,Nfor the minimum residual value, i is the number of control cycles, and M is the total number of control cycles after the predetermined automatic driving verification path has been traveled.

And 108, when the minimum residual error is smaller than the preset acceptable deviation, determining that the zero compensation angle of the EPS passes the verification.

And step 109, generating a flag bit used for identifying that the zero compensation angle of the EPS passes the verification.

And step 110, writing the zero compensation angle of the EPS into a calibration file.

In particular, the acceptable deviation may be set whenNWhen the zero compensation angle of the EPS is less than or equal to the preset zero compensation angle, determining that the zero compensation angle of the EPS passes verification to generate a zone bit, and when the zero compensation angle is less than or equal to the preset zero compensation angle, determining that the zero compensation angle of the EPS passes verificationNIf yes, the calculated zero point compensation angle of the EPS is not verified, another zone bit different from the zone bit is generated, and meanwhile, the other zone bit is used for calculating the zero point compensation angle of the EPSAnd returning the vehicle to the starting point of the path planning, and calibrating the zero compensation angle of the EPS again.

And then, the zero point compensation angle of the EPS which passes the verification can be written into a calibration file, so that the zero point compensation angle of the EPS can be called at any time to compensate the steering control angle in the automatic driving process of the vehicle.

The flag bits that pass the verification may be "true" or "1", and the flag bits that do not pass the verification may be "false" or "0". For those that do not pass the verification, steps 101-108 may be continued until the verification passes.

By applying the zero compensation method of the EPS provided by the embodiment of the invention, zero compensation angles of EPS of different vehicles can be calibrated, personnel and time investment are reduced, the steering control angle of the vehicle is compensated through the compensated EPS zero compensation angle, the effectiveness of a control algorithm can be improved, and the feedforward mode is superior to the feedback mode in time.

Fig. 4 is a schematic structural diagram of an EPS zero-point compensation device according to a second embodiment of the present invention, where the schematic structural diagram of the EPS is applied to a zero-point compensation method of an EPS according to the first embodiment, and as shown in fig. 4, the EPS zero-point compensation device 400 includes: an acquisition unit 410, a processing unit 420, a fitting unit 430, a calculation unit 440, a compensation unit 450, a determination unit 460, a generation unit 470 and a writing unit 480.

The obtaining unit 410 is configured to obtain a lateral distance value in each control cycle when the vehicle travels on the ideal path, where the lateral distance is a distance between a midpoint of the vehicle and the ideal path;

the processing unit 420 is configured to perform smoothing processing on the lateral distance values in multiple control cycles to obtain a smoothed lateral distance value in each control cycle;

the calculating unit 440 is further configured to calculate a longitudinal distance value of the vehicle in each control period according to the speed of the vehicle at a constant speed and the number of elapsed control periods;

the fitting unit 430 is configured to perform linear fitting according to the smoothed transverse distance value of each control period and the corresponding longitudinal distance value of each control period to obtain a linear relationship between the longitudinal distance value and the smoothed transverse distance value;

the calculating unit 440 is further configured to calculate a zero compensation angle of the EPS according to the first parameter in the linear relationship and a preset steering wheel transmission ratio;

the compensation unit 450 is configured to compensate the steering control angle according to the zero point compensation angle of the EPS to obtain a compensated steering control angle;

the calculating unit 440 is further configured to calculate a minimum residual error according to a path point of an actual driving path obtained by performing steering control at the compensated steering control angle during driving of the vehicle and a path point on a preset automatic driving verification path;

the determining unit 460 is configured to determine that the zero compensation angle of the EPS passes verification when the minimum residual error is smaller than a preset acceptable deviation;

the generating unit 470 is configured to generate a flag bit for identifying that the zero compensation angle of the EPS passes the verification;

the writing unit 480 is configured to write the zero-point compensation angle of the EPS into a calibration file.

Further, the obtaining unit 410 is specifically configured to: determining a first path point and a second path point according to the middle point and the ideal path of the vehicle; the first path point and the second path point are path points which are closest to the middle point on the ideal path;

multiplying the first direction vector by the second direction vector, and dividing by the distance between the first path point and the second path point to obtain a transverse deviation value; the first direction vector is a direction vector of the midpoint and the first path point, and the second direction vector is a direction vector of the midpoint and the second path point.

Further, the processing unit 420 is specifically configured to: and performing sliding average smoothing according to a preset smoothing window to obtain the smoothed transverse distance value of each control period.

Further, the calculating unit 440 is specifically configured to: and multiplying the speed of the vehicle running at constant speed by the sampling period, and then multiplying by the number of the passed control periods to obtain the longitudinal distance value of the vehicle in each control period.

Further, the fitting unit 430 is specifically configured to:

and fitting by using the longitudinal distance value of each control period as an abscissa and the transverse distance value after the smoothing processing of each control period as an ordinate through a least square method or a point-slope method to obtain a linear relation between the longitudinal distance value and the transverse distance value after the smoothing processing, wherein the linear relation is represented by a first parameter and a second parameter.

Further, the calculating unit 440 is specifically configured to:

and the tangent value of the first parameter is inverted and multiplied by the transmission ratio of the steering wheel to obtain the zero compensation angle of the EPS.

Further, the calculating unit 440 is specifically configured to:

and subtracting the abscissa of each path point on the preset automatic driving verification path from the abscissa of each path point in the actual driving path, then squaring, subtracting the ordinate of the corresponding path point on the preset automatic driving verification path from the ordinate of the path point in the actual driving path, then squaring, and then summing to obtain the minimum residual error.

By applying the zero compensation device of the EPS provided by the embodiment II of the invention, the zero compensation angles of the EPS of different vehicles can be calibrated, the personnel and time investment is reduced, the steering control angle of the vehicle is compensated through the compensated EPS zero compensation angle, the effectiveness of a control algorithm can be improved, and the feedforward mode is superior to the feedback mode in time and can compensate the steering control angle in advance.

The third embodiment of the invention provides equipment, which comprises a memory and a processor, wherein the memory is used for storing programs, and the memory can be connected with the processor through a bus. The memory may be a non-volatile memory such as a hard disk drive and a flash memory, in which a software program and a device driver are stored. The software program is capable of performing various functions of the above-described methods provided by embodiments of the present invention; the device drivers may be network and interface drivers. The processor is used for executing a software program, and the software program can realize the method provided by the first embodiment of the invention when being executed.

A fourth embodiment of the present invention provides a computer program product including instructions, which, when the computer program product runs on a computer, causes the computer to execute the method provided in the first embodiment of the present invention.

The fifth embodiment of the present invention provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method provided in the first embodiment of the present invention is implemented.

Those of skill would further appreciate that the various illustrative components and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both, and that the various illustrative components and steps have been described above generally in terms of their functionality in order to clearly illustrate this interchangeability of hardware and software. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the implementation. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.

The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied in hardware, a software module executed by a processor, or a combination of the two. A software module may reside in Random Access Memory (RAM), memory, Read Only Memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.

The above embodiments are provided to further explain the objects, technical solutions and advantages of the present invention in detail, it should be understood that the above embodiments are merely exemplary embodiments of the present invention and are not intended to limit the scope of the present invention, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种电动转向系统的中位自学习方法、装置及存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类