一种自修复固态电解质及其制备方法、应用

文档序号:702593 发布日期:2021-04-13 浏览:16次 >En<

阅读说明:本技术 一种自修复固态电解质及其制备方法、应用 (Self-repairing solid electrolyte and preparation method and application thereof ) 是由 徐林 左旭日 麦立强 于 2020-12-25 设计创作,主要内容包括:本发明提供了一种自修复固态电解质及其制备方法、应用,其制备方法具体步骤为:S1、将解离锂盐化合物与溶剂混合,超声得到解离液;S2、将自修复聚合物、交联剂、锂盐加入所述解离液中,混合均匀,升温反应获得自修复前驱体溶液;S3、将所述自修复前驱体溶液置于聚四氟乙烯板进行制膜,真空干燥,即得到自修复固态电解质。自修复固态电解质的制备过程简单、成本廉价易得、工艺绿色环保,且制得的自修复固态电解质具有稳定的自修复性能和优异的电化学性能。(The invention provides a self-repairing solid electrolyte and a preparation method and application thereof, wherein the preparation method comprises the following specific steps: s1, mixing the dissociated lithium salt compound with a solvent, and carrying out ultrasonic treatment to obtain a dissociation solution; s2, adding a self-repairing polymer, a cross-linking agent and lithium salt into the dissociation liquid, uniformly mixing, and heating to react to obtain a self-repairing precursor solution; s3, placing the self-repairing precursor solution on a polytetrafluoroethylene plate to prepare a membrane, and drying in vacuum to obtain the self-repairing solid electrolyte. The preparation process of the self-repairing solid electrolyte is simple, the cost is low, the self-repairing solid electrolyte is easy to obtain, the process is green and environment-friendly, and the prepared self-repairing solid electrolyte has stable self-repairing performance and excellent electrochemical performance.)

一种自修复固态电解质及其制备方法、应用

技术领域

本发明涉及固态电池技术领域,具体而言,涉及一种自修复固态电解质及其制备方法、应用。

背景技术

锂离子电池在便携式电子设备、电动汽车和储能电源系统等领域飞速发展,并逐渐占据了储能市场的主导地位。目前液态电解液以其高的离子电导率和优异的润湿性,在商业用锂离子电池电解质市场中占绝对的优势,但是液态电解液存在很多问题,包括电极与电解质的反应,不可避免的锂枝晶生长,不稳定的固态电解质膜(SEI),同时商业电解液的易燃性和锂枝晶刺穿隔膜等对电池的安全问题产生重要影响。近年来,具有更好的安全性、更高的能量密度和更宽的工作温度区间的固态电池成为研究热点。

然而固态电池仍然面临一些挑战,一方面在柔性可穿戴电子产品领域经常受到诸如撞击、弯曲、拉伸、折叠和扭曲等复杂变形而导致电解质材料内部出现损伤,另一方面电解质材料在循环过程中结构容易被破坏。这些结构损伤、破坏通常难以被检测和修复,使电池的使用寿命下降,甚至引发电池起火等安全问题。因此,如何在提高固态电池电化学性能的同时,使其具有承受体积变化和复杂变形,甚至是修复损伤的能力,是目前亟待解决的问题。

发明内容

有鉴于此,本发明旨在提出一种自修复固态电解质及其制备方法、应用,以解决固态电池在极端环境下能量储存和释放的稳定性差、可应用性不高的问题。

为达到上述目的,本发明的技术方案是这样实现的:一种自修复固态电解质的制备方法,具体步骤为:

S1、将解离锂盐化合物与溶剂混合,超声得到解离液;

S2、将自修复聚合物、交联剂、锂盐加入所述解离液中,混合均匀,升温反应获得自修复前驱体溶液;

S3、将所述自修复前驱体溶液置于聚四氟乙烯板进行制膜,真空干燥,即得到自修复固态电解质。

可选地,S1中,所述解离锂盐化合物包括聚乙二醇、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯、聚环氧乙烷、聚环氧丙烷、聚碳酸丙烯酯、聚(乙二醇)甲基醚甲基丙烯酸酯、聚碳酸乙烯酯和聚三亚甲基碳酸酯中的至少一种;

所述溶剂包括N-N二甲基甲酰胺、四氢呋喃、N-甲基吡咯烷酮、N-N二甲基甲酰胺、乙腈、丙酮和二甲基亚砜中的至少一种。

可选地,S2中,所述自修复聚合物为DL-α-硫辛酸;

所述锂盐包括三氟甲基磺酰亚胺锂、六氟磷酸锂、高氯酸锂、四氟硼酸锂、硝酸锂、二氟磷酸锂、二草酸硼酸锂、六氟砷酸锂、双氟磺酰亚胺锂和二氟草酸硼酸锂中的至少一种;

所述交联剂包括共价交联剂和非共价交联剂,所述共价交联剂包括1,3-二异丙烯基苯、含单烯烃离子液和含二烯烃离子液中的至少一种;所述非共价交联剂包括三价铁盐。

可选地,所述自修复固态电解质中,所述解离锂盐化合物的质量分数为10-70%,所述自修复聚合物的质量分数为40-80%,所述锂盐的质量分数为5-50%,所述共价交联剂的质量分数为4.99-20%,所述非共价交联剂的质量分数为0.01-1%。

可选地,S2中,所述升温反应的条件包括反应温度为50-90℃、反应时间为40min-12h。

可选地,S2中,所述将自修复聚合物、交联剂、锂盐加入所述解离液中,混合均匀,升温反应获得自修复前驱体溶液,具体包括步骤:

S21、将所述锂盐溶解在离子液中,搅拌均匀得到锂盐混合液;

S22、将所述自修复聚合物、所述锂盐混合液、所述交联剂加入所述解离液中,升温反应获得自修复前驱体溶液。

可选地,所述离子液包括1-烯丙基-3-乙烯基咪唑双三氟甲基磺酰亚胺盐、1-烯丙基-3-乙烯基咪唑四氟硼酸盐、1-烯丙基-3-乙烯基咪唑六氟磷酸盐、1-乙烯基-3-丁基咪唑双三氟甲基磺酰亚胺盐、1-乙烯基-3-丁基咪唑四氟硼酸盐、1-乙烯基-3-丁基咪唑六氟磷酸盐、1-烯丙基-3-甲基咪唑双三氟甲基磺酰亚胺盐、1-烯丙基-3-甲基咪唑四氟硼酸盐和1-烯丙基-3-甲基咪唑六氟磷酸盐中的至少一种。

相对于现有技术,本发明提供的自修复固态电解质的制备方法具有以下优势:

本发明利用自修复聚合物与解离锂盐化合物、锂盐进行混合,并通过简单的加热共聚得到自修复固态电解质,自修复固态电解质存在三种动态化学键:配位键、可逆共价键和氢键,这三种动态化学键的协同作用使得固态电解质兼具拉伸性能、室温自修复性能和可重复加工性能。此外该自修复固态电解质的制备过程简单、成本廉价易得、工艺绿色环保,具有重要的工业推广意义。

本发明另一目的在于提供一种自修复固态电解质,以解决固态电池在极端环境下能量储存和释放的稳定性差、可应用性不高的问题。

为达到上述目的,本发明的技术方案时这样实现的:

一种自修复固态电解质,采用上述所述的自修复固态电解质的制备方法制备,所述自修复固态电解质包括自修复聚合物、解离锂盐化合物、锂盐和交联剂,所述解离锂盐化合物和所述锂盐均匀分散在所述自修复固态电解质中。

可选地,所述自修复聚合物含有配位键、可逆共价键和氢键。

本发明第三目的提供自修复固态电解质的用途,以解决固态电池在极端环境下能量储存和释放的稳定性差、可应用性不高的问题。

为达到上述目的,本发明的技术方案时这样实现的:

所述自修复固态电解质应用于固态锂电池领域。

所述自修复固态电解质、自修复固态电解质的用途与上述所述的自修复固态电解质的制备方法相对于现有技术所具有的优势相同,在此不再赘述。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例1中自修复固态电解质的自修复的光学图片;

图2为本发明实施例2中自修复固态电解质的场发射扫描电镜示意图;

图3为本发明实施例2中自修复固态电解质的场发射扫描电镜示意图;

图4为本发明实施例1中自修复固态电解质在修复完成后的应力应变曲线图;

图5为本发明实施例1中自修复固态电解质的锂对称电池循环曲线;

图6本发明实施例所述的自修复固态电解质的制备方法的流程示意图。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

自修复是指材料能够通过对外界造成的不可见裂纹自动(或在施以外界刺激的情况下)进行修复,使裂纹基本愈合从而达到性能可以基本维持的目的。具有自修复能力的固态电解质可以保证固态锂电池在反复充放电过程中良好的电极-电解质界面接触以及连续的锂离子传输路径,同时阻止金属锂与固态电解质界面副反应、缓解电极材料体积膨胀产生的应力等界面兼容性问题。近年来科学家们利用自修复材料设计制备了具有自修复能力、能显著提高使用寿命和安全性的固态电解质,然而这些固态电解质有的出现了室温电导率低,力学强度较差的问题;有的对于水氧条件极为敏感,限制了固态电解质在水系电池领域的应用;还有的循环性能较差,多重氢键的引入影响聚合物电解质的电化学窗口稳定性。

为解决上述问题,结合图1、图6所示,本发明实施例提供了一种自修复固态电解质的制备方法,具体步骤为:

S1、将解离锂盐化合物与溶剂混合,超声得到解离液;

S2、将自修复聚合物、交联剂、锂盐加入解离液中,混合均匀,升温反应获得自修复前驱体溶液;

S3、将自修复前驱体溶液置于聚四氟乙烯板进行制膜,真空干燥,即得到自修复固态电解质。

具体地,步骤S1中,解离锂盐化合物包括聚乙二醇、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯、聚环氧乙烷、聚环氧丙烷、聚碳酸丙烯酯、聚(乙二醇)甲基醚甲基丙烯酸酯、聚碳酸乙烯酯和聚三亚甲基碳酸酯中的至少一种;溶剂包括N-N二甲基甲酰胺、四氢呋喃、N-甲基吡咯烷酮、N-N二甲基甲酰胺、乙腈、丙酮和二甲基亚砜中的至少一种。

步骤S2中,自修复聚合物为DL-α-硫辛酸;锂盐包括三氟甲基磺酰亚胺锂、六氟磷酸锂、高氯酸锂、四氟硼酸锂、硝酸锂、二氟磷酸锂、二草酸硼酸锂、六氟砷酸锂、双氟磺酰亚胺锂和二氟草酸硼酸锂中的至少一种。

交联剂包括共价交联剂和非共价交联剂,其中,共价交联剂为含二烯烃的一类化合物,包括1,3-二异丙烯基苯、含单烯烃离子液和含二烯烃离子液中的至少一种;非共价交联剂为参与配位络合作用的三价铁盐,如无水氯化铁。

其中,自修复固态电解质中,解离锂盐化合物的质量分数为10-70%,自修复聚合物的质量分数为40-80%,锂盐的质量分数为5-50%,共价交联剂的质量分数为4.99-20%,非共价交联剂的质量分数为0.01-1%。

其中,步骤S2中,自修复聚合物、交联剂、锂盐加入解离液中后,升温反应的条件包括反应温度为50-90℃、反应时间为40min-12h。

为提高反应程度,使自修复固态电解质具有更好的自修复能力,优选地,S2中,将自修复聚合物、交联剂、锂盐加入解离液中,混合均匀,升温反应获得自修复前驱体溶液,具体包括步骤:

S21、将锂盐溶解在离子液中,搅拌均匀得到锂盐混合液;

S22、将自修复聚合物、锂盐混合液、交联剂加入解离液中,升温反应获得自修复前驱体溶液。

其中,离子液包括1-烯丙基-3-乙烯基咪唑双三氟甲基磺酰亚胺盐、1-烯丙基-3-乙烯基咪唑四氟硼酸盐、1-烯丙基-3-乙烯基咪唑六氟磷酸盐、1-乙烯基-3-丁基咪唑双三氟甲基磺酰亚胺盐、1-乙烯基-3-丁基咪唑四氟硼酸盐、1-乙烯基-3-丁基咪唑六氟磷酸盐、1-烯丙基-3-甲基咪唑双三氟甲基磺酰亚胺盐、1-烯丙基-3-甲基咪唑四氟硼酸盐和1-烯丙基-3-甲基咪唑六氟磷酸盐中的至少一种。

通过先将锂盐溶解在离子液中得到锂盐混合液,然后与自修复聚合物、交联剂加入到解离液中,可以使电解质保持较高的电导率,提高电池的安全性。

本发明实施例提供的自修复固态电解质的制备方法,利用自修复聚合物与解离锂盐化合物、锂盐进行混合,并通过简单的加热共聚得到自修复固态电解质,这种自修复固态电解质通过自修复聚合物本身链段结构中的羧基和三价铁离子的配位作用,自修复聚合物本身结构中存在的二硫键作用,以及链段羧基和解离锂盐化合物的氢键作用三种动态键来实现自修复,因此自修复固态电解质存在三种动态化学键:配位键、可逆共价键和氢键,这三种动态化学键的协同作用使得固态电解质兼具拉伸性能、室温自修复性能和可重复加工性能。此外该自修复固态电解质的制备过程简单、成本廉价易得、工艺绿色环保,具有重要的工业推广意义。

本发明实施例还提供了一种自修复固态电解质,所述自修复固态电解质采用上述所述的自修复固态电解质的制备方法制备,自修复固态电解质包括自修复聚合物、解离锂盐化合物、锂盐和交联剂,解离锂盐化合物和锂盐均匀分散在自修复固态电解质中,自修复聚合物含有配位键、可逆共价键和氢键。

由此,配位键、可逆共价键和氢键,这三种动态化学键的协同作用使得固态电解质兼具拉伸性能、室温自修复性能和可重复加工性能,同时自修复固态电解质膜具有安全性,不可燃性,离子电导率高等优势,有望取代易燃的商业电解液,在最新的固态电池领域取得广泛应用。

本发明另一实施例还提供了所述自修复固态电解质的用途,自修复固态电解质可应用于固态锂电池领域,自修复复合固态电解质干基可弯折,具有柔性,且可自修复,能够抑制锂枝晶的生长,解决固态电池在极端环境下能量储存和释放的稳定性差、可应用性不高的问题,自修复固态电解质具有的自修复功能可以有效提高锂电池的使用寿命,具有广阔的应用前景。

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按质量计算。

实施例1

本实施例提供了一种自修复固态电解质的制备方法,具体步骤如下:

1)解离液的制备

将2g聚偏氟乙烯与N-N二甲基甲酰胺(分子筛处理)混合均匀得到解离液。

2)自修复前驱体溶液的制备

将4g的DL-α-硫辛酸和0.4g的1,3-二异丙烯基苯和0.2g聚乙二醇二丙烯酸酯加入到上述解离液中,在75℃反应搅拌10分钟后,再加入10mg的无水氯化铁,继续加热一段时间至无水氯化铁在溶液中完全溶解;冷却至室温后加入0.2g高氯酸锂,搅拌12h,得到自修复前驱体溶液。

3)自修复固态电解质的制备

将自修复前驱体溶液置于聚四氟乙烯模具混合均匀,将模具放置在70℃烘箱干燥24h,得到自修复固态电解质。

实施例2

本实施例与实施例1的区别在于,本实施例提供了一种自修复固态电解质的制备方法,具体步骤如下:

1)解离液的制备

将3g聚偏氟乙烯-六氟丙烯与乙腈混合均匀得到解离液。

2)自修复前驱体溶液的制备

将188mg的双三氟甲基磺酰亚胺锂溶解于812mg的1-烯丙基-3-乙烯基咪唑双三氟甲基磺酰亚胺盐中,搅拌2小时,锂盐混合液。

将6g的DL-α-硫辛酸和1g锂盐混合液加入到解离液中,均匀搅拌,在75℃加热10分钟后,用注射器注入1.2g 1,3-二异丙烯基苯和15mg的无水氯化铁,继续在75℃条件下加热30分钟,得到自修复前驱体溶液。

3)自修复固态电解质的制备

将自修复前驱体溶液置于聚四氟乙烯模具混合均匀,将模具放置在70℃烘箱干燥24h,得到自修复固态电解质。

为测试本发明实施例1、2制得的自修复固态电解质的性能,将自修复固态电解质组装成锂对称电池,并进行性能测试,具体测试条件为:

以对锂夹自修复固态电解质膜三明治结构组装锂对称电池,电流密度为0.05mA/cm2,充放电时间分别为1h,测试温度为27℃。

图1为实例1制备的自修复固态电解质在室温条件下切开后接触10分钟自修复图片,由图1可以看出,实施例1制备的自修复固态电解质在2.5h左右能完成自修复,自修复完成后的固态电解质具有优异的柔韧性和延展性。

图2为实例1制备的自修复固态电解质的场发射扫描电镜示意图,由图2可以看出,实施例1制备的自修复聚合物膜表面较为平滑,聚合物分散均匀。

图3为实例2制备的自修复固态电解质的场发射扫描电镜示意图,由图3可以看出,离子液在实例2制备的自修复固态电解质中能够有很好的分散。

图4为实施例1制备的自修复固态电解质在恢复损伤后固态电解质的力学性能测试图,由图4可以看出,其拉伸应力最高可达到0.24MPa。

图5为实施例1制备的自修复固态电解质组装的锂对称电池循环,由图5可以看出,循环500h后,实施例1制备的自修复固态电解质显示了较为稳定得极化电压。

综上测试表明,本发明实施例制备的自修复固态电解质具有较高的室温离子电导率,优异的拉伸性和弯折性,在明火条件下不易燃,具有很好的安全性,同时该自修复固态电解质具有稳定的自修复性能和优异的电化学性能。

实施例3

本实施例与实施例1的区别在于:

步骤2)中,将8g的DL-α-硫辛酸和0.24g的1,3-二异丙烯基苯和0.25g聚乙二醇二丙烯酸酯加入到上述溶液中,在75℃反应搅拌10分钟后,再加入1mg的无水氯化铁,继续加热一段时间至无水氯化铁在溶液中完全溶解;冷却至室温后加入0.5g高氯酸锂,搅拌12h,得到自修复前驱体溶液。也即,使得自修复固态电解质中,解离锂盐化合物的质量分数为10%,自修复聚合物的质量分数为80%,锂盐的质量分数为5%,共价交联剂的质量分数为4.99%,非共价交联剂的质量分数为0.01%。

其他参数与实施例1相同。

实施例4

本实施例与实施例2的区别在于:

步骤2)中,将406mg的双三氟甲基磺酰亚胺锂溶解于812mg的1-烯丙基-3-乙烯基咪唑双三氟甲基磺酰亚胺盐中,搅拌2小时,锂盐混合液;

将4g的DL-α-硫辛酸和1.21g锂盐混合液加入到解离液中,均匀搅拌,在75℃加热10分钟后,用注射器注入2.1g 1,3-二异丙烯基苯和0.1g的无水氯化铁,继续在75℃条件下加热30分钟,得到自修复前驱体溶液。也即,使得自修复固态电解质中,解离锂盐化合物的质量分数为70%,自修复聚合物的质量分数为40%,锂盐的质量分数为50%,共价交联剂的质量分数为21%,非共价交联剂的质量分数为1%。

其他参数与实施例1相同。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种低内阻全固态电池及制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类