Radar product reliability test method

文档序号:969932 发布日期:2020-11-03 浏览:2次 中文

阅读说明:本技术 一种雷达产品可靠性试验方法 (Radar product reliability test method ) 是由 雷东鹏 胡湘洪 时钟 黄永华 张蕊 孔叔钫 李劲 吴栋 于 2020-06-23 设计创作,主要内容包括:本发明公开了一种雷达产品可靠性试验方法,包括:试验系统组成确定步骤:对雷达产品进行特点分析,确定可靠性试验系统的组成;试验总体方案确定步骤:确定可靠性试验方案;根据试验方案确定可靠性试验的试验时间;确定可靠性试验的试验剖面;确定雷达产品的功能和性能的检测时机和检测项目;确定雷达产品的故障判据;可靠性试验实施步骤:按照所确定的试验时间、试验剖面进行可靠性试验,在所确定的检测时机,对雷达产品的功能和性能进行检测,并在每个检测时机完成检测后将雷达产品持续开发射规定时间;试验结果分析步骤,根据雷达产品的故障判据对雷达产品做出接收或拒收判决。本发明能够实现对雷达产品在可靠性试验中按照全工作状态进行考核。(The invention discloses a radar product reliability test method, which comprises the following steps: the test system composition determining step: analyzing the characteristics of the radar product and determining the composition of a reliability test system; determining the overall experimental scheme: determining a reliability test scheme; determining the test time of the reliability test according to the test scheme; determining a test section of a reliability test; determining the detection time and detection items of the functions and performances of the radar product; determining a fault criterion of the radar product; the reliability test implementation step comprises: performing reliability test according to the determined test time and the test section, detecting the function and performance of the radar product at the determined detection time, and continuously developing and transmitting the radar product for a set time after the detection is finished at each detection time; and a test result analysis step, namely, receiving or rejecting judgment is carried out on the radar product according to the fault criterion of the radar product. The invention can realize the check of the radar product in the reliability test according to the full working state.)

1. A radar product reliability test method is characterized by comprising the following steps:

the test system composition determining step: analyzing the characteristics of the radar product and determining the composition of a reliability test system;

determining the overall experimental scheme: determining a reliability test scheme; determining the test time of the reliability test according to the test scheme; determining a test section of a reliability test; determining the detection time and detection items of the functions and performances of the radar product; determining a fault criterion of the radar product;

the reliability test implementation step comprises: performing a reliability test according to the determined test time and the test section, wherein the functions and the performances of the radar product are detected according to the determined detection items at the determined detection time, and the radar product is continuously developed and emitted for a set time after the detection is completed at each detection time;

and a test result analysis step, namely, receiving or rejecting judgment is carried out on the radar product according to the fault criterion of the radar product.

2. The radar product reliability test method according to claim 1, wherein in the test system composition determining step, determining the composition of the reliability test system includes: the system comprises a comprehensive environment test box, a microwave darkroom, liquid cooling equipment and a detection monitoring room.

3. The radar product reliability test method according to claim 1 or 2, wherein the test profile comprises environmental stresses and working stresses, the environmental stresses comprise temperature stresses, humidity stresses and vibration stresses, and the working stresses comprise electrical stresses, development shot time and air-cooling/liquid-cooling environmental control conditions.

4. The radar product reliability test method according to any one of claims 1 to 3, wherein the detection item includes a transmission power in a case where the radar product is a pulse Doppler radar or a passive radar, the detection item includes a transmission power aperture product in a case where the radar product is an active radar, and the detection item includes a TR component function in a case where the radar product is a phased array radar.

5. The radar product reliability test method according to any one of claims 1 to 4, wherein the fault criterion of the radar product is: in the reliability test process, if the responsibility fault number of the radar product is less than or equal to 1, a receiving judgment is made, and if the responsibility fault number of the radar product is more than 1, a rejection judgment is made.

6. The radar product reliability testing method according to any one of claims 1 to 5, wherein the testing population scheme determining step further comprises: and (4) formulating a preventive maintenance strategy, and determining the maintenance content and the interval period of the radar product in the reliability test.

7. The radar product reliability test method according to any one of claims 1 to 6, wherein in the reliability test implementation step, the detection of the target search and tracking function is performed by opening transmission to a microwave darkroom, searching for an analog target source, and the remaining detection items are detected by a detection device.

8. The radar product reliability testing method according to any one of claims 1 to 7, wherein the reliability test implementation step further comprises: and performing test stress application detection before the test, functional performance detection before the test, fault treatment in the test and functional performance detection after the test.

9. The radar product reliability test method according to any one of claims 1 to 8, wherein in the reliability test implementation step, the development shot is continued for a prescribed time period of 30 minutes.

Technical Field

The invention belongs to the technical field of reliability tests, and particularly relates to a radar product reliability test method.

Background

The reliability test is widely applied to various military industry and civil electronic products at present, and mainly simulates the working state of the product in a real working environment by applying environmental stress and working stress to the product, so as to verify and evaluate the reliability level of the product. The radar product is complex in composition and structure and comprises a high-power transmitting assembly, and in a reliability test, the radar product is examined according to the full working state in the actual use process, so that the functions and the performance of the radar product are comprehensively detected, and the reliability level of the radar product is scientifically examined and evaluated.

The existing reliability test method is mainly provided for electronic products, and the reliability of the products is evaluated by simulating the environmental stress under the actual working condition. In a reliability test for radar products, the existing test method cannot perform examination according to a full working state in the test process, so that the radar products cannot perform key function and performance detection in the reliability test, and the reliability level of the radar products cannot be scientifically examined and evaluated.

Disclosure of Invention

The invention aims to provide a radar product reliability test method, which can solve the problem that the existing reliability test method cannot check radar products according to the full working state in the test process.

In order to achieve the above object, an embodiment of the present invention provides a radar product reliability testing method, including: the test system composition determining step: analyzing the characteristics of the radar product and determining the composition of a reliability test system; determining the overall experimental scheme: determining a reliability test scheme; determining the test time of the reliability test according to the test scheme; determining a test section of a reliability test; determining the detection time and detection items of the functions and performances of the radar product; determining a fault criterion of the radar product; the reliability test implementation step comprises: performing a reliability test according to the determined test time and the test section, wherein the functions and the performances of the radar product are detected according to the determined detection items at the determined detection time, and the radar product is continuously developed and emitted for a set time after the detection is completed at each detection time; and a test result analysis step, namely, receiving or rejecting judgment is carried out on the radar product according to the fault criterion of the radar product.

Preferably, in the test system composition determining step, determining the composition of the reliability test system includes: the system comprises a comprehensive environment test box, a microwave darkroom, liquid cooling equipment and a detection monitoring room.

Preferably, the test profile comprises environmental stress and working stress, the environmental stress comprises temperature stress, humidity stress and vibration stress, and the working stress comprises electric stress, development shooting time and air cooling/liquid cooling environmental control conditions.

Preferably, under the condition that the radar product is pulse Doppler radar and passive radar, the detection item includes transmitted power, under the condition that the radar product is active radar, the detection item includes transmitted power bore product, under the condition that the radar product is phased array radar, the detection item includes TR subassembly function.

Preferably, the failure criterion of the radar product is: in the reliability test process, if the responsibility fault number of the radar product is less than or equal to 1, a receiving judgment is made, and if the responsibility fault number of the radar product is more than 1, a rejection judgment is made.

Preferably, the trial population protocol determining step further comprises: and (4) formulating a preventive maintenance strategy, and determining the maintenance content and the interval period of the radar product in the reliability test.

Preferably, in the reliability test implementation step, the simulated target source is searched by emitting to a microwave darkroom to perform target search and tracking function detection, and the rest detection items are detected by the detection equipment.

Preferably, the reliability test implementation step further comprises: and performing test stress application detection before the test, functional performance detection before the test, fault treatment in the test and functional performance detection after the test.

Preferably, in the reliability test implementation step, the development injection is continued for a prescribed time of 30 minutes.

The reliability test method for the radar product can realize the starting of the emission work of the radar product in a reliability test according to the full working state and the detection of the key functions and performance of the radar product, so that the reliability level of the radar product can be scientifically checked and evaluated.

Drawings

In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings used in the description of the embodiments of the present invention will be briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts:

fig. 1 is a flowchart of a method for testing reliability of a radar product according to an embodiment of the present invention.

Fig. 2 is a schematic diagram of a test system of the radar product reliability test method according to the embodiment of the invention.

Fig. 3 is a flowchart of a test population scheme determination step in the radar product reliability test method according to the embodiment of the present invention.

Fig. 4 is a schematic test section of a radar product reliability test method according to an embodiment of the present invention.

Fig. 5 is a flowchart of a reliability test implementation step in the radar product reliability test method according to the embodiment of the present invention.

Detailed Description

The technical solutions of the embodiments of the present invention will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

The embodiment of the invention provides a radar product reliability test method. Fig. 1 is a flowchart of a method for testing reliability of a radar product according to an embodiment of the present invention. As shown in FIG. 1, the method for testing the reliability of the radar product of the embodiment of the invention comprises steps S1-S4.

Step S1 is a test system composition determination step in which the radar product is subjected to characteristic analysis to determine the composition of the reliability test system. Specifically, the functional use, structural composition, weight and size, installation position, software configuration, technical state and the like of the radar product are preliminarily analyzed, and the composition of the reliability test system is determined.

Fig. 2 is a schematic diagram of a test system of the radar product reliability test method according to the embodiment of the invention. In this embodiment, a phased array radar of a certain type is taken as an example, and the phased array radar is composed of an antenna unit, a power supply unit, a processing unit, a unit mounting rack, an isolating switch assembly mounting rack and a whole cable, and can realize functions of target detection, information sensing and the like. The radar product is arranged in a radar cabin, liquid cooling is adopted, and 1 radar product with the size of 6.8m can be selected according to the number, the weight and the size of parts3And (4) a comprehensive environment test chamber. The comprehensive environment test chamber comprises a temperature and humidity test chamber and a vibration table, and applies environmental stress. Environmental stresses include temperature stress, humidity stress, and vibrational stress. Except this combined environment test box, the reliability test system still includes the microwave darkroom, the liquid cooling equipment, detects the monitor, the shaking table, the liquid cooling equipment passes through the liquid cooling pipeline and supplies with the coolant liquid for the radar product, it is connected with the radar product through test cable to detect the monitor for hold check out test set, power, test system supervisory equipment etc. the radar product is placed on the shaking table, has designed test fixture according to shaking table mesa bolt hole bit data and the actual mounting means of radar. Microwave darkroom placementThe target simulator is connected with the detection monitoring room through a waveguide, wave absorbing equipment is arranged on the inner wall of the anechoic chamber, and a wave transmitting window is arranged on the upper surface of the comprehensive environment test box and used for transmitting microwaves to the anechoic chamber. In the test, the radar product is launched to a microwave darkroom, a simulated target source of a target simulator is searched, and the detection of the functions of target searching, target tracking and the like is carried out.

Step S2 is a trial population scheme determination step, which further includes steps S11 to S16, as shown in fig. 3.

In step S11, a test protocol is determined. Specifically, a statistical test scheme is selected according to related contents of GJB899A-2009 reliability identification and acceptance test, or a test scheme is formulated according to requirements of a main overall unit, and product characteristics, a shaping grade and test expenditure are comprehensively considered, for example, a 20% production formula risk test scheme should be selected for secondary products.

The minimum acceptable value of MTBF (mean time between failure) of the phase-control array radar is 300 hours, and the minimum acceptable value belongs to a secondary product, and a timing truncation test scheme 20-1 in GJB899A-2009 reliability identification and acceptance test can be adopted. In the whole reliability test process, if the number of responsible faults of the radar is less than or equal to 1, receiving judgment is made, and if the number of responsible faults of the radar is more than 1, rejection judgment is made.

In step S12, a trial time is determined. Specifically, the number of hours of the test is determined according to the test scheme determined in step S11, and then the number of hours of the test is calculated according to the number of radar products.

Taking the phased array radar of the above example as an example, when the number of test bench hours is 483, which is 1.61 times the minimum acceptable value of MTBF, the test is performed with 1 set of products, so the test time is 483 hours.

In step S13, a trial profile is determined. The test section comprises environmental stress and working stress, and the environmental stress is determined according to the measured value of the radar product mounting platform; the working stress comprises electric stress, development shooting time and air cooling/liquid cooling environment control conditions, low-temperature air is introduced into a low-temperature environment when a section is designed, and high-temperature air is introduced into a high-temperature environment. The method is characterized by comprising the following steps of determining the working mode requirement of a radar product in a test, and determining the high voltage/emission time and the power-on requirement.

Fig. 4 is a schematic test section of a radar product reliability test method according to an embodiment of the present invention. The test profile is for a phased array radar of the type described above as an example, and is made according to the technical protocols and product specifications for the radar product. The test section will be specifically described below.

1. The single test section is 1 cycle of a reliability test and is divided into a cold day stage and a hot day stage which are respectively 0-240 minutes and 240-480 minutes of section points, and the temperature stress applying time sequence and the vibration stress magnitude value of each stage are determined according to the measured data of the mounting platform where the radar is located;

2. the radar product needs direct current and alternating current power supply, the application time of the electrical stress is 30-240 minutes and 270-480 minutes of a section point, the values are specified in a table 1 according to a product technical protocol, and a group of electrical stress values are applied in each test cycle;

TABLE 1 electric stress magnitude table

3. According to the cooling conditions specified by the technical protocol of the radar product, the radar needs liquid cooling when in power-on work, the medium is 65# cooling liquid, the liquid supply temperature range of liquid cooling equipment is considered, the liquid supply temperature of 30-240 minutes of a section point in each cycle of a cold day is 15 ℃, and the flow rate is 28L/min; the temperature of liquid supply is 270-480 min at the section point of each cycle hot day stage, and the flow is 35L/min;

4. according to the regulations of the open emission of the radar, the open emission lasts for 30 minutes after the functional performance detection is finished at each cyclic section point of 30 minutes, 120 minutes, 270 minutes and 360 minutes, and 1 open emission is selected from 5 inherent open emission modes in turn each time.

In step S14, a detection timing is determined. Specifically, the time of typical stress is selected as the detection time for detecting the radar product according to the GJB899A-2009 reliability identification and acceptance test. The detection time of the reliability test should cover various stress combination conditions as much as possible and leave sufficient detection time. In the reliability test of the phased array radar of the type exemplified above, the detection point settings for each cycle during the test are shown in table 2.

TABLE 2 test detection point setting table

In step S15, the function and performance detection items are determined. According to the requirements of the radar product technical protocol and the product specification, the function and performance detection items are determined by combining the laboratory conditions and the detection equipment capacity, and the detection items should cover the function requirements and performance indexes specified in the radar product technical protocol and the product specification as far as possible. Except general communication and the key indexes aiming at radar products, the transmitting power of the pulse Doppler radar and the passive radar is required to be detected, the transmitting power aperture product of the active radar is required to be detected, and the TR component function test is required to be additionally carried out on the phased array radar.

In step S16, radar product failure criteria are determined. The method mainly comprises the steps of determining a fault criterion of a radar product by taking a qualified criterion of a function and performance detection project as a main criterion, and determining an allowable range of a TR component failure ratio for the phased array radar.

Specifically, according to the function and performance requirements of the radar product in actual work, when any one of the following states occurs in the reliability test, the fault is determined: 1. under the specified test conditions, the product was not able to work; 2. under the specified test conditions, the product function or performance detection result does not accord with the qualified criterion requirements of the corresponding detection items; 3. during the testing process, the mechanical, structural parts or components of the product become loose, break, fracture or damage. After the fault is judged, the fault type is further confirmed and is divided into an non-responsible fault and a responsible fault.

The following cases may be judged as non-responsible failures: 1. product failure due to mishandling; 2. product failure caused by a test system or detection equipment failure; 3. environmental conditions and operating conditions that exceed the operating limits of the product cause product failure; 4. and (4) repairing the fault introduced in the process.

Except that it can be judged as a non-responsible fault, all other faults are judged as responsible faults, such as: 1. failure due to design defects or poor manufacturing processes; 2. failure due to component failure due to a potential defect of the component; 3. failures due to software; 4. intermittent failure; 5. adjustment outside the normal range of the technical specification; 6. in the test process, the total number of the failures of the T/R channels of the antenna exceeds 5 percent, and the antenna is judged to be 1 responsibility fault; 7. replacement by the occurrence of a sign of failure (performance limit not exceeded) due to all non-dependent causes of failure during the test; 8. an abnormal situation that cannot be confirmed.

Preferably, the trial population protocol determining step may further comprise: and (5) formulating a preventive maintenance strategy. And determining the maintenance content and the interval period of the radar product in the reliability test according to the relevant content of the use maintenance instruction.

In the case of the phased array radar of the type described above as an example, the radar is regularly checked and maintained every 17 cycles in the reliability test according to the relevant contents of the radar use and maintenance instruction, as follows: 1. checking whether the cable connection between the units is loose; 2. checking whether fastening bolts of each unit are loosened; 3. and checking whether the liquid cooling pipeline is unblocked.

Step S3 is a reliability test implementation step. The step comprises various preparation works before the test, and the test is carried out according to the established test scheme.

In the reliability test of the phased array radar of the type exemplified above, the reliability test implementation step of step S3 is performed using the reliability test system shown in fig. 2, and as shown in fig. 5, the step further includes steps S31 to S35.

In step S31, test stress application detection before the test is performed. After the test fixture is fixed on the vibration table, the test system is tested according to the temperature, the humidity and the vibration stress of the test section shown in fig. 4, and the temperature, the humidity and the vibration value measured values of each point on the fixture are monitored to ensure that the test stress is applied correctly.

In step S32, a pre-test functional performance test is performed. After the radar is installed on a test fixture, functional performance detection before testing is carried out, and the test can be carried out only after the detection is normal.

In step S33, a reliability test is performed. Starting the test according to the overall test scheme established in the step S2, establishing an operation time table in the reliability test, determining the stress application time of each item in the test, and carrying out the reliability test. In the test, the simulated target source is searched by transmitting to a microwave darkroom to perform detection of functions such as target searching and tracking, and other detection items are detected by detection equipment. In the test, the measured values of the temperature, the humidity and the vibration values in the test system are monitored in real time, and the stress application is ensured to be correct in the whole test process.

In step S34, a failure processing is performed during the test, the radar fails when the reliability test of this time proceeds to the 18 th cycle, the failure is located at the test site, the failure is caused by a poor three-proofing paint painting process at a certain position, the failure is a responsible failure, and the test is continued after the product is repaired.

In step S35, the functional performance test after the test is performed. And after the accumulative effective test time of the radar reaches 483 hours, stopping applying the test stress, recovering to normal temperature, detecting the functional performance of the product after the test, and after the detection is normal, finishing the test.

Step S4 is a test result analyzing step. After the test is finished, according to the adopted statistical test scheme and the test condition, receiving or rejecting judgment is made on the radar product, and the reliability index evaluation result is given.

In the reliability test of the phased array radar of the type exemplified above, 1 responsibility fault occurs in total, and a reception decision is made for the radar according to the provision of the statistical test scheme.

The MTBF single-side confidence lower limit value calculation formula is as follows:

θL=θL(C’,ti1

in the formula [ theta ]L(C’,ti) The single-side confidence lower limit coefficient is the confidence coefficient when the confidence coefficient is C'; t is tiThe total test time of the product when the ith responsibility fault is received; theta1To produceMinimum acceptable value of product MTBF.

Can be obtained by calculation, the radar product thetaL300h (confidence coefficient 80%), namely the reliability level of the phased array radar meets the requirement that the minimum acceptable MTBF value is not less than 300 h.

In summary, the radar product reliability test method provided by the embodiment of the invention considers the characteristics of radar products on the basis of the traditional reliability test, designs and applies working stress to the radar products on the basis of the application of the environmental stress of the traditional reliability test, realizes the requirement of checking the radar products according to the full working state in the reliability test by accurately simulating the actual use state of the radar products, can scientifically check and evaluate the reliability level of the radar products, and is widely suitable for various radar products working in various emission forms.

While certain exemplary embodiments of the present invention have been described above by way of illustration only, it will be apparent to those of ordinary skill in the art that the described embodiments may be modified in various different ways without departing from the spirit and scope of the invention. Accordingly, the drawings and description are illustrative in nature and should not be construed as limiting the scope of the invention.

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于对称波数谱对消的复图像域运动目标检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!