光检测器

文档序号:1191848 发布日期:2020-08-28 浏览:3次 >En<

阅读说明:本技术 光检测器 (Light detector ) 是由 曹培炎 刘雨润 于 2018-02-03 设计创作,主要内容包括:本文所公开的是一种设备,包括:光源(102),配置成生成光脉冲,其中光脉冲的一个或多个属性按照第一代码来调制,光脉冲的一个或多个属性从由光脉冲的幅度、光脉冲之间的时间间隔、光脉冲的宽度、光脉冲的光谱及其组合所组成的组中选取;检测器(104),配置成接收包括目标场景(108)的一部分所散射的光脉冲的相应部分的光的混合,配置成基于第二代码从光的混合中选择光脉冲的部分,并且配置成基于光脉冲的部分的特性来生成电信号。(Disclosed herein is an apparatus comprising: a light source (102) configured to generate a light pulse, wherein one or more properties of the light pulse are modulated according to a first code, the one or more properties of the light pulse being selected from the group consisting of an amplitude of the light pulse, a time interval between the light pulses, a width of the light pulse, a spectrum of the light pulse, and combinations thereof; a detector (104) configured to receive a mixture of light including respective portions of the light pulses scattered by a portion of the target scene (108), configured to select portions of the light pulses from the mixture of light based on a second code, and configured to generate an electrical signal based on characteristics of the portions of the light pulses.)

光检测器

【技术领域】

本文的本公开涉及光检测器,具体来说涉及具有信号调制的光检测器。

【背景技术】

激光雷达是基于激光的检测、测距和测绘方法。存在激光雷达系统的若干主要组件:激光源、扫描仪和光学器件、光电检测器以及接收器电子器件。例如,执行扫描激光束的可控导向,并且通过处理从远处物体、大楼和景观所反射的所捕获返回信号,可得到这些物体、大楼和景观的距离及形状。

广泛地使用激光雷达系统。例如,自动驾驶车辆(例如无人驾驶汽车)将激光雷达(又称作车载激光雷达)用于障碍检测和碰撞避免,以安全地通过环境。车载激光雷达安装在无人驾驶汽车的车顶,并且它不断地旋转,以监测汽车周围的当前环境。激光雷达传感器提供必要数据以供软件确定潜在障碍物在环境中存在的位置,帮助识别障碍物的空间结构,基于大小来区分物体,并且估计行驶对它的影响。激光雷达系统与雷达系统相比的一个优点在于,激光雷达系统能够提供更好的范围和大视场,这帮助检测曲面上的障碍物。尽管近年来在开发激光雷达系统方面取得了巨大进步,但是目前仍然进行大量工作以设计用于各种应用需要的激光雷达系统,包括开发能够执行可控扫描的新光源以及开发能够调制光脉冲信号以解决来自不同光源的新检测器。

发明内容

本文所公开的是一种设备,包括:光源,配置成生成光脉冲,其中光脉冲的一个或多个属性按照第一代码来调制,光脉冲的一个或多个属性从由光脉冲的幅度、光脉冲之间的时间间隔、光脉冲的宽度、光脉冲的光谱及其组合所组成的组中选取;检测器,配置成接收包括目标场景的一部分所散射的光脉冲的相应部分的光的混合,配置成基于第二代码从光的混合中选择光脉冲的部分,并且配置成基于光脉冲的部分的特性来生成电信号。

按照实施例,光源配置成基于第一代码改变作为时间的函数的总辐射通量。

按照实施例,光源配置成基于第一代码改变作为时间的函数的光谱通量。

按照实施例,光源配置成基于第一代码改变作为时间的函数的光脉冲中的总辐射通量的比例。

按照实施例,光源包括快门,并且配置成使用快门来改变比例。

按照实施例,光源包括一个或多个光学过滤器,并且配置成使用一个或多个光学过滤器来改变比例。

按照实施例,检测器配置成通过将光的混合与第二代码相互关连来选择光脉冲的部分。

按照实施例,特性是飞行时间。

按照实施例,光源包括光发射器和光扫描仪,其中光扫描仪配置成接收来自光发射器的光,并且影响相对目标场景的光的方向。

按照实施例,光扫描仪包括光学波导和电子控制系统;光学波导配置成接收来自光发射器的光;电子控制系统配置成通过调节光学波导的温度来调整光学波导的维度。

按照实施例,调节光学波导的温度包括施加经过光学波导的电流。

按照实施例,光学波导的至少一个包括核心周围的导电覆层。

按照实施例,施加经过光学波导的电流包括施加经过导电覆层的电流。

按照实施例,光学波导在衬底的表面上形成。

按照实施例,光学波导的至少一个是曲面的。

【附图说明】

图1示意示出按照实施例、适合于光发射、光调制和检测的设备的透视图。

图2示意示出按照一个实施例的光源的原理框图。

图3和图4各示意示出按照一个实施例的备选光源的原理框图。

图5示意示出按照一个实施例、具有光接收组件和信号处理器的检测器的截面图。

图6示意示出按照实施例的检测器的原理框图。

图7A示意示出按照一个实施例的光导向组件的透视图。

图7B示意示出按照一个实施例的光导向组件的截面图。

图7C示意示出按照另一个实施例的光导向组件的截面图。

图7D示意示出按照实施例的光导向组件的截面图。

具体实施方式

图1示意示出按照实施例、适合于光发射、调制和检测的设备100。设备100可包括光源102、检测器104和光学装置106。光源102可配置成生成光脉冲,以照亮目标场景108的一部分。目标场景108的所述部分可散射光脉冲。光脉冲的一个或多个属性可按照第一代码来调制。一个或多个属性可以是光脉冲的幅度、光脉冲之间的时间间隔、光脉冲的宽度、光脉冲的光谱或者其组合。

光学装置106可配置成影响(例如会聚目标场景108的所述部分所散射的光脉冲。光学装置106可定位在检测器104与目标场景108之间。

检测器104可配置成接收包括目标场景108所散射的光脉冲的部分的光的混合。光的混合可包括不是源自光源102的光。检测器104可配置成基于第二代码从光的混合中选择光脉冲的部分。在一个实施例中,检测器104可配置成基于光脉冲的部分的特性来生成电信号。特性的示例是从光源102到目标场景108并且回到检测器104的光脉冲的飞行时间。设备100还可包括信号处理器145,其配置成处理和分析电信号。

图2示意示出按照实施例的光源102的原理框图。光源102可配置成通过基于第一代码改变作为时间的函数的总辐射通量(与改变光脉冲中包含的总辐射通量的比例形成对照)或者通过基于第一代码改变作为时间的函数的光谱通量来生成光脉冲。光源102可包括光发射器202。光发射器202可以是激光源。如图2所示,光源102可使用控制器203按照第一代码来改变其总辐射通量(例如通过改变提供给光发射器202的功率)或者改变其光谱通量。第一代码可以是光源102特定的固定代码或者是可调整的。控制器203可包括TTL或者其他适当仿真电路。

光源102可包括光扫描仪204。光扫描仪204可配置成接收来自光发射器202的光,以影响相对目标场景108的(例如扫描)光的方向。例如,光扫描仪204可扫描沿Y维的光,如图2所示。光源102可包括光学组件206,其配置成对于来自光扫描仪204的光进行整形(例如发散)。如图2所示,光学组件206可定位在光扫描仪204与目标场景108之间。备选地,光扫描仪204可定位在光学组件206与目标场景108之间。在实施例中,光学组件206可包括一维衍射光栅或圆柱透镜。

图3和图4各示意示出按照实施例的光源102的原理框图。光源102可配置成通过基于第一代码改变作为时间的函数的光脉冲中的总辐射通量的比例(与改变其总辐射通量形成对照)来生成光脉冲。光源102可包括光发射器202。光发射器202可以是激光源。光发射器202的总辐射通量可以是恒定的。如图3所示,光源102可使用快门207按照第一代码来改变光脉冲中的总辐射通量的比例。例如,比例可通过基于第一代码按照时间序列开启或闭合快门207来改变。如图4所示,光源102可使用一个或多个光学过滤器208按照第一代码来改变光脉冲中的总辐射通量的比例。例如,比例可通过基于第一代码按照时间序列改变一个或多个光学过滤器208的透射谱来改变。

光源102可包括光扫描仪204。光扫描仪204可配置成接收来自光发射器202的光,以改变相对目标场景108的(例如扫描)光的方向。例如,光扫描仪204可扫描沿Y维的光,如图3和图4所示。光源102可包括光学组件206,其配置成对于来自光扫描仪204的光进行整形(例如发散)。如图3和图4所示,快门207或者一个或多个光学过滤器208可定位在光扫描仪204与光发射器202之间。备选地,快门207或者一个或多个光学过滤器208可定位在沿光路的另一个适当位置。在实施例中,光学组件206可包括一维衍射光栅或圆柱透镜。

光源102可配置成通过改变作为时间的函数的总辐射通量或者通过改变作为时间的函数的光脉冲中的总辐射通量的比例来生成光脉冲。

图5示意示出按照实施例的检测器104的截面图。检测器可包括光接收层151和电子层152。光接收层151可层迭在电子层152之上。按照实施例,多个光接收组件140处于光接收层151内部。当来自目标场景108的返回光照射检测器104时,光接收组件140可生成载流子。载流子可被定向(例如在电场下)到电子层152中的信号处理器145。

图6示意示出按照实施例的检测器104的原理框图。包括按照第一代码所调制并且通过目标场景的所述部分所散射的光脉冲的一部分的光的混合可在光接收组件140中生成载流子。在实施例中,光接收组件140可包括子组件,其配置成接收不同光谱范围的光(例如,子组件140A配置成接收从λ1-λ2的光,子组件140B配置成接收从λ3-λ4的光,子组件140C配置成接收从λ5-λ6的光,等等)。载流子可转换成电信号,以及电信号可由信号处理器145来处理。信号处理器145可包括仿真电路(例如一个或多个模数转换器330),其配置成数字化电信号。检测器104可例如使用信号处理器145从光的混合中选择光脉冲的所述部分。信号处理器145可具有解调器340,其配置成以光的混合(如通过电信号所表示)与第二代码之间的变化延迟将光的混合(如通过电信号所表示)与第二代码相互关连。光脉冲的所述部分可基于相关性的结果来选择。在示例中,当且仅当光脉冲的所述部分与第二代码之间的延迟为零时,相关性的结果是重要的。光脉冲的所述部分的特性(例如飞行时间)可由检测器(例如由信号处理器145中的微处理器310)来确定,并且存储在内存或计数器320中。通信接口350可包含在信号处理器145中,并且通信接口350可配置成与信号处理器145外部或者检测器104外部的其他电路进行通信。

图7A示意示出按照一个实施例的光导向组件402的透视图。光导向组件402可以是光源102的光扫描仪204的实施例,并且可包括多个光学波导410和电子控制系统420。在一个实施例中,多个光学波导410可位于衬底430的表面。多个光学波导410可由电子控制系统420来控制,以生成扫描光束,并且沿第二维来引导扫描光束。

光学波导410的每个可包括输入端412、光学核心414和输出端416。光学核心414可包括光学介质。在一个实施例中,光学介质可以是透明的。光学波导410的输入端412可接收输入光波,以及所接收光波可经过光学核心414,并且作为输出光波从光学波导410的输出端416离开。衍射可使来自光学核心414的每个的输出光波分布于宽角度,使得当输入光波为相干(例如,来自例如激光器等的相干光源)时,来自多个光学波导410的输出光波可相互干涉并且呈现干涉图案。在一个实施例中,多个光学波导410的输出端416可布置成沿第二维对直。例如,如图7A所示,多个光学波导410的输出端416可沿Y维对直。这样,输出接口可面向X方向。

电子控制系统420可配置成控制来自多个光学波导410的输出光波的相位以获得干涉图案,以生成扫描光束,并且沿第二维来引导扫描光束。

光学核心414的每个的维度可由电子控制系统420单独调整,以控制来自相应光学核心414的输出光波的相位。电子控制系统420可配置成通过分别调节光学核心414的每个的温度,来单独调整光学核心414的每个的维度。

在实施例中,对多个光学波导410的输入光束的光波可处于相同相位。来自多个光学波导410的输出光波的干涉图案可包括一个或多个传播亮斑点(其中输出光波相长地干涉(例如增强))以及一个或多个传播弱斑点(其中输出光波相消地干涉(例如相互抵消))。在实施例中,一个或多个传播亮斑点可形成一个或多个扫描光束。如果光学核心414的输出光束的相位偏移并且相位差发生变化,则相长干涉可在不同方向发生,使得输出光波的干涉图案(例如所生成的一个或多个扫描光束的方向)也可变化。换言之,沿第二维导向的光束可通过调整来自多个光学波导410的输出光束的相位来实现。

调整输出光波的相位的一种方式是改变经过光学核心414所传播的光波的有效光路。经过光学介质所传播的光波的有效光路取决于光在光学介质中传播的物理距离(例如,取决于光波的入射角、光学介质的维度)。因此,电子控制系统420可调整光学核心414的维度,以改变经过光学核心414所传播的入射光束的有效光路,使得输出光波的相位可在电子控制系统420的控制下偏移。例如,光学核心414的每个的长度可发生变化,因为相应光学核心414的至少一部分具有温度变化。此外,如果光学核心414的至少一段的至少部分具有温度变化,则光学核心414的该段的直径可发生变化。因此,在一个实施例中,调节光学核心414的每个的温度可用来控制光学核心414的维度(例如由于光学核心414的热膨胀或收缩)。

应当注意,虽然图7A示出多个光学波导410平行地布置,但是这在全部实施例中不作要求。在一些实施例中,输出端416可沿某个维对直,但是多个光学波导410无需是笔直的或者平行地布置。例如,在一个实施例中,光学波导410的至少一个可以是曲面的(例如“U”形、“S”形等)。光学波导410的截面形状可以是矩形、圆形或者任何其他适当形状。在实施例中,多个光学波导410可形成一维数组,其如图7A所示放置在衬底430的表面。光学波导410无需按照一维数组均匀地分布。在其他实施例中,多个光学波导410无需处于一个衬底上。例如,一些光学波导410可处于一个衬底上,一些其他光学波导410可处于独立衬底上。

衬底430可包括导电、非导电或半导体材料。在实施例中,衬底430可包括例如二氧化硅等的材料。在实施例中,电子控制系统420可嵌入衬底430中,但是也可放置在衬底430外部。

在实施例中,光源102还可包括波束扩展器(例如一组透镜)。波束扩展器可在输入光束进入多个光学波导410之前扩展输入光束。所扩展的输入光束可经过准直。在实施例中,光源102还可包括一维衍射光栅(例如圆柱微透镜数组),其配置成将输入光束的光波会聚和耦合到多个光学波导410中。

图7B示意示出按照一个实施例、图7A的光导向组件402的截面图。光学核心414的每个可包括光学介质,其是导电和透明的。光学核心414可电连接到电子控制系统420。在实施例中,电子控制系统420可配置成通过单独调节光学核心414的每个的温度,来单独调整光学核心414的每个的维度。电子控制系统420可将电流分别施加到光学核心414的每个。可通过控制流经光学核心414的每个的电流的幅值,来单独调节光学核心414的每个的温度。

图7C示意示出按照一个实施例、图7A的光导向组件402的截面图。光学波导410的每个可包括相应光学核心414的侧壁周围的导电覆层418。在实施例中,导电覆层418的每个可以以电子方式连接到电子控制系统420。电子控制系统420可配置成通过调节光学核心414的每个的温度,来单独调整光学核心414的每个的维度。电子控制系统420可将电流施加到导电覆层418的每个。由于光学核心414与相应导电覆层418之间的热传递,可通过控制流经相应导电覆层418的每个的电流的每个的幅值,来单独调节光学核心414的每个的温度。

图7D示意示出按照另一个实施例、图7A的光导向组件402的截面图。光导向组件402可包括一个或多个温度调制组件。温度调制组件可将电压或电流输入转换为温度差,其可用于加热或冷却。例如,温度调制组件可以是珀耳帖装置。一个或多个温度调制组件可以能够向多个光学波导410传递热量。在实施例中,一个或多个温度调制组件可与多个光学波导410相接触。在实施例中,一个或多个温度调制组件以电子方式连接到电子控制系统420。电子控制系统420可配置成因多个光学波导410与一个或多个温度调制组件之间的热传递而通过调整一个或多个温度调制组件的温度,来控制至少一个光学核心414的温度。在一个实施例中,一个或多个温度调制组件可与多个光学波导410共享公共衬底。在图7D的示例中,光导向组件402包括层422,其包括衬底430的表面上的一个或多个温度调制组件,并且层422与多个光学波导410相接触。

虽然本文公开了各个方面和实施例,但是其他方面和实施例将是本领域的技术人员清楚知道的。本文所公开的各个方面和实施例是为了便于说明而不是要进行限制,其中真实范围和精神通过以下权利要求书来指示。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于检测距离的电子设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!