转向控制系统

文档序号:1121154 发布日期:2020-10-02 浏览:6次 >En<

阅读说明:本技术 转向控制系统 (Steering control system ) 是由 守野哲也 古藏稔也 工藤佳夫 于 2020-03-24 设计创作,主要内容包括:本发明提供一种转向控制系统,其抑制在线控转向方式的车辆的转向角转向到转向末端时反作用力转矩骤变的情况。转向控制系统具备使车轮转弯的转弯装置、对方向盘赋予反作用力转矩的反作用力产生装置以及控制装置。控制装置包括基于表示转弯角相对于转向角的大小关系的第一特性来运算转弯角的转弯角运算部、和基于表示反作用力转矩相对于转向角的大小关系的第二特性来运算反作用力转矩的反作用力转矩运算部。转弯角运算部对车辆的状态从第一状态变化为第二状态的情况进行响应,使第一特性从与第一状态对应的特性向与第二状态对应的特性变化。另外,反作用力转矩运算部当在转向末端处车辆的状态从第一状态变化为第二状态时,将第二特性维持为与第一状态对应的特性。(The invention provides a steering control system which suppresses a sudden change in reaction torque when a steering angle of a steer-by-wire vehicle is steered to a steering end. The steering control system includes a turning device for turning a wheel, a reaction force generation device for applying a reaction force torque to a steering wheel, and a control device. The control device includes a turning angle calculation unit that calculates a turning angle based on a first characteristic indicating a magnitude relation of the turning angle with respect to a steering angle, and a reaction torque calculation unit that calculates a reaction torque based on a second characteristic indicating a magnitude relation of the reaction torque with respect to the steering angle. The turning angle calculation unit changes the first characteristic from a characteristic corresponding to the first state to a characteristic corresponding to the second state in response to a change in the state of the vehicle from the first state to the second state. Further, the reaction torque calculation unit maintains the second characteristic as a characteristic corresponding to the first state when the state of the vehicle changes from the first state to the second state at the steering end.)

转向控制系统

技术领域

本发明涉及转向控制系统,特别涉及线控转向方式的车辆的转向控制系统。

背景技术

在专利文献1中公开了与转向控制装置相关的技术,该转向控制装置执行抑制以转向角(日文:操舵角)欲超过上限值的方式操作方向盘(日文:ステアリング)的处理。在该技术中,在车轮的转弯角(日文:転舵角)或者方向盘的转向角之中的最大值的大小为限制开始阈值以上的情况下,操作反作用力致动器,使用于限制转向角的大小进一步变大的限制用反作用力急剧变大。

另外,在专利文献2中公开了与转向控制装置相关的技术,该转向控制装置能够调整表示转向盘(日文:ステアリングホイール)的转向角与转弯轮的转弯角的关系的舵角比(日文:舵角比)特性。在该技术中,作为舵角比特性,设定有行驶时舵角比特性和停车时舵角特性至少这两个特性。

现有技术文献

专利文献

专利文献1:日本特开2018-047784号公报

专利文献2:日本特开2015-123864号公报

发明内容

发明所要解决的课题

如专利文献2的技术那样,在根据车辆的状态变化来调整舵角比特性的结构中,能够实现与车辆的状态相应的舵角比特性的最佳化。然而,当舵角比特性变化时,与转弯角为最大的转弯末端对应的方向盘的转向角(转向末端)会变化。因此,若在如专利文献1的技术那样在转向末端反作用力转矩急剧增大的结构中应用专利文献2的技术,则在转向到转向末端的车辆的状态变化时,反作用力转矩骤变,驾驶员有可能对方向盘的转向感觉到不适感。这样,在能够根据车辆的状态来调整舵角比特性的线控转向方式的车辆的转向控制中,对于在转向末端车辆的状态变化时的反作用力转矩的控制存在课题。

本发明是鉴于上述那样的课题而完成的,其目的在于提供一种转向控制系统,其能够抑制在线控转向方式的车辆的转向角被转向至转向末端时反作用力转矩骤变的情况。

用于解决课题的手段

为了解决上述课题,第一技术方案应用于线控转向方式的车辆的转向控制系统。转向控制系统具备:转弯装置,所述转弯装置通过转弯电动机的工作使车辆的车轮转弯;反作用力产生装置,所述反作用力产生装置通过反作用力电动机的工作对车辆的方向盘赋予反作用力转矩;以及控制装置,所述控制装置基于车辆的状态,运算用于控制转弯装置的车轮的转弯角以及用于控制反作用力产生装置的反作用力转矩。控制装置构成为包括:转弯角运算部,所述转弯角运算部基于第一特性运算与转向角相应的转弯角;以及反作用力转矩运算部,所述反作用力转矩运算部基于第二特性运算与转向角相应的反作用力转矩。在此,第一特性是表示转弯角相对于方向盘的转向角的大小关系的特性,第二特性是表示反作用力转矩相对于转向角的大小关系的特性。能够根据车辆的状态来调整第一特性以及第二特性。转弯角运算部构成为,对车辆的状态从第一状态变化为第二状态的情况进行响应,使第一特性从与第一状态对应的特性向与第二状态对应的特性变化。并且,反作用力转矩运算部构成为,在转向角被转向到与转弯角的上限对应的转向末端的情况下,在车辆的状态从第一状态变化为第二状态时,将第二特性维持为与第一状态对应的特性。

第二技术方案为,在第一技术方案中,还具备以下特征。

反作用力转矩运算部构成为,当在转向末端处车辆的状态从第一状态变化为第二状态之后,在第三状态下转向角返回至规定转向角时,使第二特性从与第一状态对应的特性向与第三状态对应的特性变化。

为了解决上述的课题,第三技术方案应用于线控转向方式的车辆的转向控制系统。转向控制系统具备:转弯装置,所述转弯装置通过转弯电动机的工作使车辆的车轮转弯;反作用力产生装置,所述反作用力产生装置通过反作用力电动机的工作对车辆的方向盘赋予反作用力转矩;以及控制装置,所述控制装置基于车辆的状态,运算用于控制转弯装置的车轮的转弯角以及用于控制反作用力产生装置的反作用力转矩。控制装置构成为包括:转弯角运算部,所述转弯角运算部基于第一特性运算与转向角相应的转弯角;以及反作用力转矩运算部,所述反作用力转矩运算部基于第二特性运算与转向角相应的反作用力转矩。在此,第一特性是表示转弯角相对于方向盘的转向角的大小关系的特性,第二特性是表示反作用力转矩相对于转向角的大小关系的特性。能够根据车辆的状态来调整第一特性以及第二特性。转弯角运算部构成为,对车辆的状态从第一状态变化为第二状态的情况进行响应,使第一特性从与第一状态对应的特性向与第二状态对应的特性变化。并且,反作用力转矩运算部构成为,在转向角被转向到与转弯角的上限对应的转向末端的情况下,在车辆的状态从第一状态变化为第二状态时,通过比车辆的状态的变化速度缓慢的变化速度使第二特性从与第一状态对应的特性向与第二状态对应的特性变化。

第四技术方案为,在第一至第三技术方案中的任一项技术方案中,还具备以下特征。

车辆的状态是车速。第二状态的车速高于第一状态的车速。而且,转弯角运算部构成为,当在转向末端处车辆的状态从第一状态变化为第二状态的情况下,使第一特性变化,以使转弯角相对于转向角的大小变小。

第五技术方案为,在第一至第三技术方案中的任一项技术方案中,还具备以下特征。

车辆的状态是车速。第二状态的车速低于第一状态的车速。而且,转弯角运算部构成为,在转向末端处车辆的状态从第一状态变化为第二状态的情况下,使第一特性变化,以使转弯角相对于转向角的大小变大。

发明效果

根据第一技术方案的转向控制系统,即使在转向末端处车辆的状态从第一状态向第二状态变化而使第一特性发生了变化时,第二特性也维持为与第一状态对应的特性。由此,即使在转向末端发生了变化的情况下也能够维持反作用力转矩,因此能够抑制方向盘的转向角骤变而消除驾驶员的不适感。

根据第二技术方案的转向控制系统,当在转向末端处车辆的状态从第一状态变化为第二状态之后,在第三状态下转向角返回至规定转向角的情况下,第二特性从与第一状态对应的特性向与第三状态对应的特性变化。第二特性为:转向角越小则与车辆的状态相应的反作用力转矩的差越小。因此,根据本发明,能够一边抑制反作用力转矩的骤变,一边使第二特性跟随与车辆的状态相应的特性。

根据第三技术方案的转向控制系统,即使在转向末端处车辆的状态从第一状态向第二状态变化而使第一特性发生了变化的情况下,第二特性也通过比该状态的变化速度缓慢的变化速度从与第一状态对应的特性向与第二状态对应的特性变化。由此,即使在车辆的状态变化而使转向末端发生了变化的情况下,由于与之相伴的反作用力转矩的变动变得缓慢,因此也能够使驾驶员无不适感地进行方向盘的增转(日文:切り込み)或收转(日文:切り戻し)。

根据第四技术方案,当在转向末端处车辆加速的情况下,能够抑制方向盘的转向角进一步增转。

根据第五技术方案,当在转向末端处车辆减速的情况下,能够抑制方向盘的转向角突然收转。

附图说明

图1是概略地表示本实施方式的转向控制系统的结构例的框图。

图2是用于说明控制装置的功能的框图。

图3是表示控制装置所存储的第一特性的一例的图。

图4是表示控制装置所存储的第二特性的一例的图。

图5是用于说明反作用力转矩控制的课题的图。

图6是用于说明反作用力转矩调整处理的图。

图7是表示反作用力转矩调整处理中的车速以及转向角的变化的时序图。

图8是表示实施方式1的转向控制系统的处理的概要的流程图。

图9是用于说明实施方式2的反作用力转矩调整处理的图。

图10是表示实施方式2的反作用力转矩调整处理中的车速以及转向角的变化的时序图。

图11是表示实施方式2的转向控制系统的处理的概要的流程图。

附图标记说明

1 转向控制系统;

10 转向盘;

20 转向轴;

30 反作用力产生装置;

31 反作用力电动机;

40 转弯装置;

41 转弯电动机;

42 减速器;

43 转弯轴;

51 转向角传感器;

52 转向转矩传感器;

53 车速传感器;

100 控制装置(ECU);

102 处理器;

104 存储器;

106 输入输出接口;

110 转弯角运算部;

120 转弯角控制部;

130 反作用力转矩运算部;

140 反作用力转矩控制部。

具体实施方式

以下,参照附图对本发明的实施方式进行说明。但是,在以下所示的实施方式中提及了各要素的个数、数量、量、范围等的数字的情况下,除特别明示的情况、原理上明显特定为该数字的情况以外,本发明并不限定于该提及的数字。另外,在以下所示的实施方式中说明的构造、步骤等,除特别明示的情况、原理上明显特定于此的情况以外,并不是本发明所必须的。

1.实施方式1.

1-1.转向控制系统

图1是概略地表示本实施方式的转向控制系统的结构例的框图。转向控制系统1搭载于车辆,以线控转向方式使车辆的车轮WH转弯。即,转向控制系统1实现线控转向方式的车辆。

在图1所示的例子中,转向控制系统1具备转向盘(方向盘)10、转向轴20、反作用力产生装置30、转弯装置40、传感器组51~53以及控制装置100。

转向盘10是驾驶员用于转向的操作构件。转向轴20与转向盘10连结,并与转向盘10一起旋转。

反作用力产生装置30通过反作用力电动机31的工作对转向盘10赋予反作用力转矩TR。反作用力产生装置30将表示反作用力电动机31的状态的反作用力电动机状态信息STR发送至控制装置100。例如,反作用力电动机状态信息STR表示反作用力电动机31的驱动电压、驱动电流、旋转角、旋转速度以及温度等。

转弯装置40使车轮WH转弯。具体而言,转弯装置40包括转弯电动机41、减速器42以及转弯轴43。转弯电动机41的转子经由减速器42与转弯轴43相连。转弯轴43与车轮WH连结。当转弯电动机41旋转时,其旋转运动转换为转弯轴43的直线运动,由此,车轮WH转弯。即,通过转弯电动机41的工作,能够使车轮WH转弯。该转弯电动机41的动作由控制装置100控制。

转弯装置40将表示转弯电动机41的状态的转弯电动机状态信息STM发送至控制装置100。例如,转弯电动机状态信息STM表示转弯电动机41的驱动电压、驱动电流、旋转角、旋转速度以及温度等。

另外,转弯装置40相对于转向侧的转向盘10以及反作用力产生装置30机械分离。

转向角传感器51检测作为转向盘10的旋转角的转向角θ。转向角传感器51将检测出的转向角θ的信息发送至控制装置100。

转向转矩传感器52检测施加于转向轴20的转向转矩TS。转向转矩传感器52将检测出的转向转矩TS的信息发送至控制装置100。

车速传感器53检测作为车辆的速度的车速V。车速传感器53将检测出的车速V的信息发送至控制装置100。此外,也可以代替车速传感器53,使用车轮速度传感器并根据各车轮的旋转速度来计算车速V。

控制装置100控制本实施方式的转向控制系统。该控制装置100包括具备处理器102、存储器104以及输入输出接口106的微型计算机。该微型计算机也被称为ECU(Electronic Control Unit:电子控制单元)。通过处理器102执行存储于存储器104的控制程序,从而执行控制装置100的处理。

1-2.控制装置的结构

图2是用于说明控制装置的功能的框图。控制装置100通过根据转向盘10的旋转(转向)控制转弯电动机41,由此控制车轮WH的转弯。该控制也被称为“转弯角控制”。另外,控制装置100通过根据转向盘10的旋转(转向)控制反作用力电动机31,由此控制赋予转向盘10的反作用力转矩TR。该控制也被称为“反作用力转矩控制”。控制装置100具备转弯角运算部110、转弯角控制部120、反作用力转矩运算部130以及反作用力转矩控制部140,作为用于实现转弯角控制以及反作用力转矩控制的功能模块。

转弯角运算部110接受转向角θ和车速V的输入并输出目标转弯角θwt。转弯角运算部110按车辆的状态存储表示转弯角θw相对于转向角θ的大小关系的第一特性。在此的车辆的状态例如是车速V。图3是表示控制装置所存储的第一特性的一例的图。在该图中,例示了车速A时的特性和比车速A大的车速B时的特性。如该图所示,第一特性以车速V越大则转弯角θw相对于转向角θ的大小越小的方式建立关系。即,第一特性构成为能够根据作为车辆的状态的车速V来调整第一特性。根据这样的第一特性,车速V越大则与转弯角θw为最大(上限)的转弯末端θwmax对应的转向角θmax(转向末端)设定为越大的角度。即,与车速B时的转弯末端θwmax对应的转向角(转向末端)θBmax设定为比与车速A时的转弯末端θwmax对应的转向角(转向末端)θAmax大。转弯角运算部110根据第一特性运算与被输入的转向角θ和车速V对应的转弯角θw,并作为目标转弯角θwt输出。运算出的目标转弯角θwt输出至转弯角控制部120。

转弯角控制部120控制转弯电动机41,以使车轮WH的转弯角成为目标转弯角θwt。更详细而言,转弯角控制部120基于转弯电动机41的旋转角和目标转弯角θwt,生成用于驱动转弯电动机41的电流控制信号S1。转弯电动机41按照电流控制信号S1被驱动,通过转弯电动机41的旋转使车轮WH转弯。

反作用力转矩运算部130接受转向角θ和车速V的输入并输出目标反作用力转矩TRt。反作用力转矩运算部130按车辆的状态存储表示反作用力转矩TR相对于转向角θ的大小关系的第二特性。在此的车辆的状态例如是车速V。图4是表示控制装置所存储的第二特性的一例的图。在该图中,例示了车速A时的特性和比车速A大的车速B时的特性。如该图所示,第二特性以车速越大则反作用力转矩TR相对于转向角θ的大小越小的方式建立关系。即,第二特性构成为能够根据作为车辆的状态的车速V来调整第二特性。根据这样的第二特性,车速越大则转向末端θmax设定为越大的角度,所述转向末端θmax产生作为与转弯末端θwmax对应的反作用力的末端反作用力TRmax。即,与车速B时的末端反作用力TRmax对应的转向末端θBmax设定为比与车速A时的末端反作用力TRmax对应的转向末端θAmax大。反作用力转矩运算部130根据第二特性运算与被输入的转向角θ和车速V对应的反作用力转矩TR,并作为目标反作用力转矩TRt输出。运算出的目标反作用力转矩TRt输出至反作用力转矩控制部140。

反作用力转矩控制部140控制反作用力电动机31,使得产生目标反作用力转矩TRt。更详细而言,反作用力转矩控制部140基于运算出的目标反作用力转矩TRt、反作用力电动机31的旋转角、转向转矩TS等,生成用于驱动反作用力电动机31的电流控制信号S2。反作用力电动机31按照电流控制信号S2被驱动,由此,产生反作用力转矩TR。

此外,控制装置100也可以分别包括:由用于实现转弯角控制的转弯角运算部110以及转弯角控制部120构成的第一控制装置;和由用于实现反作用力转矩控制的反作用力转矩运算部130以及反作用力转矩控制部140构成的第二控制装置。在该情况下,第一控制装置和第二控制装置能够相互通信地连接,相互交换所需的信息。

1-3.反作用力转矩调整处理

若将上述的反作用力转矩控制与转弯角控制一起执行,则会产生以下的课题。图5是用于说明反作用力转矩控制的课题的图。如该图所示,考虑车辆在车速A下被转向至转向末端θAmax的情况。在该情况下,当车辆的状态从作为第一状态的车速A变化为作为第二状态的车速B(>车速A)时,通过对车速的变化进行响应而使转弯角控制中的第一特性变化,从而与转向末端对应的转向角变大。另外,当车辆的状态从车速A变化为车速B时,通过使反作用力转矩控制中的第二特性变化,从而与转向角θAmax对应的反作用力变小。结果,存在转向盘10会急剧地增转到新的转向末端θBmax,驾驶员感觉到不适感这样的课题。此外,在这样的转向末端处反作用力转矩骤变的课题不限于车速上升的情况,在车速下降的情况下也可能产生。

因此,本实施方式的转向控制系统1根据需要执行调整反作用力转矩的大小的“反作用力转矩调整处理”。反作用力转矩调整处理是用于抑制驾驶员不希望的转向角骤变的处理。例如,当在车辆的转向盘10被转向至转向末端的状态下车速变化的情况下,为了抑制转向角的骤变而执行反作用力转矩调整处理。

图6是用于说明反作用力转矩调整处理的图。另外,图7是表示反作用力转矩调整处理中的车速以及转向角的变化的时序图。反作用力转矩调整处理在控制装置100的反作用力转矩运算部130中执行。在图6以及图7所示的例子中,示出了在车速A(第一状态)下行驶的车辆在时间t2处被加速,然后以车速B(第二状态)行驶的情况。首先,当在时间t0处开始转向盘10的转向时,在时间t1处,进行增转直到车速A下的转向末端θAmax,之后到时间t2为止保持转向。在从时间t0到时间t2的期间,反作用力转矩运算部130使用与车速A对应的第二特性来运算与被输入的转向角θ对应的反作用力转矩TR。

另一方面,反作用力转矩运算部130在时间t2处以转向角θ转向至转向末端θAmax的状态使车速从车速A向车速B变化的情况下,不将其后的第二特性切换为与车速B对应的特性而维持为与车速A对应的特性。由此,即使在由于车速的变化而使转向末端从θAmax向θBmax变化的情况下,转向角θ也保持为与车速A对应的转向角θAmax。由此,能够抑制由反作用力转矩的骤变引起的转向盘10增转,因此降低驾驶员的不适感。

之后,当在时间t3处转向盘10被驾驶员收转时,与此相伴反作用力转矩也减少。在此,反作用力转矩运算部130继续使用与车速A对应的第二特性,运算与被输入的转向角θ对应的反作用力转矩TR。

在此,第二特性为转向角越小则由车速的差引起的反作用力转矩的差越小。因此,反作用力转矩运算部130接受在时间t4处转向角θ被收转到规定转向角θth的情况,将第二特性切换为与此时的车辆的状态(第三状态)对应的特性(在此,为与车速B对应的特性)。从驾驶性能的观点出发,在此的规定转向角θth优选设定为能够允许在第二特性的切换前后产生的反作用力转矩的高低差的转向角。根据这样的反作用力转矩调整处理,能够高效地抑制转向末端处的反作用力转矩骤变。

1-4.转向控制系统的处理示例

图8是表示实施方式1的转向控制系统的处理的概要的流程图。在控制装置100的反作用力转矩运算部130中按照一定周期反复执行图8所示的处理。

在图8所示的步骤S100的处理中,判定“转向末端条件”是否成立。在此的转向末端条件是用于判定转向角是否到达转向末端的条件,例如能够根据转向角传感器51检测出的转向角θ是否达到当前的车辆的状态(车速)下的转向末端θmax来判定。在判定的结果为未确认到转向末端条件的成立的情况下,处理进入后述的步骤S108的处理。另一方面,在确认到转向末端条件的成立的情况下,进入下一步骤S102的处理。

在步骤S102的处理中,判定车速是否发生了变化。其结果,在车速未发生变化的情况下,处理进入后述的步骤S108的处理。另一方面,在车速发生了变化的情况下,进入下一步骤S104的处理。

在步骤S104的处理中,使用与变化前的车速对应的第二特性,计算与被输入的转向角θ对应的目标反作用力转矩TRt。在接下来的步骤S106的处理中,判定“转向返回条件”是否成立。转向返回条件是根据转向角θ是否返回至规定转向角θth以下来判定的条件。在结果为未确认到转向返回条件成立的情况下,再次返回步骤S104的处理并进行反作用力转矩的运算。另一方面,在确认到转向返回条件成立的情况下进入下一步骤S108的处理。

在步骤S108的处理中,使用与当前的车速V相应的第二特性,计算与被输入的转向角θ对应的目标反作用力转矩TRt。当步骤S108的处理完成时,本例程结束。

这样,根据图8所示的反作用力转矩调整处理,能够抑制在转向末端处的车速变化时成为问题的反作用力转矩的急剧变动。由此,能够防止转向盘急剧地移动,因此降低驾驶员的不适感。

1-5.变形例

上述的实施方式1的转向控制系统1也可以应用如下变形的方式。

反作用力转矩调整处理不限于转向末端处的车速的变化时,也可以应用于车辆的状态变化的其他情况。例如,反作用力转矩调整处理也可以构成为在转向末端处车辆的横摆率、横向加速度变化的情况下执行。在该情况下,第一特性以及第二特性只要预先确定这些车辆的每个状态(横摆率、横向加速度)的特性即可。该变形例的结构也能够应用于后述的实施方式2的转向控制系统。

反作用力转矩调整处理不限于转向末端处的车速的变化为加速的情况,也可以应用于减速的情况。在该情况下,抑制在转向末端处反作用力转矩急剧增加而转向盘10被收转的情况。该变形例的结构也能够应用于后述的实施方式2的转向控制系统。

2.实施方式2.

2-1.实施方式2的特征

实施方式2的转向控制系统的特征在于,当在转向末端处车速从车速A变化(加速)至车速B(>车速A)的情况下,进行使反作用力转矩逐渐减小的反作用力转矩调整处理。实施方式2的转向控制系统的结构与实施方式1的转向控制系统1的结构同样。另外,转弯角控制以及反作用力转矩控制的基本思路与实施方式1相同。适当省略与实施方式1重复的说明。

图9是用于说明实施方式2的反作用力转矩调整处理的图。另外,图10是表示实施方式2的反作用力转矩调整处理中的车速以及转向角的变化的时序图。在实施方式2的转向控制系统中执行的反作用力转矩调整处理在控制装置100的反作用力转矩运算部130中执行。在图9以及图10所示的例子中,示出了在车速A(第一状态)下行驶的车辆在时间t2处被加速,之后在车速B(第二状态)下行驶的情况。首先,当在时间t0处开始转向盘10的转向时,在时间t1处,进行增转直到车速A下的转向末端θAmax,之后到时间t2为止保持转向。在从时间t0到时间t2的期间,反作用力转矩运算部130使用与车速A对应的第二特性来运算与被输入的转向角θ对应的反作用力转矩TR。

另一方面,反作用力转矩运算部130在时间t2处,当在转向角θ被转向至转向末端θAmax的状态下车速从车速A向车速B变化的情况下,使用于反作用力转矩运算的车速比实际的从车速A向车速B的变化速度缓慢地变化。例如,反作用力转矩运算部130通过对从车速A向车速B的变化实施规定的平滑处理,能够使用于运算的车速的变化比实际的速度变化缓慢。另外,反作用力转矩运算部130通过以规定的上限值限制从车速A向车速B的变化速度,也能够使用于运算的车速的变化比实际的速度变化缓慢。由此,能够一边抑制运算出的反作用力转矩的骤变,一边使转向角自然地从θAmax向θBmax增转,因此驾驶员的不适感降低。

之后,当在时间t3处开始转向盘10的收转时,反作用力转矩运算部130使用与车速B对应的第二特性,运算与被输入的转向角θ对应的反作用力转矩TR。根据这样的反作用力转矩调整处理,能够高效地抑制转向末端处的反作用力转矩骤变。

2-2.转向控制系统的处理示例

图11是表示实施方式2的转向控制系统的处理的概要的流程图。图11所示的处理在控制装置100的反作用力转矩运算部130中按照一定周期反复执行。

在图11所示的步骤S200的处理中,判定“转向末端条件”是否成立。在此,执行与上述步骤S100同样的处理。在判定的结果为未确认到转向末端条件成立的情况下,处理进入步骤S202的处理。另一方面,在确认到转向末端条件成立的情况下,处理进入步骤S204的处理。

在步骤S202的处理中,与上述步骤S108的处理同样,执行使用了与车速相应的第二特性的反作用力转矩运算处理。当步骤S202的处理完成时,本例程结束。

在步骤S204的处理中,判定车速是否发生了变化。在结果为车速未发生变化的情况下,处理进入上述步骤S202的处理。另一方面,在车速发生了变化的情况下,处理进入下一步骤S206的处理。

在步骤S206的处理中,一边使第二特性从与变化前的车速对应的特性向与车速对应的特性逐渐变化,一边计算与被输入的转向角θ对应的目标反作用力转矩TRt。当步骤S206的处理完成时,本例程结束。

这样,根据图11所示的反作用力转矩调整处理,能够抑制在转向末端处的车速变化时成为问题的反作用力转矩的急剧变动。由此,能够防止转向盘急剧地移动,因此降低驾驶员的不适感。

19页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:车辆及其转向控制方法、装置和存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类