一种类地幔条件烧结聚晶金刚石复合片及其制备方法

文档序号:606383 发布日期:2021-05-07 浏览:11次 >En<

阅读说明:本技术 一种类地幔条件烧结聚晶金刚石复合片及其制备方法 (Sintered polycrystalline diamond compact under mantle-like condition and preparation method thereof ) 是由 刘宝昌 陈朝然 于 2020-12-22 设计创作,主要内容包括:本发明公开了一种类地幔条件烧结聚晶金刚石复合片及其制备方法,属于材料学领域,利用镀镍金刚石微粉、金刚石微粉,石墨微晶、肼类化合物、碳酸盐或硅酸盐混合配比制备聚晶金刚石复合片,本发明采用粒径为25μm~30μm的镀镍金刚石微粉为主粒径,优化金刚石微粉、石墨微晶、肼类化合物、碳酸盐及硅酸盐合理添加量,从最佳堆积密度最优配比出发,在类似地幔的高温高压条件下与硬质合金烧结,制得用于钻探领域的类地幔条件烧结聚晶金刚石复合片,提升聚晶金刚石复合片致密性、硬度、耐磨性以及热稳定性。(The invention discloses a kind of mantle condition sintering polycrystalline diamond compact and a preparation method thereof, belonging to the field of materials, wherein the polycrystalline diamond compact is prepared by mixing and proportioning nickel-plated diamond micro powder, graphite microcrystal, hydrazine compound, carbonate or silicate, the invention adopts the nickel-plated diamond micro powder with the particle size of 25-30 mu m as the main particle size, optimizes the reasonable addition amount of the diamond micro powder, the graphite microcrystal, the hydrazine compound, the carbonate and the silicate, and is sintered with hard alloy under the high-temperature and high-pressure condition similar to a mantle from the optimal proportioning of the optimal bulk density to prepare the kind of mantle condition sintering polycrystalline diamond compact for the drilling field, thereby improving the compactness, hardness, wear resistance and thermal stability of the polycrystalline diamond compact.)

一种类地幔条件烧结聚晶金刚石复合片及其制备方法

技术领域

本发明属于材料学领域,具体地,涉及一种类地幔条件烧结聚晶金刚石复合片及其制备方法。

背景技术

金刚石为钻石的矿物学名称,在工业上,钻石主要用于制造钻探用的钻头头和机械加工用的切磨工具,形状完整的还用于制造手饰等高档装饰品,其价格十分昂贵。钻石即天然单晶金刚石。

天然单晶金刚石起源于数十亿年前的地球地幔深处,根据含金刚石的岩石可以推断天然单晶金刚石主要来源于地幔120千米~200千米深、压力约4GPa~5GPa,温度900℃~1300℃的高温高压环境。天然单晶金刚石在生长过程中某些岩浆成分被捕获而成为金刚石的包裹体。在世界各地均有发现金刚石矿,因此天然单晶金刚石内部包裹体的成分是各不相同的,现已发现的天然单晶金刚石主要存在于金伯利岩或钾镁煌斑岩岩石中,物质环境为富含挥发性成分的C-H-O流体或熔体环境,包括固态二氧化碳、碳酸盐、硅酸盐、石墨、结晶水及其它矿物等。

肼类化合物易溶于水,溶于乙醇,微溶于氯仿和乙醚。加热易分解,其最终分解产物为CH4,NH3,CO2,H2O等,未引入其他杂质,而这些小分子化合物在天然单晶金刚石的包裹体中是常见的物质成分,这些小分子也被认为是地幔成分中常见的成分,因此肼类化合物是研究氮、氢、氧共存环境下合成天然单晶金刚石理想的添加剂,如吉林大学郭龙锁《肼类有机物掺杂金刚石大单晶的高温高压合成及退火研究》(详见中国知网,学位论文库,吉林大学,2019年),是利用肼类有机物通过高温高压制备人造单晶金刚石。而人造单晶金刚石生长速度慢、合成时间长(通常需要几十甚至几百个小时),制造成本超过同样大小的天然单晶金刚石,要批量生产大颗粒单晶金刚石依然相当困难,并且单晶金刚石各向异性,其耐热性、抗冲击韧性、耐磨性均低于聚晶金刚石及聚晶金刚石复合片,用于工具领域极其有限,不能满足刀具及钻探领域需要。

聚晶金刚石是由金刚石微粉在高温高压条件下烧结而成的。聚晶金刚石中的细小金刚石晶粒随机错乱排列,整体各项同性,无解理面,且具有高硬度,高强度,高耐磨性等优良品质,并且由于有金属粘接剂的存在,聚晶金刚石的韧性也有所提高。聚晶金刚石复合片则是由金刚石微粉与硬质合金衬底在超高压高温条件下合成的超硬复合材料,具有极高的硬度、抗冲击韧性、热稳定性及耐磨性。聚晶金刚石复合片具有金刚石的硬度和强度性以及硬质合金基体材料的韧性和可焊接性,是一种优良的切削工具与耐磨材料,广泛地用于机械加工刀具、石油与地质钻探等领域。

发明内容

本发明的目的在于提供一种类地幔条件烧结聚晶金刚石复合片及其制备方法,利用镀镍金刚石微粉、金刚石微粉,石墨微晶、肼类化合物、碳酸盐及硅酸盐混合配比制备聚晶金刚石复合片,提升其耐磨性、抗冲击韧性、热稳定性。

为达到上述目的,本发明采用如下的技术方案:

本发明提出了一种类地幔条件烧结聚晶金刚石复合片,该聚晶金刚石复合片包括聚晶金刚石层及硬质合金层,其特征在于:所述聚晶金刚石层由以下重量百分比的原料制成:镀镍金刚石微粉80wt%~85wt%、金刚石微粉5wt%~8wt%、石墨微晶1wt%~5wt%、肼类化合物0.1wt%~2wt%、碳酸盐1wt%~4wt%及硅酸盐1wt%~4wt%,并且上述各组分的重量百分数之和为100%;所述镀镍金刚石微粉的粒径为25μm~30μm;所述金刚石微粉的粒径2μm~15μm;所述肼类化合物为金刚烷甲酰肼、氰基乙酰肼、己二酸二酰肼、碳酰肼、辛酰肼中的一种或几种;所述碳酸盐的粒径为2μm~16μm;所述硅酸盐的粒径为2μm~16μm。

进一步,所述镀镍金刚石微粉是在常规金刚石微粉表面真空蒸镀镍形成镍镀层而得到的镀镍金刚石微粉,镍镀层厚度为100nm~200nm。

进一步,所述碳酸盐为碳酸钙、碳酸镁、碳酸锂中一种或几种的混合。

进一步,所述硅酸盐为硅酸钙、硅酸镁或者二者的混合物。

进一步,所述硬质合金层的原料为钨钴合金,硬质合金的含钴量为16%~18%,硬质合金的直径为13mm~19mm,厚度为4mm~18mm。

本发明还提出了一种制备上述类地幔条件烧结聚晶金刚石复合片的方法,其特征在于:该方法包括以下步骤:

步骤1、准备原料:

①对金刚石微粉表面进行处理,去除金刚石微粉表面杂质,备用;

②将硬质合金置于无水乙醇环境中超声处理30min,去除硬质合金表面的杂质,备用;

步骤2、按照重量百分比为镀镍金刚石微粉80wt%~85wt%、金刚石微粉5wt%~8wt%,石墨微晶1wt%~5wt%、肼类化合物0.1wt%~2wt%、碳酸盐1wt%~4wt%及硅酸盐1wt%~4wt%,分别称量上述各组分,加入球磨机,甲苯作为润滑剂,球磨充分混合后,停止球磨,待甲苯蒸发干,将已混好的粉料装入石墨杯中,然后将装有粉料的石墨杯置于真空炉内进行真空热处理,真空炉内最高温度为1100℃,真空度为3×10-3Pa,得到混合粉末,将得到的混合粉末与净化处理后的硬质合金,放入金属钼容器或金属钽容器,进行压片处理,得到复合材料;

步骤3、将复合材料随包裹在其外部的金属钼容器或金属钽容器置于氧化锆包裹容器,氧化锆包裹容器与叶腊石组装块组装,得到组装合成块,将组装合成块放在六面顶压机内进行预压,施加压力至2GPa~3GPa,保压5min~7min,得到预压组装块;将预压组装块置于真空烧结炉内并抽真空,抽真空至炉内气压在2×10-3Pa以下,将温度升至600℃保温3min~5min后停止抽真空,充入氢气与氮气的混合气体,且氢气和氮气以1:1的物质的量之比均匀混合,并保持1h,再抽真空至气压2×10-3Pa以下,得到复合组件;

步骤4、将复合组件再次置于六面顶压机中,经高温高压烧结,烧结后保温预定时间,得到烧结体;

其中,在烧结时,先以0.5GPa/min~1GPa/min的升压速率升压至烧结压力,烧结压力为6.1GPa~6.8GPa,40℃/s~60℃/s的升温速率升温进行高温烧结,且在1400℃~1480℃保温80s~110s后,40s~50s内升至烧结温度,烧结温度为1700℃~1800℃,烧结结束后以20℃/s~40℃/s的降温速率降至500℃~650℃,保温5min~8min后降至室温,以0.1GPa/min~0.8GPa/min降压速率降至常压;

步骤5、将步骤4中得到的烧结体由六面顶压机中取出,在喷砂机下去除表面包裹的容器,进行研磨抛光,即得到类地幔条件烧结聚晶金刚石复合片。

进一步,所述步骤1中,对金刚石微粉表面进行处理,去除金刚石微粉表面杂质的过程如下:首先将金刚石微粉和质量分数为35%的浓NaOH溶液,放置于烧杯中,金刚石微粉和质量分数为35%的浓NaOH溶液的体积比为1:2,在马弗炉中600℃保温45min,常温条件下冲洗至溶液中性;然后将王水与经浓NaOH溶液处理后的金刚石微粉放置磁力搅拌器加热80min;最后常温条件下冲洗至中性,干燥。

进一步,所述步骤2中,球磨采用球料比1:1,球磨机转速为400r/min~600r/min,在球磨过程中每隔2h添加一次甲苯,球磨8h后,停止球磨。

进一步,所述步骤2中,球磨采用的研磨体由直径为φ12mm的钨钴合金球和直径为φ6mm的钨钴合金球按照1:1的重量比混合构成。

通过上述设计方案,本发明可以带来如下有益效果:本发明提出的一种类地幔条件烧结聚晶金刚石复合片及其制备方法,采用粒径为25μm~30μm的镀镍金刚石微粉为主粒径,优化金刚石微粉、石墨微晶、肼类化合物、碳酸盐及硅酸盐合理添加量,从最佳堆积密度最优配比出发,高温高压条件下,制得用于钻探领域的聚晶金刚石复合片,提升聚晶金刚石复合片致密性、硬度、耐磨性以及热稳定性。与常规方法制备聚晶金刚石复合片相比,耐热性提升150℃~200℃,耐磨性提升25%~50%,抗冲击韧性提升65%~80%,是综合性能优异的聚晶金刚石复合片。在钻进过程中,高耐热性可承受超深地层恶劣的高温作业环境,高耐磨性在研磨性强地层增加进尺能力,高抗冲击性可减少聚晶金刚石复合片崩刃、脱层等现象,极大的延长了聚晶金刚石复合片的使用寿命,具有广泛的实用性和应用性。

具体实施方式

一种类地幔条件烧结聚晶金刚石复合片,该聚晶金刚石复合片包括聚晶金刚石层及硬质合金层,所述聚晶金刚石层由以下重量百分比的原料制成:镀镍金刚石微粉80wt%~85wt%、金刚石微粉5wt%~8wt%、石墨微晶1wt%~5wt%、肼类化合物0.1wt%~2wt%、碳酸盐1wt%~4wt%及硅酸盐1wt%~4wt%,并且上述各组分的重量百分数之和为100%;所述镀镍金刚石微粉的粒径为25μm~30μm,镀镍金刚石微粉是在常规金刚石微粉表面真空蒸镀镍形成镍镀层而得到的镀镍金刚石微粉,镍镀层厚度为100nm~200nm,一方面可以填补常规金刚石微粉存在的裂纹,提高常规金刚石微粉的抗压强度,另一方面可以促进石墨微晶变为金刚石;所述金刚石微粉的粒径2μm~15μm;所述肼类化合物为金刚烷甲酰肼、氰基乙酰肼、己二酸二酰肼、碳酰肼、辛酰肼中的一种或几种;所述碳酸盐为所述碳酸盐为碳酸钙、碳酸镁、碳酸锂中一种或几种的混合,碳酸盐的粒径为2μm~16μm;所述硅酸盐为硅酸钙、硅酸镁或者二者的混合物,硅酸盐的粒径为2μm~16μm;所述硬质合金层的原料为钨钴合金,硬质合金的含钴量为16%~18%,硬质合金的直径为13mm~19mm,厚度为4mm~18mm。

制备类地幔条件烧结聚晶金刚石复合片的方法,包括以下步骤:

步骤1、准备原料:

①对金刚石微粉表面进行处理,去除金刚石微粉表面杂质,备用;

具体过程如下:首先将金刚石微粉和质量分数为35%的浓NaOH溶液,放置于烧杯中,金刚石微粉和质量分数为35%的浓NaOH溶液的体积比为1:2,在马弗炉中600℃保温45min,常温条件下冲洗至溶液中性;然后将浓盐酸(HCl)和浓硝酸(HNO3)按体积比3:1组成的混合物即王水与经浓NaOH溶液处理后的金刚石微粉放置磁力搅拌器加热80min,最后常温条件下冲洗至中性,干燥后,备用;

②将硬质合金置于无水乙醇环境中超声处理30min,去除硬质合金表面的杂质,备用;

步骤2、按照重量百分比为镀镍金刚石微粉80wt%~85wt%、金刚石微粉5wt%~8wt%,石墨微晶1wt%~5wt%、肼类化合物0.1wt%~2wt%、碳酸盐1wt%~4wt%及硅酸盐1wt%~4wt%,分别称量上述各组分,加入球磨机,甲苯作为润滑剂,在球磨机内进行球磨混合,球磨采用球料比1:1,球磨机转速为400r/min~600r/min,使得原始粉料混合更均匀,在球磨过程中每隔2h添加一次甲苯,球磨8h后,停止球磨,待甲苯蒸发干,将已混好的粉料装入石墨杯中,然后将装有粉料的石墨杯置于真空炉内进行真空热处理,真空炉内最高温度为1100℃,真空度为3×10-3Pa,去除粉料表面吸附的氧、水蒸气等,并使其表面具有较好的反应活性,得到混合粉末,将得到的混合粉末与净化处理后的硬质合金,放入金属钼容器或金属钽容器,进行压片处理,得到复合材料;

其中,球磨采用的研磨体由直径为φ12mm的钨钴合金球和直径为φ6mm的钨钴合金球按照1:1的重量比混合构成;

步骤3、将复合材料随包裹在其外部的金属钼容器或金属钽容器置于氧化锆包裹容器,氧化锆包裹容器与叶腊石组装块组装,得到组装合成块,将组装合成块放在六面顶压机内进行预压,施加压力至2GPa~3GPa,保压5min~7min,得到预压组装块;将预压组装块置于真空烧结炉抽真空,抽真空至炉内气压在2×10-3Pa以下,将温度升至600℃保温3min~5min后停止抽真空,充入氢气与氮气的混合气体,且氢气和氮气以1:1的物质的量之比均匀混合,并保持1h,再抽真空至气压2×10-3Pa以下,得到复合组件;

其中,氧化锆包裹容器为中空圆柱体结构,其直径30mm,高度30mm,所述氧化锆包裹容器加工成0~3个贯穿孔,用于放置不同尺寸的硬质合金,合成不同尺寸的复合片,从而对所需对应尺寸复合片进行包裹;

组装合成块的结构为六面顶压机常用的组装结构:将氧化锆包裹容器置于盐管中,盐管上下两端分别用盐片封闭形成盐柱组装体,再将盐柱组装体放入石墨管中,石墨管的上下两端分别用石墨片封闭形成石墨柱组装体,最后将石墨柱组装体置于叶腊石组装块中并在石墨柱组装体上下两端分别依次设置钛片和导电钢圈;叶腊石组装块是采用叶腊石作为密封传压介质;本发明中采用氧化镁片及盐片置于氧化锆包裹容器中间,作为相对应复合片之间的隔断和保温作用;

步骤4、将复合组件再次置于六面顶压机中,经高温高压烧结,烧结后保温预定时间,得到烧结体;

其中,在烧结时,先以0.5GPa/min~1GPa/min的升压速率升压至烧结压力,烧结压力为6.1GPa~6.8GPa,40℃/s~60℃/s的升温速率升温进行高温烧结,且在1400℃~1480℃保温80s~110s后,40s~50s内升至烧结温度,烧结温度为1700℃~1800℃,烧结结束后以20℃/s~40℃/s的降温速率降至500℃~650℃,保温5min~8min后降至室温,以0.1GPa/min~0.8GPa/min降压速率降至常压;

步骤5、将步骤4中得到的烧结体由六面顶压机中取出,在喷砂机下去除表面包裹的容器,进行研磨抛光,即得到类地幔条件烧结聚晶金刚石复合片。

本发明利用肼类化合物、碳酸盐及硅酸盐营造类地幔熔体的环境,在六面顶压机高温高压的作用下,均匀分散在镀镍金刚石、金刚石间隙中的石墨微晶,在镀镍金刚石表面的镍以及硬质合金中钴的催化作用下,更好的形成聚晶金刚石,提升聚晶金刚石复合片的致密性、耐热性、耐磨性和抗冲击韧性等综合性能。

为使本发明实施例中的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整的表述。显然,所述实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本发明的保护范围。除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域具有一般技能的人士所理解的通常含义。

实施例1

一种类地幔条件烧结聚晶金刚石复合片的制备方法,包括如下步骤:

步骤1、准备原料:

按照重量百分比,镀镍金刚石微粉80wt%、金刚石微粉8wt%、石墨微晶5wt%、氰基乙酰肼0.1wt%、碳酸钙2.9wt%和硅酸镁4wt%,分别称量,镀镍金刚石微粉、金刚石微粉、石墨微晶、氰基乙酰肼、碳酸钙和硅酸镁组合成的混合材料质量为4g~8g,在球磨机内进行均匀混合,球磨采用球料比1:1,球磨介质为甲苯,用量为10mL,球磨机的转速为600r/min,在球磨过程中每隔2h添加一部分甲苯,球磨8h后停止球磨;打开球磨机后,待甲苯蒸发干,将已混好的粉料装入石墨杯中,然后将装有粉料的石墨杯置于真空炉内进行真空热处理,去除粉料表面吸附的氧、水蒸气等,并使其表面具有较好的反应活性,得到混合粉末,加热期间,真空炉内温度为1000℃,真空度为3×10-3Pa;称取真空热处理的混合粉末1g~4g和硬质合金放入金属钼容器中,然后将金属钼容器放入模具中进行预压成型,预压压力10MPa,保压时间60s,得到复合材料;

步骤2、高温高压组装烧结工艺:

将复合材料随包裹在其外部的金属钼容器置于氧化锆包裹容器,氧化锆包裹容器与叶腊石组装块组装,得到组装合成块,将组装合成块放在六面顶压机内进行预压,施加压力至2GPa~3GPa,保压5min~7min,得到预压组装块;将预压组装块置于真空烧结炉抽真空,抽真空至炉内气压在2×10-3Pa以下,将温度升至600℃保温3min后停止抽真空,充入氢气与氮气的混合气体,且氢气和氮气以1:1的物质的量之比均匀混合,并保持1h,再抽真空至气压2×10-3Pa以下,得到复合组件;

将复合组件置于6*1200MN的六面顶压机中,先以1GPa/min的升压速率升压至烧结压力6.1GPa,45℃/s的升温速率升温进行高温烧结,且在1450℃保温100s后,50s内升至烧结温度1700℃,烧结结束后以32℃/s降温降至650℃,保温6min后降至室温,以0.6GPa/min降压速率降至常压,在喷砂机下去除复合片样品外包裹的金属钼容器,得到聚晶金刚石复合片,在体视显微镜初步观察,烧结体表面烧结均匀,无坑点、裂纹等缺陷;

步骤3、将步骤2中得到的聚晶金刚石复合片进行研磨抛光,即得到类地幔条件烧结聚晶金刚石复合片;

检测本实施例中制备的类地幔条件烧结聚晶金刚石复合片性能指标:磨耗比39.2万,抗冲击韧性1212J;热稳定性初始氧化温度925℃。

实施例2

一种类地幔条件烧结聚晶金刚石复合片的制备方法,包括如下步骤:

步骤1、准备原料:

按照重量百分比镀镍金刚石微粉85wt%、金刚石微粉5wt%、石墨微晶3wt%、碳酰肼2wt%、碳酸锂1wt%、硅酸钙4wt%,分别称量,镀镍金刚石微粉、金刚石微粉、石墨微晶、碳酰肼、碳酸锂、硅酸钙组成的混合材料质量为4g~8g,在球磨机下进行均匀混合,球磨采用球料比1:1,球磨介质为甲苯,用量为10mL,球磨机的转速为600r/min,在球磨过程中每隔2h添加一部分甲苯,球磨8h后停止球磨;打开球磨机后,待甲苯蒸发干,将已混好的粉料装入石墨杯中,然后将装有粉料的石墨杯置于真空炉内进行真空热处理,去除粉料表面吸附的氧、水蒸气等,并使其表面具有较好的反应活性,得到混合粉末,加热期间,真空炉内温度为1100℃,真空度为3×10-3Pa;称取真空热处理的混合粉末1g~4g和硬质合金放入金属钼容器中,然后将金属钼容器放入模具中进行预压成型,预压压力10MPa,保压时间60s,得到复合材料;

步骤2、高温高压组装烧结工艺:

将复合材料随包裹在其外部的金属钼容器置于氧化锆包裹容器,氧化锆包裹容器与叶腊石组装块组装,得到组装合成块,将组装合成块放在六面顶压机内进行预压,施加压力至2GPa~3GPa,保压5min~7min,得到预压组装块;将预压组装块置于真空烧结炉抽真空,抽真空至炉内气压在2×10-3Pa以下,将温度升至600℃保温5min后停止抽真空,充入氢气与氮气的混合气体,且氢气和氮气以1:1的物质的量之比均匀混合,并保持1h,再抽真空至气压2×10-3Pa以下,得到复合组件;

将复合组件置于6*1200MN的六面顶压机,先以0.5GPa/min的升压速率升压至烧结压力6.2GPa,50℃/s的升温速率升温进行高温烧结,且在1400℃保温80s后,50s内升至烧结温度1750℃,烧结结束后以35℃/s降温降至600℃,保温6min后降至室温,以0.8GPa/min降压速率降至常压。在喷砂机下去除复合片样品外包裹的金属钼容器,得到聚晶金刚石复合片,在体视显微镜初步观察,烧结体表面烧结均匀,无坑点、裂纹等缺陷;

步骤3、将步骤2中得到的聚晶金刚石复合片进行研磨抛光,即得到类地幔条件烧结聚晶金刚石复合片;

检测本实施例中制备的类地幔条件烧结聚晶金刚石复合片性能指标:磨耗比41.6万,抗冲击韧性1324J;热稳定性初始氧化温度937℃。

实施例3

一种类地幔条件烧结聚晶金刚石复合片的制备方法,包括如下步骤:

步骤1、准备原料:

按照重量百分比镀镍金刚石微粉85wt%、金刚石微粉7.5wt%、石墨微晶2wt%、金刚烷甲酰肼0.5wt%、碳酸钙2.5wt%、硅酸钙2.5wt%,分别称量,镀镍金刚石微粉、金刚石微粉、石墨微晶、金刚烷甲酰肼、碳酸钙、硅酸钙组成的混合材料质量为4g~8g,在球磨机下进行均匀混合,球磨采用球料比1:1,球磨介质为甲苯,用量为10mL,球磨机的转速为600r/min,在球磨过程中每隔2h添加一部分甲苯,球磨8h后停止球磨;打开球磨机后,待甲苯蒸发干,将已混好的粉料装入石墨杯中,然后将装有粉料的石墨杯置于真空炉内进行真空热处理,去除粉料表面吸附的氧、水蒸气等,并使其表面具有较好的反应活性,得到混合粉末,加热期间,真空炉内温度为1100℃,真空度为3×10-3Pa;称取真空热处理的混合粉末1g~4g和硬质合金放入金属钼容器中,然后将金属钼容器放入模具中进行预压成型,预压压力10MPa,保压时间60s,得到复合材料;

步骤2、高温高压组装烧结工艺:

将复合材料随包裹在其外部的金属钼容器置于氧化锆包裹容器,氧化锆包裹容器与叶腊石组装块组装,得到组装合成块,将组装合成块放在六面顶压机内进行预压,施加压力至2GPa~3GPa,保压5min~7min,得到预压组装块;将预压组装块置于真空烧结炉抽真空,抽真空至炉内气压在2×10-3Pa以下,将温度升至600℃保温3min后停止抽真空,充入氢气与氮气的混合气体,且氢气和氮气以1:1的物质的量之比均匀混合,并保持1h,再抽真空至气压2×10-3Pa以下,得到复合组件;

将复合组件置于6*1200MN的六面顶压机,先以0.8GPa/min的升压速率升压至烧结压力6.3GPa,45℃/s的升温速率升温进行高温烧结,且在1420℃保温100s后,45s内升至烧结温度1780℃,烧结结束后以40℃/s降温降至550℃,保温7min后降至室温,以0.8GPa/min降压速率降至常压;在喷砂机下去除复合片样品外包裹的金属钼容器,得到聚晶金刚石复合片,在体视显微镜初步观察,烧结体表面烧结均匀,无坑点、裂纹等缺陷;

步骤3、将步骤2中得到的聚晶金刚石复合片进行研磨抛光,即得到所述类地幔条件烧结聚晶金刚石复合片;

检测本实施例中制备的复合片性能指标:磨耗比41.5万,抗冲击韧性1216J;热稳定性初始氧化温度942℃。

实施例4

一种类地幔条件烧结聚晶金刚石复合片的制备方法,包括如下步骤:

步骤1、准备原料:

按照重量百分比镀镍金刚石微粉83wt%、金刚石微粉7wt%、石墨微晶4wt%、己二酸二酰肼1wt%、碳酸镁4wt%、硅酸镁1wt%,分别称量,镀镍金刚石微粉、金刚石微粉、石墨微晶、己二酸二酰肼、碳酸镁、硅酸镁组成的混合材料质量为4g~8g,在球磨机下进行均匀混合,球磨采用球料比1:1,球磨介质为甲苯,用量为10mL,球磨机的转速为600r/min,在球磨过程中每隔2h添加一部分甲苯,球磨8h后停止球磨;打开球磨机后,待甲苯蒸发干,将已混好的粉料装入石墨杯中,然后将装有粉料的石墨杯置于真空炉内进行真空热处理,去除粉料表面吸附的氧、水蒸气等,并使其表面具有较好的反应活性,得到混合粉末,加热期间,真空炉内温度为1050℃,真空度为3×10-3Pa;称取真空热处理的混合粉末1g~4g和硬质合金放入金属钽容器中,然后将金属钽容器放入模具中进行预压成型,预压压力10MPa,保压时间60s,得到复合材料;

步骤2、高温高压组装烧结工艺:

将复合材料随包裹在其外部的金属钽容器置于氧化锆包裹容器,氧化锆包裹容器与叶腊石组装块组装,得到组装合成块,将组装合成块放在六面顶压机内进行预压,施加压力至2GPa~3GPa,保压5min~7min,得到预压组装块;将预压组装块置于真空烧结炉抽真空,抽真空至炉内气压在2×10-3Pa以下,将温度升至600℃保温3min后停止抽真空,充入氢气与氮气的混合气体,且氢气和氮气以1:1的物质的量之比均匀混合,并保持1h,再抽真空至气压2×10-3Pa以下,得到复合组件;

将复合组件置于6*1200MN的六面顶压机,先以1GPa/min的升压速率升压至烧结压力6.6GPa,55℃/s的升温速率升温进行高温烧结,且在1480℃保温110s后,45s内升至烧结温度1800℃,烧结结束后以30℃/s降温降至500℃,保温5min后降至室温,以0.1GPa/min降压速率降至常压;在喷砂机下去除复合片样品外包裹的金属钽容器,得到聚晶金刚石复合片,在体视显微镜初步观察,烧结体表面烧结均匀,无坑点、裂纹等缺陷;

步骤3、将步骤2中得到的聚晶金刚石复合片进行研磨抛光,即得到所述类地幔条件烧结聚晶金刚石复合片;

检测本实施例中制备复合片性能指标:磨耗比42.1万,抗冲击韧性1424J;热稳定性初始氧化温度928℃。

以上实施例1至4所制备得到的类地幔条件烧结聚晶金刚石复合片是在同等测试条件下进行耐磨性、抗冲击韧性、热稳定性测试,测定方法均采用本领域常规测试手段,采用JB/T3235-2013《人造金刚石烧结体磨耗比测定方法》进行耐磨性测试,采用落锤冲击的方法进行抗冲击韧性测试(即:1.5kg的冲锤在10cm高度自由落下,利用该能量冲击试样的棱角进行测试,以试样表面出现微观裂纹时,得到抗冲击韧性值)。热稳定性测试采用TG-DSC差热热重分析仪,设定条件为空气加热,升温速率20℃/min。

以上所述,仅是本发明的较佳实施示例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施示例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施示例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种铜基包覆粉末及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!