一种电光调q腔内倍频亚纳秒脉冲绿光激光器

文档序号:1394452 发布日期:2020-02-28 浏览:39次 >En<

阅读说明:本技术 一种电光调q腔内倍频亚纳秒脉冲绿光激光器 (Electro-optically Q-switched intracavity frequency doubling subnanosecond pulse green laser ) 是由 于广礼 丁建永 肖湖福 郭忠纪 周军 于 2019-12-18 设计创作,主要内容包括:本发明公开了一种电光调Q腔内倍频亚纳秒脉冲绿光激光器,包括:泵浦源、泵浦耦合元件、偏振分光棱镜、激光增益介质、λ/4波片、电光开关、基频谐振腔反射镜、谐波分离境、倍频晶体和基频/倍频谐振腔反射镜。本发明通过短腔结构、腔内倍频、电光调Q方式,实现了高倍频效率的亚纳秒脉冲绿光激光输出,可以直接用于需要亚纳秒脉冲绿光激光器的场合;通过腔内倍频的方式,实现亚纳秒脉冲输出,具有结构紧凑、效率高、稳定可靠、成本低等优点。(The invention discloses an electro-optically Q-switched intracavity frequency doubling subnanosecond pulse green laser, which comprises: the laser comprises a pumping source, a pumping coupling element, a polarization beam splitter prism, a laser gain medium, a lambda/4 wave plate, an electro-optical switch, a fundamental frequency resonant cavity reflector, a harmonic isolation environment, a frequency doubling crystal and a fundamental frequency/frequency doubling resonant cavity reflector. The invention realizes the output of sub-nanosecond pulse green laser with high frequency doubling efficiency by a short cavity structure, intracavity frequency doubling and electro-optical Q-switching modes, and can be directly used in occasions needing the sub-nanosecond pulse green laser; through the mode of intracavity frequency doubling, realize subnanosecond pulse output, have compact structure, efficient, reliable and stable, advantage such as with low costs.)

一种电光调Q腔内倍频亚纳秒脉冲绿光激光器

技术领域

本发明涉及激光技术领域,尤其是一种电光调Q腔内倍频亚纳秒脉冲绿光激光器。

背景技术

亚纳秒脉冲绿光激光器是指脉冲宽度小于1ns的绿光激光器,与传统的调Q纳秒脉冲激光(10~100ns脉宽)相比,具有脉宽窄,峰值功率高等优点,对于激光微纳加工应用来说可以减小加工的热影响区,改善加工效率;对应激光测距应用,在相同能量下,亚纳秒脉宽激光比几纳、几十秒脉宽激光的测距精度及测距距离可以提高几倍至几十倍。相比于红外脉冲激光器,具有波长短等优点,在激光海洋雷达、激光精细加工、激光医疗、非线性光学等方面都有广泛的应用。常用的亚纳秒脉冲激光器的产生方法有被动调Q微片激光器、短腔电光调Q激光器、锁模激光器、腔倒空、SBS压缩脉宽、电调制半导体激光器等。而传统亚纳秒脉冲绿光激光器一般是通过腔外倍频来实现的,由于倍频效率与基频光的峰值功率密度有成正比,有些应用为了提升倍频效率,在基频及倍频装置之间加入整形光学元件,因此整个光路存在结构复杂,光光转换效率低,尺寸大等缺点。

发明内容

本发明所要解决的技术问题在于,提供一种电光调Q腔内倍频亚纳秒脉冲绿光激光器,能够实现高效率、结构紧凑的亚纳秒脉冲绿光激光输出,从而满足激光微加工、激光测距、激光医疗、科研等领域的应用。

为解决上述技术问题,本发明提供一种电光调Q腔内倍频亚纳秒脉冲绿光激光器,包括:泵浦源、泵浦耦合元件、偏振分光棱镜、激光增益介质、λ/4波片、电光开关、基频谐振腔反射镜、谐波分离境、倍频晶体和基频/倍频谐振腔反射镜;泵浦源发射的泵浦光经泵浦耦合元件聚焦到增益介质内,偏振分光棱镜与基频谐振腔反射镜、基频/倍频谐振腔反射镜构成L型折叠谐振腔,λ/4波片与电光开关在折叠腔的一个臂上,谐波分离境和倍频晶体在谐振腔的另一个臂上。

优选的,泵浦源输出方式为空间光输出或光纤耦合输出,泵浦方式为脉冲泵浦或连续泵浦。

优选的,泵浦耦合元件采用单透镜或透镜组结构,将泵浦光以一定光斑尺寸耦合到激光增益介质内。

优选的,激光器的谐振腔采用L型折叠腔结构,偏振分光棱镜作为谐振腔的折叠镜,偏振分光棱镜在谐振腔内同时起到偏振片及谐振腔折叠镜的作用,此偏振分光棱镜的通光面同时需要镀有泵浦光增透膜。

优选的,激光增益介质为Nd:YVO4晶体、Nd:GdVO4晶体、Nd:YAG晶体、Nd:YLF晶体,能够输出1μm波长的激光晶体。

优选的,激光增益介质、λ/4波片激光电光开关放在折叠腔的一个臂上,与偏振分光棱镜共同作用实现电光调Q;谐波分离镜及倍频晶体放在谐振腔的另一臂上,实现基频光线偏振输出与倍频晶体倍频的偏振匹配,实现最大倍频效率。

优选的,激光器采用电光调Q方式工作,调Q方式可以是加压式电光调Q或退压式电光调Q。

优选的,电光开光可以为RTP电光开关、BBO电光开关、LGS电光开关、LN电光开关或KD*P电光开关。

优选的,倍频方式采用腔内倍频,倍频晶体的相位匹配方式可以是临界相位匹配或非临界相位匹配;倍频光的输出方式为在偏振分光棱镜与倍频晶体之间***谐波分离镜,谐波分离镜的入射角度为45°或其他角度,可以实现基频光通过,倍频光输出;倍频晶体为LBO晶体、KTP晶体、PPLN晶体、BBO晶体。

本发明的有益效果为:本发明通过短腔结构、腔内倍频、电光调Q方式,实现了高倍频效率的亚纳秒脉冲绿光激光输出,可以直接用于需要亚纳秒脉冲绿光激光器的场合;通过腔内倍频的方式,实现亚纳秒脉冲输出,具有结构紧凑、效率高、稳定可靠、成本低等优点。

附图说明

图1为本发明的激光器结构示意图。

具体实施方式

如图1所示,一种电光调Q腔内倍频亚纳秒脉冲绿光激光器,包括:泵浦源、泵浦耦合元件、偏振分光棱镜、激光增益介质、λ/4波片、电光开关、基频谐振腔反射镜、谐波分离境、倍频晶体和基频/倍频谐振腔反射镜;泵浦源发射的泵浦光经泵浦耦合元件聚焦到增益介质内,偏振分光棱镜与基频谐振腔反射镜、基频/倍频谐振腔反射镜构成L型折叠谐振腔,λ/4波片与电光开关在折叠腔的一个臂上,谐波分离境和倍频晶体在谐振腔的另一个臂上。

本发明的激光器为半导体激光器端面泵浦、加压式电光调Q,谐振采用三镜折叠腔结构,通过腔内倍频、可以实现亚纳秒脉冲绿光输出。

泵浦源1用于产生一定谱线宽度的激光,用于泵浦激光增益介质2,为达到较高的转换效率,输出光谱线应与激光增益介质2的吸收谱线相匹配,本实施例中泵浦源的输出方式可以为空间光输出的半导体激光器,也可以为光纤耦合输出的半导体激光器,泵浦方式为连续泵浦或脉冲泵浦。

泵浦耦合元件2用于将泵浦源1产生的激光以特定光斑直径耦合进激光增益介质2,实现泵浦光与谐振内振荡光的模式匹配,可以为单透镜或多个透镜组成的透镜组,透镜表面镀有对泵浦源1的增透膜。

偏振分光棱镜3是在谐振中主要起到两个作用,第一,作为谐振腔的一个折叠镜,起到转折光路的作用,第二,作为谐振腔内起偏器的,将增益介质产生的激光变成线偏振光。本实施例的偏振分光棱镜的直角面镀有对泵浦光与基频激光的增透膜,斜面镀有对泵浦光增透膜,同时对基频光的偏振膜,本实施例中的偏振分光棱镜3也可以是介质膜形式的偏振片。

激光增益介质4在吸收泵浦源1的泵浦光后,实现粒子数反转,当增益介质内的增益大于谐振腔的损耗后,就可以建立起激光振荡,是产生激光的一个必要元件,本实施例中激光增益介质为Nd:YVO4晶体。

λ/4波片5和电光开关6在谐振腔内起到偏振转换的作用,实现调Q脉冲输出。本实施例中激光器为加压式电光调Q,λ/4波片5的快轴方向与激光增益介质4与偏振分光棱镜3产生的线偏振光方向成45°夹角,将线偏振光变成圆偏振光。在电光开关6未加λ/4电压时,圆偏振光经基频光谐振腔反射镜7反射,再次通过λ/4波片5后变成线偏振光,此时偏振方向旋转90°,反射光经偏振分光棱镜3反射,谐振腔不能输出激光,实现“关门”效果;当给电光开关6加上λ/4波电压后,谐振实现“开门”效果,输出一调Q脉冲。本实施例中的电光开关6为RTP电光开关。

基频谐振腔反射镜7主要是实现基频光的反射镜,本实施例中谐振腔反射镜7为0°反射镜,表面可以为平面、凹面、或凸面。

谐波分离镜为8主要是实现将基频光与倍频光分开,通过将反射镜的一个表面镀有基频光增透、倍频光反射的镀膜,将倍频光输出到谐振外。本实施例中谐波分离镜的入射角为45°。

倍频晶体9主要是通过非线性频率变换将基频光波长转换为倍频的绿光输出,本实施例中倍频晶体为LBO晶体。

基频/倍频谐振腔反射镜10主要是实现基频光与倍频光的同时反射,通过此种方式可以实现基频光在倍频晶体内双通倍频,提高倍频效率。本实施例中基频/倍频谐振腔反射镜10为0°反射镜,表面可以为平面、凹面、或凸面。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于片上集成波导与半导体纳米线的复合结构单纵模激光器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类