外延晶片以及半导体激光器

文档序号:1326058 发布日期:2020-07-14 浏览:38次 >En<

阅读说明:本技术 外延晶片以及半导体激光器 (Epitaxial wafer and semiconductor laser ) 是由 陈长安 郑兆祯 于 2019-01-04 设计创作,主要内容包括:本发明涉及半导体技术领域,公开了一种外延晶片以及半导体激光器。该外延晶片包括:衬底;功能层,功能层位于衬底上;其中,功能层中的至少部分层体掺杂有Mg;发光层,发光层位于功能层中,功能层用于驱动发光层发光。通过上述方式,本发明能够提高应用本发明外延晶片的激光器的特征温度,进而提高其电光转换效率。(The invention relates to the technical field of semiconductors, and discloses an epitaxial wafer and a semiconductor laser. The epitaxial wafer includes: a substrate; the functional layer is positioned on the substrate; wherein at least part of the functional layer is doped with Mg; and the light emitting layer is positioned in the functional layer, and the functional layer is used for driving the light emitting layer to emit light. Through the mode, the characteristic temperature of the laser applying the epitaxial wafer can be improved, and the electro-optic conversion efficiency of the laser can be further improved.)

外延晶片以及半导体激光器

技术领域

本发明涉及半导体技术领域,特别是涉及一种外延晶片以及半导体激光器。

背景技术

AlGaInP四元化合物材料广泛应用于高亮度红光发光二极管及半导体激光器,已经成为红光发光器件的主流材料。但是相比于早期使用的AlGaAs材料,AlGaInP材料体系本身也有其缺点:AlGaInP/GaInP异质结的导带带阶很小,最大值约270meV,小于AlGaAs材料的350meV,因此电子势垒相对较低,容易形成泄露电流,使得激光器阈值电流加大,尤其是在高温及大电流工作中更为明显。并且AlGaInP材料由于合金散射,其热阻远高于AlGaAs材料,因此工作中产热较多,容易导致结温及腔面温度过高。同时,AlGaInP材料载流子的有效质量及态密度高于AlGaAs材料,激射时需要更高的透明电流密度。上述原因使得应用AlGaInP材料体系的激光器的特征温度较低,连续工作时电光转换效率较低。

发明内容

有鉴于此,本发明主要解决的技术问题是提供一种外延晶片以及半导体激光器,能够提高应用本发明外延晶片的激光器的特征温度,进而提高其电光转换效率。

为解决上述技术问题,本发明采用的一个技术方案是:提供一种外延晶片,该外延晶片包括:衬底;功能层,功能层位于衬底上;其中,功能层中的至少部分层体掺杂有Mg;发光层,发光层位于功能层中,功能层用于驱动发光层发光。

在本发明的一实施例中,功能层包括第一功能层和第二功能层,第一功能层、发光层以及第二功能层沿靠近衬底的方向依次层叠于衬底上。

在本发明的一实施例中,第一功能层包括第一波导层和第一限制层,第一波导层位于发光层远离第二功能层的一侧,第一限制层位于第一波导层远离发光层的一侧,并且第一波导层和第一限制层掺杂有Mg。

在本发明的一实施例中,第一波导层中的Mg浓度小于第一限制层中的Mg浓度。

在本发明的一实施例中,第一限制层包括第一子限制层和第二子限制层,第一子限制层位于第一波导层远离发光层的一侧,第二子限制层位于第一子限制层远离第一波导层的一侧;其中,第一子限制层掺杂有Mg,第二子限制层掺杂有Zn。

在本发明的一实施例中,第一限制层还包括阻隔层,阻隔层位于第一子限制层和第二子限制层之间。

在本发明的一实施例中,阻隔层包括第一阻隔层和第二阻隔层,第一阻隔层掺杂有Mg,第二阻隔层掺杂有Zn,阻隔层为至少一层第一阻隔层和至少一层第二阻隔层交替层叠并且成对的超晶格结构。

在本发明的一实施例中,第一功能层还包括接触层,接触层位于第二子限制层远离第一子限制层的一侧,接触层和第二子限制层之间设置有过渡层,阻隔层和过渡层用于增大接触层与发光层之间的距离;其中,接触层掺杂有Zn。

在本发明的一实施例中,阻隔层由无掺杂的AlGaInP材料构成。

在本发明的一实施例中,第一功能层为N型半导体层,第二功能层为P型半导体层;或第一功能层为P型半导体层,第二功能层为N型半导体层。

为解决上述技术问题,本发明采用的又一个技术方案是:提供一种半导体激光器,该半导体激光器包括如上述实施例所阐述的外延晶片。

本发明的有益效果是:区别于现有技术,本发明提供一种外延晶片,该外延晶片包括衬底以及位于衬底上的功能层。该外延晶片还包括发光层,发光层位于功能层中,功能层用于驱动发光层发光。其中,功能层中的至少部分层体掺杂有Mg,以提高该至少部分层体的准费米能级位置,从而提高阻挡电流泄露的有效势垒,因此能够提高应用本发明外延晶片的激光器的特征温度,进而提高其电光转换效率。

附图说明

图1是本发明外延晶片一实施例的结构示意图;

图2是图1所示外延晶片的导带结构示意图;

图3是本发明外延晶片另一实施例的结构示意图;

图4是图3所示外延晶片的导带结构示意图;

图5是本发明第一限制层一实施例的结构示意图;

图6是本发明阻隔层一实施例的结构示意图;

图7是本发明外延晶片导带结构一实施例的示意图;

图8是本发明半导体激光器一实施例的结构示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。

为解决现有技术中激光器的特征温度较低以及电光转换效率较低的技术问题,本发明的一实施例提供一种外延晶片,该外延晶片包括:衬底;功能层,功能层位于衬底上;其中,功能层中的至少部分层体掺杂有Mg;发光层,发光层位于功能层中,功能层用于驱动发光层发光。

以下进行详细阐述。

请参阅图1,图1是本发明外延晶片一实施例的结构示意图。

在一实施例中,外延晶片包括衬底1以及位于衬底1上的功能层2,并且外延晶片还包括发光层3,发光层3位于功能层2中,功能层2用于驱动发光层3发光,以满足使用需求。例如外延晶片应用于激光器中,发光层3用于产生足够的光增益,并发光能够实现激光器输出所需的激光出射波长。

外延晶片的功能层2中至少部分层体掺杂有Mg,以提高该至少部分层体的准费米能级位置,从而提高阻挡电流泄露的有效势垒,减小电流泄露,进而提高其电光转换效率,降低产热。

在一实施例中,功能层2包括第一功能层21和第二功能层22。第一功能层21、发光层3以及第二功能层22沿靠近衬底1的方向依次层叠于衬底1上,即第二功能层22位于衬底1上,发光层3位于第二功能层22上,第一功能层21位于发光层3上。

进一步地,第一功能层21包括第一波导层211和第一限制层212。第一波导层211位于发光层3远离第二功能层22的一侧,第一限制层212位于第一波导层211远离发光层3的一侧,并且第一波导层211和第一限制层212掺杂有Mg,用于提高第一波导层211和第一限制层212的准费米能级位置,从而提高阻挡电流泄露的有效势垒。

需要说明的是,第一波导层211中所掺杂的Mg浓度小于第一限制层212中的Mg浓度。发明人发现,第一波导层211和第一限制层212中所掺杂的Mg浓度如是设置,能够最大限度地提高第一波导层211和第一限制层212的有效势垒,从而最大限度地减小泄露电流。另外高掺杂的第一限制层212,可进一步提高材料的电导率,降低激光器的串联电阻,提高激光器电光转换效率,降低产热。

进一步地,第二功能层22包括第二波导层221和第二限制层222。第二波导层221位于发光层3远离第一功能层21的一侧,第二限制层222位于第二波导层221远离发光层3的一侧。其中,第二限制层222位于衬底1上。

需要说明的是,第一波导层211和第二波导层221用于向发光层3传输电子或空穴,电子和空穴在发光层3相遇并配对,成键后的电子和空穴释放能量并被发光层3吸收,从而使得发光层3辐射激光。第一限制层212和第二限制层222的折射率小于第一波导层211和第二波导层221。发光层3辐射的激光经过第一波导层211和第二波导层221,在第一波导层211、第二波导层221与第一限制层212、第二限制层222的交界面上发生全反射,使得发光层3辐射的激光光场限制在发光层3、第一波导层211以及第二波导层221中。

第一功能层21还包括过渡层213和接触层214。过渡层213位于第一限制层212远离第一波导层211的一侧,接触层214位于过渡层213远离第一限制层212的一侧。接触层214作为外延晶片与外部电源结构或起到电源功能的结构连接的媒介,用于导入驱动发光层3发光的电信号(电子或空穴)。而过渡层213则作为第一限制层212与接触层214的过渡媒介。

可以理解的是,第一功能层21可以为N型半导体层;对应地,第二功能层22为P型半导体层。或第一功能层21为P型半导体层;对应地,第二功能层22为N型半导体层。

以下以第一功能层21为P型半导体层,第二功能层22为N型半导体层为例,阐述外延晶片的具体结构:

由于第二功能层22位于衬底1与发光层3之间,衬底1也需为与第二功能层22匹配的N型半导体。具体地,衬底1可以为N型的GaAs单晶片,其作为外延晶片上层结构的基底。

第二功能层22的第二限制层222为与N型GaAs匹配的N型非掺杂AlxIn1-xP,厚度为500~5000nm。第二波导层221为N型非掺杂(AlyGa1-y)xIn1-xP,厚度为50~250nm。

发光层3,即量子阱层,其为GazIn1-zP,厚度为2~200nm。发光层3所辐射激光的波长为620~670nm。

第一功能层21的第一波导层211为P型(AlyGa1-y)xIn1-xP,其厚度为50~250nm。第一波导层211中掺杂有Mg,其中Mg的掺杂浓度为5×1017cm-3。第一限制层212为P型AlxIn1-xP,其厚度为500~5000nm。第一限制层212中掺杂有Mg,其中Mg的掺杂浓度为3×1018cm-3。可见,第一波导层211中所掺杂的Mg浓度小于第一限制层212中的Mg浓度。

过渡层213、接触层214与第一功能层21对应,当第一功能层21为P型半导体层时,过渡层213、接触层214对应为P型半导体层,而当第一功能层21为N型半导体层时,过渡层213、接触层214对应为N型半导体层。在本实施例中,过渡层213为P型非掺杂(AlyGa1-y)xIn1- xP,其厚度为50~250nm。接触层214为P型非掺杂GaAs,其厚度为100~500nm。接触层214可以进行掺杂,例如掺杂Mg、Zn等,以改善接触层214的导电性能。

其中,0<x<0.52,0<y<0.8,0.3<z<0.7(下文也同样适用)。发明人发现上文所涉及的AlGaInP系材料采用如是元素配比,能够使得由相应AlGaInP系材料构成的功能膜层具备良好的物理或化学性能,以满足外延晶片的实际使用需求。

图2展示了本实施例所阐述外延晶片的导带结构,其中A段表示第一波导层211中掺杂Mg的浓度,B段表示第一限制层212中掺杂Mg的浓度。可见,通过在第一波导层211和第一限制层212掺杂不同浓度的Mg,其中,第一波导层211中所掺杂的Mg浓度小于第一限制层212中的Mg浓度,能够有效提高第一波导层211和第一限制层212的导带带阶,减少电流泄露,提高外延晶片的电光转换效率。

请参阅图3,图3是本发明外延晶片另一实施例的结构示意图。

由于Mg的活化能(190meV)较高,掺杂Mg的功能层2部分产生电子或空穴载流子的效率不高,通过掺杂Mg来提高外延晶片的电光转换效率的提高效果有限。而Zn的活化能(100~125meV)小于Mg的活化能,因此掺杂Zn的功能层2部分产生电子或空穴载流子的效率较高,其提高外延晶片的电光转换效率的提高效果要优于Mg。

有鉴于此,本实施例与上述实施例的不同之处在于,第一限制层212包括第一子限制层2121和第二子限制层2122。第一子限制层2121位于第一波导层211远离发光层3的一侧,第二子限制层2122位于第一子限制层2121远离第一波导层211的一侧。

由于较Mg而言,Zn在AlGaInP系材料中的扩散系数较大,其容易扩散进入发光层3,产生光吸收,致使对外延晶片辐射激光的性能造成不良影响。有鉴于此,本实施例中相对靠近第一波导层211的第一子限制层2121中掺杂Mg,而相对远离第一波导层211的第二子限制层2122中掺杂有Zn。如此一来,在利用掺杂Mg、Zn提高外延晶片电光转换效率的同时,能够有效防止Zn扩散进入发光层3,影响发光层3的性能。

正如上述实施例所述,第一功能层21可以为N型半导体层;对应地,第二功能层22为P型半导体层。或第一功能层21为P型半导体层;对应地,第二功能层22为N型半导体层。

以下以第一功能层21为P型半导体层,第二功能层22为N型半导体层为例,阐述外延晶片的具体结构:

由于第二功能层22位于衬底1与发光层3之间,衬底1也需为与第二功能层22匹配的N型半导体。具体地,衬底1可以为N型的GaAs单晶片,其作为外延晶片上层结构的基底。

第二功能层22的第二限制层222为与N型GaAs匹配的N型非掺杂AlxIn1-xP,厚度为500~5000nm。第二波导层221为N型非掺杂(AlyGa1-y)xIn1-xP,厚度为50~250nm。

发光层3,即量子阱层,其为GazIn1-zP,厚度为2~200nm。发光层3所辐射激光的波长为620~670nm。

第一功能层21的第一波导层211为P型(AlyGa1-y)xIn1-xP,其厚度为50~250nm。第一波导层211中掺杂有Mg,其中Mg的掺杂浓度为5×1017cm-3。第一限制层212的第一子限制层2121为P型AlxIn1-xP,其厚度为10~500nm。第一子限制层2121中掺杂有Mg,并且掺杂浓度为3×1018cm-3。第二子限制层2122为P型AlxIn1-xP,其厚度为1000~7000nm。第二子限制层2122中掺杂有Zn,并且掺杂浓度为3×1018cm-3

需要说明的是,本实施例中第一子限制层2121所掺杂的Mg浓度与第二子限制层2122所掺杂的Zn浓度相等,并且等于上述实施例中第一限制层212中掺杂的Mg浓度。其为的是使第一限制层212所掺杂的原子浓度大于第一波导层211所掺杂原子浓度,对应的技术效果已在上述实施例中详细阐述,在此就不再赘述。

过渡层213、接触层214与第一功能层21对应,当第一功能层21为P型半导体层时,过渡层213、接触层214对应为P型半导体层,而当第一功能层21为N型半导体层时,过渡层213、接触层214对应为N型半导体层。在本实施例中,过渡层213为P型非掺杂(AlyGa1-y)xIn1- xP,其厚度为50~250nm。接触层214为P型非掺杂GaAs,其厚度为100~500nm。当然,接触层214也可以进行掺杂,例如掺杂Mg、Zn等,以改善接触层214的导电性能。

图4展示了本实施例所阐述外延晶片的导带结构,其中A段表示第一波导层211中掺杂Mg的浓度,C段表示第一子限制层2121掺杂的Mg浓度与第二子限制层2122掺杂的Zn浓度。可见,通过在第一限制层212的第一子限制层2121中掺杂Mg,第二子限制层2122中掺杂有Zn,利用Zn提高外延晶片中产生载流子的效率,从而提高外延晶片的电光转换效率,同时还能有效防止Zn扩散进入发光层3,影响发光层3的性能。

请参阅图5,图5是本发明第一限制层一实施例的结构示意图。

在替代实施例中,第一限制层212还包括阻隔层4。阻隔层4位于第一子限制层2121和第二子限制层2122之间,用于防止第二子限制层2122中的Zn扩散进入发光层3。同时,在接触层214掺杂有Zn的情况下,阻隔层4也能够防止接触层214中的Zn扩散进入发光层3。

进一步地,第一功能层21的接触层214位于第二子限制层2122远离第一子限制层2121的一侧,接触层214和第二子限制层2122之间设置有过渡层213,阻隔层4和过渡层213用于增大接触层214与发光层3之间的距离。在接触层214掺杂有Zn的情况下,接触层214与发光层3之间的距离增大,能够使得Zn较难扩散进入发光层3,也就避免了接触层214中掺杂的Zn对发光层3激光性能的影响。

优选地,阻隔层4可以采用AlGaInP系材料等,阻隔层4可以由无掺杂的AlGaInP材料构成。发明人通过大量实验发现,与其他材料相比,选用AlGaInP系材料的阻隔层4其防止Zn扩散进入发光层3的效果更佳。

请参阅图6,图6是本发明阻隔层一实施例的结构示意图。

在替代实施例中,与上述实施例不同的是:阻隔层4包括第一阻隔层41和第二阻隔层42。第一阻隔层41掺杂有Mg,第二阻隔层42掺杂有Zn。并且,阻隔层4为至少一层的第一阻隔层41和至少一层的第二阻隔层42交替层叠并且成对的超晶格结构。

也就是说,阻隔层4包括至少一层第一阻隔层41和至少一层第二阻隔层42,一层第一阻隔层41和一层第二阻隔层42为一对,即第一阻隔层41和第二阻隔层42的层数相等。阻隔层4还呈现第一阻隔层41和第二阻隔层42交替层叠的形式,即同一对的第一阻隔层41和第二阻隔层42相互层叠,并与其他对的第一阻隔层41和第二阻隔层42相互层叠,整体上呈现第一阻隔层41、第二阻隔层42、第一阻隔层41、第二阻隔层42、第一阻隔层41……如是依次层叠的形式。

进一步地,第一阻隔层41为掺杂有Mg的AlGaInP的超晶格结构,第二阻隔层42为掺杂有Zn的AlGaInP的超晶格结构,其中Mg或Zn的掺杂浓度为1×1017~5×1018cm-3。第一阻隔层41和第二阻隔层42的厚度相等且为0.5~20nm。阻隔层4一共包括1~20对成对的第一阻隔层41和第二阻隔层42。其中,超晶格结构的具体结构形式在本领域技术人员的理解范畴之内,在此就不再赘述。

由于Mg或Zn在超晶格结构的AlGaInP材料中的扩散系数相对较低,拥有比较陡峭的掺杂边,能够减少扩散进入发光层3的掺杂原子,从而降低掺杂原子扩散进入发光层3所带来的对发光层3性能的影响。并且,为进一步减少扩散进入发光层3的掺杂原子,例如Zn,第一层的第一阻隔层41位于第一子限制层2121上,后续其他阻隔层4的层体依次层叠于该第一阻隔层41上,以增大Zn扩散进入发光层3的距离,从而减少Zn扩散进入发光层3。

图7展示了本实施例所阐述外延晶片的导带结构,其中A段表示第一波导层211中掺杂Mg的浓度,D段表示阻隔层4的第一阻隔层41、第二阻隔层42成对的超晶格结构以减少掺杂原子Zn扩散的情况。可见,本实施例通过增设阻隔层4,能够有效防止掺杂原子扩散进入发光层3。同时,阻隔层4采用第一阻隔层41、第二阻隔层42成对的超晶格结构,使得超晶格结构中的掺杂原子扩散系数相对较低,进一步地防止掺杂原子扩散进入发光层3,以降低掺杂原子扩散进入发光层3所带来的对发光层3性能的影响。

请参阅图8,图8是本发明半导体激光器一实施例的结构示意图。

在一实施例中,半导体激光器5包括外延晶片51,外延晶片51受激辐射激光,以实现半导体激光器5输出激光的功能。其中,外延晶片51的具体结构形式已在上述实施例中详细阐述,在此就不再赘述。

以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高效的火花塞快洗装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类