一种基于三苯胺的衍生物及制备方法与应用

文档序号:1388084 发布日期:2020-08-18 浏览:36次 >En<

阅读说明:本技术 一种基于三苯胺的衍生物及制备方法与应用 (Derivative based on triphenylamine and preparation method and application thereof ) 是由 王利民 何玉龙 王峰 王桂峰 杜磊 覃志忠 田禾 徐杰 陈立荣 韩建伟 黄卓 于 2020-05-09 设计创作,主要内容包括:本发明公开了一种基于三苯胺的衍生物,具有以下结构通式:&lt;Image he="423" wi="470" file="DDA0002483713820000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;其中,R为氢、烷基、烷氧基、C4~C18芳基、C1~C18烷基取代或未取代的C2~C8杂环基;X为硝基、氰基或C1~C18烷氧基取代的C1~C16烯基、吡啶基、联吡啶基、三联吡啶基、羧基取代的C4~C18芳基肼烯基、硝基取代的C4~C18芳基肼烯基、烷基取代的硫基、烷氧基取代的硫基。本发明提供的基于三苯胺的衍生物作为硫化氢探针分子,发现其对硫化氢具有较高的灵敏度和较好的选择性,含该探针的溶液与硫化氢接触后,其在紫外光下的荧光与在自然光下的颜色均与接触前有明显的差异,能对硫化氢实现较好的识别。(The invention discloses a triphenylamine-based derivative, which has the following structural general formula: wherein R is hydrogen, alkyl, alkoxy, C4-C18 aryl, C1-C18 alkyl substituted or unsubstituted C2-C8 heterocyclic radical; x is nitro, cyano or C1-C18 alkoxy substituted C1-C16 alkenyl, pyridyl, bipyridyl, terpyridyl, carboxyl substituted C4-C18 arylhydrazinealkenyl, nitro substituted C4-C18 arylhydrazinealkenyl, alkyl substituted thio and alkoxy substituted thio. The triphenylamine-based derivative provided by the invention is used as a hydrogen sulfide probe molecule, and has higher sensitivity and better selectivity to hydrogen sulfide.)

一种基于三苯胺的衍生物及制备方法与应用

技术领域

本发明属于传感材料制备与应用技术领域,具体地说,涉及一种基于三苯胺(TPA)的衍生物及制备方法与应用。

背景技术

硫化氢(H2S)是一种众所周知的具有臭鸡蛋气味的有毒气体,生物体内高浓度的硫化氢会导致急性或慢性中毒。另一方面,低浓度的硫化氢的产生与代谢在机体的许多生物化学过程中又担负着极其重要的生理作用。内源性硫化氢能够通过多种不同的途径被合成,体内的硫化氢可以被各种酶转化成不同的形式,并完成对生命活动的调节。哺乳动物的内源性硫化氢主要通过特定的酶促反应来产生,其中,CBS(胱硫醚-β-合成酶)和CSE(胱硫醚-γ-裂解酶)主要通过利用5-磷酸吡哆醛作为辅助因子来参与产生硫化氢。CBS主要位于细胞质中,通过催化半胱氨酸和同型半胱氨酸缩合而产生硫化氢。而CSE主要通过水来促进半胱氨酸的α,β消除来产生硫化氢。除了通过酶促反应来合成硫化氢之外,还可以通过各种各样的非酶促反应来产生。例如,硫化氢能够通过单质硫与葡萄糖的氧化过程产生的还原性物质的进一步转化来生成。

研究表明,催化内源性硫化氢产生的酶分布在身体的各个组织中,这意味着硫化氢在生物体中具有重要的生理作用。硫化氢水平的不足与多种疾病的发生有关,例如阿尔茨海默症。研究表明,CBS功能异常患者表现出认知能力受损,CSE缺失的患者表现出高血压。而某些重要器官中硫化氢水平的过量可能是糖尿病等疾病发病的原因。硫化氢参与调节的各项生理过程包括血管舒张、气管平滑肌的收缩、抗氧化应激、调节胰岛的结构与功能等。此外,硫化氢是除一氧化碳和一氧化氮之外的第三种重要的参与维持细胞正常功能的信号分子,包括对细胞的保护以及诱导细胞凋亡等。

到目前为止,已经开发了一系列检测硫化氢含量的方法,包括高效液相色谱法、毛细管电泳法以及极谱法等仪器分析方法。这些方法对金属离子的检出限低,能识别到浓度很低的硫化氢,且能准确地定量硫化氢的含量。但这些方法通常都需要昂贵的仪器、专业的技术操作人员,且难以实现野外检测、实时监测等。荧光探针由于其灵敏度高、检出限低、特异性强以及成本低廉等优点在近些年受到了广泛的关注。通俗地讲,荧光探针分子是由发色基团和识别基团组成的,发色基团决定着荧光探针的发光性质以及灵敏度,识别基团决定着荧光探针的特异性和选择性。相对于传统的仪器分析方法,利用荧光探针来识别、检测硫化氢的存在以及含量具有灵敏度高、选择性强、响应时间短、成本低、可实时监测、操作简单以及可以实现户外操作等优点。目前,已开发出了一些用于检测硫化氢的荧光探针。三苯胺(TPA),一种常见的发光材料,由于具有聚集诱导发光特性、紫外吸收强、荧光发光性能容易被随意地调控且发射波长能出现在可见光区域、应用于生物体时对细胞的毒性较小等优点,因此三苯胺类化合物受到了研究者们的广泛关注,对于荧光探针分子而言,三苯胺是一种理想的发色基团。以三苯胺为原料制备出来的荧光探针具有价钱便宜、合成条件温和、简单、化学稳定性高、荧光量子产率高等优点。

发明内容

本发明的目的是提供一种基于三苯胺(TPA)的衍生物。

本发明的第二个目的是提供一种所述基于三苯胺(TPA)的衍生物的制备方法。

本发明的第三个目的是提供一种所述基于三苯胺(TPA)的衍生物作为荧光探针的应用。

本发明的第四个目的是提供一种所述基于三苯胺(TPA)的衍生物作为荧光探针在硫化氢检测材料中的应用。

本发明的第五个目的是提供一种所述基于三苯胺(TPA)的衍生物作为荧光探针在荧光传感器中的应用。

为了实现上述目的,本发明采用的技术方案如下:

本发明的第一个方面提供了一种基于三苯胺的衍生物,具有以下结构通式:

其中,R为氢、烷基、烷氧基、C4~C18芳基、C1~C18烷基取代或未取代的C2~C8杂环基;

X为硝基、氰基或C1~C18烷氧基取代的C2~C16烯基、吡啶基、联吡啶基、三联吡啶基、羧基取代的C4~C18芳基肼烯基、硝基取代的C4~C18芳基肼烯基、烷基取代的硫基、烷氧基取代的硫基。

较优选的,所述基于三苯胺的衍生物中,R为氢、C1~C18烷氧基、C1~C18烷基、苯基、联苯基、C1~C18烷氧基取代的苯基、C1~C18烷基取代的苯基、C1~C18烷氧基取代的联苯基、C1~C18烷基取代的联苯基、含有N、O、S中至少一个的C2~C8杂环基、C1~C18烷基取代的含有N、O、S中至少一个的C2~C8杂环基;

X为硝基取代C2~C16烯基、氰基取代C2~C18烯基、吡啶基、联吡啶基、三联吡啶基、羧基取代的苯肼烯基、硝基取代的苯肼烯基、C1~C18烷基取代的硫基、C1~C18烷氧基取代的硫基。

更优选的,所述基于三苯胺的衍生物中,R为氢、甲氧基(-OCH3)、乙氧基(-OCH2CH3)、2-甲基环氧丙烷基苯基联苯基

X为硝基乙烯基三联吡啶基对羧基苯肼烯基硫醚基

最优选的,所述基于三苯胺的衍生物是以下结构中的一种:

上面给出的通式的定义中,汇集所用术语一般定义如下:

术语烷基是指含1至18个碳原子的直链或支链饱和脂肪烃基团,例如:甲基、乙基、丙基、异丙基、丁基、叔丁基等。

术语烷氧基是指含1至18个碳原子的烷基末端连有氧原子的基团,例如:甲氧基、乙氧基、正丙氧基、异丙氧基等。

术语C4~C18芳基是指单、二或三环烃化合物,其中至少一个环为芳香环,每个环含最多7个碳原子,例如,苯基等。

术语C1~C18烷基取代的C2~C18杂环基;如2-甲基环氧乙烷基、2-甲基呋喃基等。

术语未取代的C2~C18杂环基如环氧乙烷基、呋喃基等。

术语硝基、氰基或C1~C18烷氧基取代的C2~C16烯基是指含2至16个碳原子的烯基上的至少一个氢被硝基、氰基或C1~C18烷氧基取代的基团,例如硝基乙烯基、氰基乙烯基、甲氧基乙烯基等。

术语羧基取代的C4~C18芳基肼烯基是指C4~C18芳基上的至少一个氢被羧基取代的肼烯基,例如对羧基苯肼烯基、邻羧基苯肼烯基等。

术语硝基取代的C4~C18芳基肼烯基是指C4~C18芳基上的至少一个氢被硝基取代的肼烯基,例如对硝基苯肼烯基、邻硝基苯肼烯基等。

术语烷基取代的硫基是指巯基上的氢被含1至18个碳原子的直链或支链饱和脂肪烃基团取代后的基团,例如甲硫基等。

术语烷氧基取代的硫基是指巯基上的氢被含1至18个碳原子的烷基末端连有氧原子的基团取代后的基团,例如甲氧基硫基等。

本发明的第二个方面提供了一种所述基于三苯胺的衍生物的制备方法,包括以下步骤:

将化合物0、铵盐与甲烷衍生物混合,化合物0、铵盐和甲烷衍生物的摩尔比为1:(2-8):(500-1000),温度为50~120℃的条件下反应0.1-10h,获得化合物1;

所述化合物0为4-二苯胺基苯甲醛(化合物0-1)、4-[双(4-甲氧基苯基)氨基]苯甲醛(化合物0-2)、4'-(二([1,1'-联苯]-4-基)氨基)-[1,1'-联苯]-4-甲醛(化合物0-3)。

所述铵盐为乙酸铵。

所述甲烷衍生物为硝基甲烷。

将化合物0溶于溶剂中,加入固态碱、液态碱与吡啶衍生物,化合物0、固态碱、液态碱与吡啶衍生物的摩尔比为1:(2-6):(3-8):(3-6),温度为0~80℃的条件下反应0.5-10h,获得化合物2;

所述化合物0为4-二苯胺基苯甲醛(化合物0-1)、4-[双(4-甲氧基苯基)氨基]苯甲醛(化合物0-2)、4'-(二([1,1'-联苯]-4-基)氨基)-[1,1'-联苯]-4-甲醛(化合物0-3)。

所述固态碱为氢氧化钾。

所述液态碱为氨水。

所述吡啶衍生物为2-乙酰基吡啶。

所述溶剂为无水乙醇。

将化合物0溶于溶剂中,加入苯甲酸衍生物,化合物0与苯甲酸衍生物的摩尔比为1:(1-5),温度为20~100℃的条件下反应1-12h,获得化合物3;

所述化合物0为4-二苯胺基苯甲醛(化合物0-1)、4-[双(4-甲氧基苯基)氨基]苯甲醛(化合物0-2)、4'-(二([1,1'-联苯]-4-基)氨基)-[1,1'-联苯]-4-甲醛(化合物0-3)。

所述苯甲酸衍生物为对羧基苯肼。

所述溶剂为无水乙醇。

本发明的第三个方面提供了一种所述基于三苯胺的衍生物作为荧光探针的应用。

本发明的第四个方面提供了一种所述基于三苯胺的衍生物作为荧光探针在硫化氢检测材料中的应用。

本发明的基于三苯胺的衍生物作为荧光探针对硫化氢具有高度灵敏性、对硫化氢具有特异性识别能力,对硫化氢的检测具有紫外光下荧光变化、自然光下颜色变化的双重检测识别功能。

本发明的第五个方面提供了一种所述基于三苯胺的衍生物作为荧光探针在荧光传感器中的应用。本发明中基于三苯胺的衍生物作为荧光探针使用时,以三苯胺为发色团,以硝基乙烯基为识别基团的硫化氢探针。

由于采用上述技术方案,本发明具有以下优点和有益效果:

本发明提供的基于三苯胺(TPA)的衍生物作为硫化氢传感材料,以三苯胺(TPA)为荧光生色团,通过简单的席夫碱反应将硝基乙烯基嫁接到三苯胺母体上作为识别基团。

本发明提供的基于三苯胺(TPA)的衍生物作为硫化氢探针,在各种常见的有机溶剂中具有良好的溶解性,可以方便地对不同介质中的硫化氢进行识别、传感。以三苯胺(TPA)为生色团的荧光探针具有优异的光物理性质,例如,较好的耐光性、较高的耐热性,较强的抗光漂白性。通过在探针分子中引入三苯胺生色团,使得荧光发射波长能够被轻易地调控,且三苯胺的聚集诱导发光特性有效地避免了聚集诱导荧光淬灭现象,扩大了其使用范围。使用本发明提供的基于三苯胺(TPA)的衍生物作为硫化氢探针分子,可以对各种媒介中的硫化氢进行快速、灵敏的定性识别以及定量检测。

本发明提供的基于三苯胺(TPA)的衍生物作为硫化氢探针分子,发现其对硫化氢具有较高的灵敏度和较好的选择性,含该探针的溶液与硫化氢接触后,其在紫外光下的荧光与在自然光下的颜色均与接触前有明显的差异,能对硫化氢实现较好的识别。并且该探针在各种常见有机溶剂中均具有较好的溶解性,这使其在实际中对硫化氢的识别与检测应用成为可能。

附图说明

图1是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中用硫氢化钠水溶液对其进行滴定的荧光滴定曲线示意图。

图2是化合物1-1的乙醇溶液、化合物1-1溶于乙醇中并暴露于硫氢化钠之后在365nm紫外灯下的照片示意图。

图3是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中暴露于不同的酸根离子之后的荧光光谱图。

图4是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中的归一化荧光强度值与硫氢化钠浓度的定量关系拟合曲线示意图。

图5是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中用硫氢化钠水溶液对其进行滴定的紫外-可见光吸收光谱滴定曲线示意图。

图6是化合物1-1的乙醇溶液、化合物1-1溶于乙醇中并暴露于硫氢化钠之后在自然光下的照片示意图。

图7是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中暴露于不同的酸根离子之后的紫外-可见光光谱图。

图8是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中的吸光度值与硫氢化钠浓度的定量关系式示意图。

具体实施方式

为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。

4-二苯胺基苯甲醛购自上海麦克林生化科技有限公司,25g,98%;硝基甲烷购自国药集团化学试剂有限公司,500mL,CP级;2-乙酰基吡啶购自上海麦克林生化科技有限公司,25g,98%;对羧基苯肼购自上海迈瑞尔化学技术有限公司,100g,98%;乙酸铵购自上海阿拉丁生化科技股份有限公司,100g,99.99%;无水硫酸镁购自上海麦克林生化科技有限公司,500g,99.5%;氢氧化钾购自上海阿拉丁生化科技股份有限公司,500g,95%;氨水购自上海麦克林生化科技有限公司,500mL,25%-28%;乙醇购自上海麦克林生化科技有限公司,10L,99.7%;硫氢化钠购自上海泰坦科技股份有限公司,25g,70%;4'-(二([1,1'-联苯]-4-基)氨基)-[1,1'-联苯]-4-甲醛购自河南利恩化工产品有限公司,1g,98%;4-[双(4-甲氧基苯基)氨基]苯甲醛购自上海阿拉丁生化科技股份有限公司,1g,98%;乙酸乙酯购自上海阿拉丁生化科技股份有限公司,25L,AR;石油醚购自上海阿拉丁生化科技股份有限公司,10L,AR;二氯甲烷购自上海凌峰化学试剂有限公司,25L,99.5%。

实施例1

向一根耐压管中加入4-二苯胺基苯甲醛(化合物0-1)(200mg,0.73mmol)、硝基甲烷(20mL,373.8mmol)、乙酸铵(281mg,3.65mmol),于80℃下搅拌反应2h,反应结束后,向混合物中加入50mL水,再用乙酸乙酯(50mL×3)萃取混合液,萃取结束后,有机相用过量无水硫酸镁干燥,减压旋蒸除去乙酸乙酯,利用硅胶柱层析法提纯粗产物,洗脱液组成为石油醚:二氯甲烷=1:8,得到143.1mg化合物1-1,产率为62%。1H NMR(400MHz,DMSO-d6):δ8.05-8.04(d,2H),7.72-7.69(d,2H),7.43-7.38(d,4H),7.23-7.18(d,6H),6.85-6.82(d,2H);13C(100MHz,DMSO-d6):δ151.43,146.13,139.87,135.45,132.09,130.42,126.43,125.60,122.54,119.78。

实施例2

化合物1-2的合成步骤与化合物1-1完全相同且各试剂的摩尔比与实施例1完全一致,仅仅是把4-二苯胺基苯甲醛(化合物0-1)替换为4-[双(4-甲氧基苯基)氨基]苯甲醛(化合物0-2)。化合物1-2的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ8.04-8.02(d,2H),7.73-7.71(d,2H),7.42-7.37(d,4H),7.24-7.17(d,6H),3.76(s,6H);13C(100MHz,DMSO-d6):δ151.68,146.21,139.74,138.13,137.49,132.13,129.27,125.83,124.16,115.48,55.41。

实施例3

化合物1-3的合成步骤与化合物1-1完全相同且各试剂的摩尔比与实施例1完全一致,仅仅是把4-二苯胺基苯甲醛(化合物0-1)替换为4'-(二([1,1'-联苯]-4-基)氨基)-[1,1'-联苯]-4-甲醛(化合物0-3)。化合物1-3的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ8.03-8.01(d,2H),7.78-7.73(d,6H),7.65-7.53(d,4H),7.47-7.43(d,6H),7.35-7.32(d,4H),7.15-7.12(d,2H);13C(100MHz,DMSO-d6):δ151.32,146.27,139.79,138.26,138.67,137.03,129.64,129.03,128.52,127.84,127.38,125.21,124.73,122.94。

实施例4

向一根耐压管中加入4-二苯胺基苯甲醛(化合物0-1)(200mg,0.73mmol)、2-乙酰基吡啶(353.3mg,2.92mmol)、氢氧化钾(135mg,95%,2.29mmol)、氨水(6mL,5mmol)、乙醇40mL,于室温下搅拌反应8h,反应结束后,减压旋蒸除去溶剂,利用硅胶柱层析法提纯目标化合物,洗脱液组成为石油醚:二氯甲烷=1:20,得到淡黄色固体198mg,产率为57%。化合物2-1的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ8.86-8.82(d,2H),8.78-8.75(d,2H),8.57-8.53(d,2H),7.76-7.74(d,2H),7.56-7.53(d,2H),7.38-7.32(d,2H),7.25-7.21(m,6H),7.10-7.02(m,6H);13C(100MHz,DMSO-d6):δ156.1,155.2,152.4,149.5,146.7,145.4,137.1,136.9,129.2,128.1,126.5,125.3,123.5,122.8,121.2,117.8。

实施例5

化合物2-2的合成步骤与化合物2-1完全相同且各试剂的摩尔比与实施例4完全一致,仅仅是把4-二苯胺基苯甲醛(化合物0-1)替换为4-[双(4-甲氧基苯基)氨基]苯甲醛(化合物0-2)。化合物2-2的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ8.83-8.79(d,2H),8.74-8.71(d,2H),8.52-8.48(d,2H),7.72-7.67(d,2H),7.56-7.52(d,2H),7.37-7.34(d,2H),7.24-7.17(m,6H),6.81-6.78(m,4H),3.83(s,6H);13C(100MHz,DMSO-d6):δ157.3,155.8,155.1,152.5,149.4,146.8,138.4,137.6,136.2,132.9,128.5,123.7,123.0,121.5,118.2,115.7,55.9。

实施例6

化合物2-3的合成步骤与化合物2-1完全相同且各试剂的摩尔比与实施例4完全一致,仅仅是把4-二苯胺基苯甲醛(化合物0-1)替换为4'-(二([1,1'-联苯]-4-基)氨基)-[1,1'-联苯]-4-甲醛(化合物0-3),化合物2-3的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ8.86-8.83(d,2H),8.72-8.68(d,2H),8.57-8.54(d,2H),7.76-7.72(m,6H),7.54-7.50(m,10H),7.42-7.38(m,8H),7.25-7.22(d,2H);13C(100MHz,DMSO-d6):δ153.7,152.5,151.9,148.8,146.1,144.2,140.3,138.5,137.3,136.4,129.6,129.2,128.6,128.1,127.8,127.2,123.7,123.1,121.6,118.4。

实施例7

向一根耐压管中加入4-二苯胺基苯甲醛(化合物0-1)(200mg,0.73mmol)、对羧基苯肼(111mg,0.73mmol)、乙醇30mL,于80℃下回流反应10h。反应结束后,过滤,滤饼用乙醇洗,干燥,得到棕色固体214mg,产率为72%。化合物3-1的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ12.54(s,1H),11.27(s,1H),8.26-8.24(d,2H),8.05-8.02(s,1H),7.71-7.65(m,4H),7.27-7.24(d,2H),7.26-7.23(m,4H),7.07-7.02(m,6H);13C(100MHz,DMSO-d6):δ167.4,149.2,148.4,145.6,139.5,131.2,129.6,128.7,128.3,126.2,125.1,124.6,120.9,115.4。

实施例8

化合物3-2的合成步骤与化合物3-1完全相同且各试剂的摩尔比与实施例7完全一致,仅仅是把4-二苯胺基苯甲醛(化合物0-1)替换为4-[双(4-甲氧基苯基)氨基]苯甲醛(化合物0-2),化合物3-2的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ12.41(s,1H),11.23(s,1H),8.25-8.23(d,2H),8.08-8.06(s,1H),7.73-7.62(m,4H),7.27-7.20(m,6H),6.78-6.75(m,4H),3.83-3.80(s,6H);13C(100MHz,DMSO-d6):δ167.9,157.4,148.9,148.2,139.5,138.3,132.4,131.2,128.7,128.1,125.3,120.7,116.7,115.2,54.8。

实施例9

化合物3-3的合成步骤与化合物3-1完全相同且各试剂的摩尔比与实施例7完全一致,仅仅是把4-二苯胺基苯甲醛(化合物0-1)替换为4'-(二([1,1'-联苯]-4-基)氨基)-[1,1'-联苯]-4-甲醛(化合物0-3)。化合物3-3的核磁数据如下:1H NMR(400MHz,DMSO-d6):δ12.47(s,1H),11.34(s,1H),8.27-8.25(d,2H),8.09-8.05(s,1H),7.76-7.70(m,6H),7.63-7.56(m,6H),7.48-7.42(m,6H),7.36-7.32(m,4H),7.27-7.24(d,2H);13C(100MHz,DMSO-d6):δ167.5,148.7,148.1,145.2,140.6,139.3,138.0,131.4,129.2,128.8,128.3,127.9,127.7,127.1,125.2,123.6,120.5,115.1。

应用实施例1

根据相关的文献和国际标准,本发明中使用硫氢化钠作为硫化氢标准源。

配制浓度为10μmol/L实施例1制备的化合物1-1的乙醇溶液,具体的操作步骤为:称取32mg化合物1-1置于一个100mL容量瓶中,用乙醇稀释至刻度,再用移液枪量取1mL置于另一个100mL容量瓶中,再用乙醇稀释至刻度,即得10μmol/L化合物1-1的乙醇溶液。

配制溶度为10mmol/L的硫氢化钠水溶液,具体的操作步骤为:称取80mg硫氢化钠置于一个100mL容量瓶中,用二次蒸馏水稀释至刻度,即得10mmol/L的硫氢化钠水溶液。

取2mL浓度为10μmol/L的化合物1-1的乙醇溶液置于一个石英比色皿中,用移液枪逐次向上述比色皿中滴加10mmol/L的硫氢化钠水溶液,每次滴加2μL。利用荧光分光光度计记录每次滴加完硫氢化钠水溶液后化合物1-1的乙醇溶液的荧光强度。结果表明,本发明中作为硫化氢探针的化合物1-1对硫氢化钠具有高度灵敏性,当比色皿里的硫氢化钠浓度仅达到130μmol/L时,荧光强度增强了近50倍,同时伴随着荧光发射波长的明显蓝移(从575nm蓝移至508nm处),如图1所示,图1是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中用硫氢化钠水溶液对其进行滴定的荧光滴定曲线示意图。在365nm的紫外灯下观察,接触硫氢化钠前后的探针溶液显示出巨大的视觉差异,如图2所示,图2是化合物1-1的乙醇溶液、化合物1-1溶于乙醇中并暴露于硫氢化钠之后在365nm紫外灯下的照片示意图。

应用实施例2

取2mL浓度为10μmol/L的化合物1-1的乙醇溶液置于一个石英比色皿中,分别向里面添加不同的钠盐,包括:亚硫酸氢钠、硫酸钠、硫氰酸钠、亚硝酸钠、碳酸氢钠、磷酸氢钠、磷酸二氢钠、亚氯酸钠、硝酸钠、碳酸钠、硫化钠、硫代硫酸钠、焦硫酸钠、硫氢化钠。结果表明,仅仅只有硫氢酸根离子能够使化合物1-1乙醇溶液的荧光显著增强且发生蓝移,而其他的酸根离子对化合物1-1乙醇溶液的荧光没有明显的影响。说明本发明的以化合物1-1作为荧光探针的分子结构对硫化氢具有特异性识别能力。

图3是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中暴露于不同的酸根离子之后的荧光光谱图。图中结果表明,仅仅只有硫氢酸根离子能够使本发明中的荧光探针的荧光强度发生显著的增强。说明本发明的以化合物1-1作为荧光探针的分子结构对硫化氢具有特异性识别能力。

应用实施例3

根据应用实施例1中探针分子1-1的归一化荧光滴定曲线可以发现,在低硫氢化钠浓度的情况下,探针分子1-1的乙醇溶液的归一化荧光强度值与硫氢化钠浓度呈现出一个良好的线性关系。根据Stern-Volmer方程和等式DL=3d/k,确定出探针分子1-1的乙醇溶液的归一化荧光强度值与检测体系中硫氢化钠浓度的定量关系(如图4所示,图4是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中的归一化荧光强度值与硫氢化钠浓度的定量关系拟合曲线示意图),如下所示:

归一化荧光强度值=0.00929x-0.14

x为检测体系中硫氢化钠的微摩尔浓度。

以归一化荧光强度值作为量度,探针分子1-1对硫氢化钠的检测限被确定为6.46×10-6mol/L。

应用实施例4

取2mL浓度为10μmol/L的化合物1-1的乙醇溶液置于一个石英比色皿中,用移液枪逐次向上述比色皿中滴加10mmol/L的硫氢化钠水溶液,每次滴加2μL。利用紫外-可见光吸收光谱仪记录每次滴加完硫氢化钠水溶液后化合物1-1的乙醇溶液的吸光度。结果表明,本发明中作为硫化氢探针的化合物1-1对硫氢化钠具有高度灵敏性,当比色皿里的硫氢化钠浓度仅仅为80μmol/L时,吸光度下降了近3.45倍,同时伴随着溶液的明显的颜色变化。图5是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中用硫氢化钠水溶液对其进行滴定的紫外-可见光吸收光谱滴定曲线示意图。在自然光下观察,接触硫氢化钠前后的探针溶液显示出巨大的视觉差异,如图6所示,图6是化合物1-1的乙醇溶液、化合物1-1溶于乙醇中并暴露于硫氢化钠之后在自然光下的照片示意图。

应用实施例5

取2mL浓度为10μmol/L的化合物1-1的乙醇溶液置于一个石英比色皿中,分别向里面添加不同的钠盐,包括:亚硫酸氢钠、硫酸钠、硫氰酸钠、亚硝酸钠、碳酸氢钠、磷酸氢钠、磷酸二氢钠、亚氯酸钠、硝酸钠、碳酸钠、硫化钠、硫代硫酸钠、焦硫酸钠、硫氢化钠。结果表明,仅仅只有硫氢酸根离子能够使化合物1-1乙醇溶液的吸光度明显减小,并伴随着明显的肉眼可辨的颜色变化,而其他的酸根离子对化合物1-1乙醇溶液的吸光度没有明显的影响。说明本发明的以化合物1-1作为荧光探针的分子结构对硫化氢具有特异性识别能力。

图7是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中暴露于不同的酸根离子之后的紫外-可见光光谱图。图中结果表明,仅仅只有硫氢酸根离子能够使本发明中的荧光探针的吸光度发生显著的减小。说明本发明的以化合物1-1作为荧光探针的分子结构对硫化氢具有特异性识别能力。

应用实施例6

根据应用实施例4中探针分子1-1的紫外-可见光滴定曲线可以发现,在低硫氢化钠浓度的情况下,探针分子1-1的乙醇溶液的吸光度与硫氢化钠浓度呈现出一个良好的线性关系。根据Stern-Volmer方程和等式DL=3d/k,确定出探针分子1-1的乙醇溶液的吸光度与检测体系中硫氢化钠浓度的定量关系(如图8所示,图8是以化合物1-1作为硫化氢探针,化合物1-1溶于乙醇中的吸光度值与硫氢化钠浓度的定量关系式示意图),如下所示:

吸光度=-0.007x+0.73

x为检测体系中硫氢化钠的微摩尔浓度。

以吸光度作为量度,探针分子1-1对硫氢化钠的检测限被确定为5.14×10-7mol/L。

本发明中所提及的硫化氢传感材料可以分别从荧光变化、颜色变化两个角度来实现对硫化氢的检测,具有工艺简单、造价低廉、使用方便、灵敏度高等优点。

本发明实施例制备的化合物1-1至1-3可用于H2S检测,化合物2-1至2-3可用于Zn2+检测,化合物3-1至3-3可用于NO2检测。

本发明中的用于检测H2S的荧光探针分子化合物1-1合成步骤简单,仅需一步反应即可得到探针分子1-1,大大地降低了生产成本,且其在H2S检测中表现出优异性能。

以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种可用于靶向PSMA的喹啉类化合物及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!