激光雷达apd电流式闭环随温调节系统

文档序号:1693844 发布日期:2019-12-10 浏览:29次 >En<

阅读说明:本技术 激光雷达apd电流式闭环随温调节系统 (Laser radar APD current type closed loop temperature-dependent regulating system ) 是由 刘慧林 姚建春 王娟 严柯 于 2019-10-21 设计创作,主要内容包括:本发明公开了一种激光雷达APD电流式闭环随温调节系统,包括处理器、温度采集模块、电流调节模块、DC-DC升压电路和电压采集模块,温度采集模块实时采集APD的温度;电流调节模根据处理器的电流调节信号输出调节电流I&lt;Sub&gt;DAC&lt;/Sub&gt;;DC-DC升压电路根据调节电流I&lt;Sub&gt;DAC&lt;/Sub&gt;调节用作APD偏置电压的输出电压V&lt;Sub&gt;-PAD&lt;/Sub&gt;;电压采集模块采集DC-DC升压电路的输出电压V&lt;Sub&gt;-PAD&lt;/Sub&gt;;处理器接收温度采集模块上传的温度信号,根据该温度信号产生电流调节信号;处理器还接收电压采集模块上传的电压信号,根据输出电压V&lt;Sub&gt;-PAD&lt;/Sub&gt;与APD在温度补偿下需要的偏置电压的比较结果修正电流调节信号,使得DC-DC升压电路的输出电压V&lt;Sub&gt;-PAD&lt;/Sub&gt;等于APD在温度补偿下需要的偏置电压。本发明通过随温调节来提高激光雷达的测量精度,降低激光雷达测量精度对温度的敏感性。(The invention discloses a laser radar APD current type closed loop temperature-dependent regulating system which comprises a processor, a temperature collecting module, a current regulating module, a DC-DC booster circuit and a voltage collecting module, wherein the temperature collecting module collects the temperature of an APD in real time, the current regulating module outputs a regulating current I DAC according to a current regulating signal of the processor, the DC-DC booster circuit regulates an output voltage V -PAD used as an APD bias voltage according to a regulating current I DAC , the voltage collecting module collects the output voltage V -PAD of the DC-DC booster circuit, the processor receives the temperature signal uploaded by the temperature collecting module and generates a current regulating signal according to the temperature signal, the processor also receives the voltage signal uploaded by the voltage collecting module and corrects the current regulating signal according to a comparison result of the output voltage V -PAD and the bias voltage required by the APD under temperature compensation, so that the output voltage V -PAD of the DC-DC booster circuit is equal to the bias voltage required by the APD under the temperature compensation.)

激光雷达APD电流式闭环随温调节系统

技术领域

本发明涉及激光雷达技术领域,具体涉及一种激光雷达APD电流式闭环随温调节系统。

背景技术

雪崩光电二极管(APD)是一种p-n结型光检测二极管,其应用在激光雷达的激光接收电路中时,利用了APD在击穿电压下载流子的雪崩倍增效应来增益、放大光电信号以提高检测的灵敏度。实际应用中环境温度的变化对APD的特性影响很大,当温度升高时,APD的击穿电压也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。

目前,通常通过控制激光雷达内部温度来实现产品的测量精度要求(即实现APD工作于恒定增益),如,公告号为CN201853143U的中国专利,公开一种激光雷达温度控制装置,包括雷达、望远镜主镜筒、传感器和温度控制装置,该温度控制装置包括半导体制冷器和温度控制电路板,温度控制电路板通过引线端子与半导体制冷器电连接。该温度控制装置的使用拓展了激光雷达的使用温度范围,完全保证在内外温差达到60℃的情况下不至于影响温控精度。这种方式存在居多弊端:激光雷达内部温度易受外界干扰、温度调节具有一定的时延、内部温度调节需要消耗大量的能量(相对于激光雷达主要工作能量来说甚至超过几倍)。

另,公开号为CN109541569A的中国专利,公开一种激光雷达PAD温度补偿系统,通过温度采集模块实时采集APD的温度,由电压反馈模块测量APD的实时电压,处理器比较实时电压与预存的与实时温度对应的理论电压进行比较,根据比较结果调整用于控制升压模块输出电压的PWM信号,以此实现激光雷达APD温度补偿。该方案中,通过处理器输出PWM信号调节MOS管输出占空比的方式调节输出电压,调节速度慢、调节过程中震荡大、电压输出纹波大。另,由分立元件搭建的升压模块,电路结构非常不稳定。

发明内容

本发明实施例提供一种激光雷达APD电流式闭环随温调节系统,通过随温调节来提高激光雷达的测量精度,降低激光雷达测量精度对温度的敏感性。其中,各个模块均由配合集成芯片的低压、数字化电路组成,电压随温调节稳定、调节精度高,调节电压纹波小,调节过程震荡小,为激光雷达APD的随温调节拓宽实现方案。

为了解决上述技术问题,本发明提供了一种激光雷达APD电流式闭环随温调节系统,包括处理器、温度采集模块、电流调节模块、DC-DC升压电路和电压采集模块,

所述温度采集模块用于实时采集APD的温度,且传输至处理器;

所述电流调节模块受控于处理器,其根据处理器的电流调节信号输出调节电流IDAC

所述DC-DC升压电路受控于电流调节模块,其根据电流调节模块输出的调节电流IDAC调节输出电压V-PAD,所述DC-DC升压电路的输出电压V-PAD用作APD的偏置电压;

所述电压采集模块用于采集DC-DC升压电路的输出电压V-PAD,且传输至处理器;

所述处理器接收温度采集模块上传的温度信号,根据该温度信号产生所述电流调节信号;所述处理器还接收电压采集模块上传的电压信号,根据输出电压V-PAD与APD在温度补偿下需要的偏置电压的比较结果修正所述电流调节信号,使得DC-DC升压电路的输出电压V-PAD等于APD在温度补偿下需要的偏置电压;

所述处理器通过运行程序实现逻辑运算和数据处理。

本发明一个较佳实施例中,进一步包括所述处理器为ARM处理器。

本发明一个较佳实施例中,进一步包括所述DC-DC升压电路包括DC-DC Boost升压电路,所述DC-DC Boost升压电路包括DC-DC Boost升压芯片和与之匹配的***电路;所述***电路包括电感L、二极管一D1、电阻一RFB1、电阻二RFB2和电容一C1;所述电感的一端连接DC-DC Boost升压芯片的输入端,其另一端连接二极管一的正极;电容一与电阻一和电阻二串联后的整体并联、且连接在二极管一的负极和地之间;二极管一的负极连接APD。

本发明一个较佳实施例中,进一步包括所述DC-DC Boost升压芯片型号为为LT8331。

本发明一个较佳实施例中,进一步包括所述DC-DC升压电路还包括一次倍压电路,所述一次倍压电路用于提高DC-DC Boost升压电路的输出电压,其包括二极管二D2、二极管三D3和电容二C2,电容二的一端与二极管二的正极均连接DC-DC Boost升压芯片的开关控制引脚(SW),二极管二的负极连接二极管三的正极,二极管三的负极和电容二的另一端均连接DC-DC Boost升压芯片的***电路。

本发明一个较佳实施例中,进一步包括所述电压采集模块包括运算放大器、模数转换芯片、电阻三R3和电阻四R4,电阻三和电阻四串联后的整体连接在DC-DC升压电路的输出端和地之间,运算放大器的正相输入端连接电阻三和电阻四的串联节点A,其负相输入端连接其输出端,运算放大器的输出端连接模数转换芯片的输入端,模数转换芯片的输出端连接处理器。

本发明一个较佳实施例中,进一步包括所述电流调节模块包括电流DAC芯片,所述电流DAC芯片的控制端通过I2C总线或者PMbus总线连接处理器,其输出端连接DC-DC Boost升压芯片的使能端EN,其电流输出端连接DC-DC Boost升压芯片的反馈端FB。

本发明一个较佳实施例中,进一步包括所述电流DAC芯片的型号为LTC7106。

本发明一个较佳实施例中,进一步包括所述温度采集模块包括贴合APD安装的温度传感器芯片,所述温度传感器芯片的控制端通过I2C总线或者PMbus总线连接处理器。

本发明一个较佳实施例中,进一步包括所述温度传感器芯片的型号为TMP117。

本发明的有益效果:

其一、本发明实施例的激光雷达APD电流式闭环随温调节系统,通过随温调节来提高激光雷达的测量精度,降低激光雷达测量精度对温度的敏感性:温度采集模块实时采集APD的温度并反馈给处理器,处理器根据该温度值输出电流调节信号,电流调节模块根据该电流调节信号产生调节电流IDAC,DC-DC升压电路根据该调节电流IDAC产生用作APD偏置电压的输出电压V-PAD,以此实现根据APD的温度实时调节APD的偏置电压,使得APD工作于恒定增益。

其二、在DC-DC升压电路根据调节电流IDAC产生用作APD偏置电压的输出电压V-PAD对APD进行温度补偿的同时,电压采集模块实时采集DC-DC升压电路的输出电压V-PAD,根据该输出电压V-PAD与APD在温度补偿下需要的偏置电压的比较结果修正电流调节信号,使得DC-DC升压电路的输出电压V-PAD与APD在温度补偿下需要的偏置电压相等,实现根据APD的温度闭环调节APD的偏置电压,相较于开环调节能够更稳定的提高调节精度、调节的精确性和实时性。

其三、处理器、温度采集模块、电流调节模块、和DC-DC升压电路均由配合集成芯片的低压、数字化电路组成,能量损耗小(低于产品能耗的1.5%),电压随温调节稳定、调节精度高、响应快,调节电压纹波小,调节过程震荡小。

附图说明

图1是本发明实施例中激光雷达APD电流式闭环随温调节系统的电路框图;

图2是本发明实施例中ARM处理器的软件运行流程图。

具体实施方式

下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。

实施例

此处需要说明的有:雪崩光电二极管(APD)是一种p-n结型光检测二极管,其应用在激光雷达的激光接收电路中时,利用了APD在击穿电压VBR下载流子的雪崩倍增效应来增益、放大光电信号以提高检测的灵敏度。实际应用中,环境温度的变化对APD的特性影响很大,当温度升高时,APD的击穿电压VBR也随着上升,如果APD的工作电压(或称“偏置电压”)不变,APD的光电检测性能会变弱,灵敏度降低。

本实施例技术方案中,设计60米激光雷达的激光接收电路中采用型号为APD500-9的光电二极管(即“APD”),其对温度较为敏感,其性能与测量精度密切相关。

APD500-9的参数如下表1所示:

表1 APD500-9参数

Electro-optical [email protected]

由表1所示,APD的击穿电压VBR随着温度升高而升高,偏置电压Vbias会提高,例如:若在23℃时,APD的击穿电压VBR为200V,温度系数为1.5情况下,温度每提高1℃,击穿电压VBR升高1.5V;反之温度降低1℃,击穿电压VBR降低1.5V。

APD500-9的增益GAIN和偏置电压Vbias、击穿电压VBR的关系如下所示:

GAIN=100时,Vbias=0.92*VBR(设计时使用增益为100);

GAIN=50时,Vbias=0.8*VBR

GAIN=30时,Vbias=0.7*VBR

基于此,当温度变化时,为保证APD稳定在固定的增益值(例如100),设计激光雷达的激光接收电路时需要对APD的偏置电压进行控制和调节,APD在温度补偿下需要的偏置电压即为在保证其固定增益时所需要的偏置电压。

为了随温调节APD的偏置电压,本实施例公开一种激光雷达APD电流式闭环随温调节系统,参照图1所示,该系统包括处理器、温度采集模块、电流调节模块、DC-DC升压电路和电压采集模块。

上述温度采集模块用于实时采集APD的温度,且传输至处理器;

上述电流调节模块受控于处理器,其根据处理器的电流调节信号输出调节电流IDAC

上述DC-DC升压电路受控于电流调节模块,其根据电流调节模块输出的调节电流IDAC调节输出电压V-PAD,上述DC-DC升压电路的输出电压V-PAD用作APD的偏置电压;

上述电压采集模块用于采集DC-DC升压电路的输出电压V-PAD,且传输至处理器;

上述处理器接收温度采集模块上传的温度信号,根据该温度信号产生上述电流调节信号;上述处理器还接收电压采集模块上传的电压信号,根据输出电压V-PAD与APD在温度补偿下需要的偏置电压的比较结果修正上述电流调节信号,使得DC-DC升压电路的输出电压V-PAD等于APD在温度补偿下需要的偏置电压。此处,APD在温度补偿下需要的偏置电压即为在保证其固定增益时所需要的偏置电压。

上述处理器通过运行程序实现逻辑运算和数据处理,本实施例技术方案中,上述处理器优选使用包含有ARM-M系列芯片的ARM处理器,比如STM32F407。

上述温度采集模块包括贴合APD安装的温度传感器芯片,本实施例技术方案,选用TI公司型号为TMP117的温度传感器芯片,其精度如下:

20℃至+50℃范围内为±0.1℃(最大值)

40℃至+70℃范围内为±0.15℃(最大值)

40℃至+100℃范围内为±0.2℃(最大值)

55℃至+125℃范围内为±0.25℃(最大值)

55℃至+150℃范围内为±0.3℃(最大值)。

上述温度传感器芯片在结构上尽可能靠近APD安装,以便更准确探测APD的温度。上述温度传感器芯片采用I2C总线或者PMbus总线连接ARM处理器,将检测到的APD的温度传输给ARM处理器。

上述DC-DC升压电路包括DC-DC Boost升压电路和一次倍压电路,DC-DC Boost升压电路为典型Boost升压电路,产生高于其输入电压的输出电压;一次倍压电路对DC-DCBoost升压电路的输出电压做一次倍压。

上述DC-DC Boost升压电路包括DC-DC Boost升压芯片和与之匹配的***电路。本实施例技术方案中,DC-DC Boost升压芯片优选使用LT8331型号芯片,该芯片最大支持140V电压输出,升压后的电压再做一次倍压,输出电压V-APD最大可达到280V。

上述***电路包括电感L、二极管一D1、电阻一RFB1、电阻二RFB2和电容一C1;上述电感的一端连接DC-DC Boost升压芯片的输入端,其另一端连接二极管一的正极;电容一与电阻一和电阻二串联后的整体并联、且连接在二极管一的负极和地之间;二极管一的负极连接APD。上述一次倍压电路用于提高DC-DC Boost升压电路的输出电压,其包括二极管二D2、二极管三D3和电容二C2,电容二的一端与二极管二的正极均连接DC-DC Boost升压芯片的开关控制引脚SW,二极管二的负极连接二极管三的正极,二极管三的负极和电容二的另一端均连接二极管一的正极。

本实施例技术方案中,电感L优选使用TDK公司CLF7045NIT-331M-D,330uH,0.6A;二极管D1,D2,D3采用Diodes肖特基二极管BAV21WQ-7-F;电容一C1优选使用muRataGRM55DR72E105KW01L,100nF,250V;电容二C2优选使用TDK公司C5750X7T2W105K250KA,1uF,450V;电阻一RFB1,RFB2分别为1.5MΩ和14.7KΩ,封装使用0603以上尺寸,V-APD默认输出电压为165V。

上述电流调节模块包括电流DAC芯片,本实施例技术方案中,DAC芯片优选使用ADI公司LTC7106型号芯片,该芯片通过输出电流IDAC来改变DC-DC Boost升压芯片输出反馈电压VREF,从而达到控制输出电压V-APD的目的。

图1中,电流DAC芯片的GPO为输出脚,连接到DC-DC Boost升压芯片的使能脚EN,用于控制DC-DC Boost升压芯片打开和关闭。

电流DAC芯片的电流输出引脚IDAC连接DC-DC Boost升压芯片的反馈引脚FB,用来改变DC-DC Boost升压芯片的输出反馈电压VREF,从而调节DC-DC Boost升压芯片的输出电压。

电流DAC芯片的控制部分通过I2C总线或者PMbus总线连接ARM处理器。

LTC7106是一个7bit电流DAC,电流调节有三种模式,分别为Nominal,Range High,Range Low模式,三种模式下的电流调节范围如下表2所示:

表2 LTC7106的输出电流IDAC调节范围

Range LSB(μA) IMIN(μA) IMAX(μA)
Nominal 1 –64 63
RangeHigh 4 –256 252
RangeLow 0.25 –16 15.75

从表2看,最小调节台阶Nominal模式为1μA,Range High模式为4μA,Range Low模式为0.25μA。

电压采集模块包括运算放大器、模数转换芯片、电阻三R3和电阻四R4,电阻三和电阻四串联后的整体连接在DC-DC升压电路的输出端和地之间,运算放大器的正相输入端连接电阻三和电阻四的串联节点A,其负相输入端连接其输出端,运算放大器的输出端连接模数转换芯片的输入端,模数转换芯片的输出端连接处理器。

DC-DC Boost升压芯片的输出电压经过一次倍压电路提高一倍后,由电阻三R3、电阻四R4分压得到一个较低的电压(0~5V),并将该分压输入给运算放大器,本实施例技术方案中,运算放大器优选使用型号为AD8613的运算放大器,电阻三R3和电阻四R4分别选用590K、10K,精度为1%,运算放大器对提取的分压放大一倍。运算放大器输出的电压信号进入模数转换芯片,将模拟信号转换成ARM处理器能够识别的数字信号。本实施例技术方案中,模数转换芯片优选使用ADI公司LTC2451型号。

参照图1所示,输出电压V-APD和调节电流IDAC的关系如下:

其中,VREF为DC-DC Boost升压芯片的输出反馈电压;IDAC为电流DAC芯片输出的调节电流,RFB1、RFB2分别为电阻一和电阻二的阻值。

电压V-APD输出给APD用作APD的偏置电压Vbias

以下详述ARM处理器的算法实现模块:

公式(1)中

RFB1均为固定值,V-APD的变化只与IDAC有关,即

ΔV-APD=ΔIDAC*RFB1 (公式2)。

本实施例技术方案中,APD优选型号为AD500-9的光电二极管,AD500-9的温度系数为1.5,设计增益GAIN=100的情况下,由AD500-9的固有特性,其偏置电压Vbias与击穿电压VBR的关系如下:

Vbias=0.92*[VBR+(T-23)]*1.5 (公式3);

其中,T的温度范围为工业级温度范围,即-40℃~+85℃。

公式(3)中表征的偏置电压Vbias即为APD在当前温度T下进行温度补偿时所需要的偏置电压。

激光雷达工作环境温度为-40℃~+85℃,ΔT为125,根据公式(3)计算获得APD偏置电压Vbias的波动范围为:

ΔVbias=ΔT*1.5*0.92 (公式4);

APD在温度补偿下所需要的偏置电压Vbias的变化与输出电压V-APD的变化相同,即:

ΔVbias=ΔT*1.5*0.92=ΔIDAC*RFB1 (公式5)。

电流DAC LTC7106的电流调节范围见表2所示,由表2知,将电流DAC芯片的工作模式设置为Nominal,ΔVbias=ΔIDAC*RFB1=1.5V,电压调节最小单位为1.5V。

ARM处理器在设定APD偏置电压Vbias的范围时:

若APD工作环境温度为-40℃~85℃,温度系数为1.5,VBR=200V时,根据公式(3)计算APD偏置电压Vbias的范围为:

偏置电压Vbias最小值VL=0.92*[200+(-40-23)*1.5]=97.06V;

偏置电压Vbias最小值VH=0.92*[200+(85-23)*1.5]=269.56V。

例如:激光雷达工作在23℃环境下下,APD的击穿电压VBR为180V。

激光雷达在室外工作状态下,温度传感器采集到APD的温度为40℃,ARM处理器计算APD为40℃时APD的偏置电压和电流调节模块输出的调节电流IDAC如下:

由公式(3)计算,Vbias(40℃)=0.92*[180+(40-23)*1.5]=180.06V;

Vbias(23℃)=0.92*[180+(23-23)*1.5]=165.6V;

ΔVbias=Vbias(40℃)-Vbias(23℃)=189.06-165.6=23.46V。

根据公式公式(5)计算,

根据上述计算,如果要将APD的偏置电压调到189.06V,只需要将电流DAC芯片输出的调节电流IDAC调节到-16uA即可。

实际调节过程中,经过调节电流IDAC调节后的DC-DC升压电路的输出电压V-APD不一定等于APD在温度补偿下所需要的偏置电压,此时为了形成闭环调节,通过电压采集模块采集DC-DC升压电路的输出电压V-APD,处理器将采集到的该输出电压V-APD与内部预存的APD在当前温度下为了达到温度补偿所需要的偏置电压进行比较,并根据比较结果重新修正电流调节信号,使得在修正后的电流调节信号的控制下DC-DC升压电路输出与APD在当前温度下为了达到温度补偿所需要的偏置电压相等的输出电压V-APD,此处,APD在当前温度下为了达到温度补偿所需要的偏置电压所指为:在当前温度下APD工作在设计的恒定增益下所需要的偏置电压。

参照图2所示的ARM处理器软件运行流程图,其运行过程如下:

(1)根据温度采集模块上传的温度信号计算获取APD的工作温度T;

(2)根据公式(3)计算APD工作在当前温度T下温度补偿需要的偏置电压Vbias

(3)根据公式(2)计算调节电流IDAC

(4)通过指令调节电流ADC芯片的输出电流,DC-DC升压电路在该输出电流的控制下输出高压,对APD进行温度补偿,确保APD工作于恒定增益;

(5)根据电压采集模块上传的电压信号计算获取DC-DC升压电路的输出电压V-APD,求该输出电压V-APD与步骤(2)中计算的偏置电压Vbias的差值;

(6)根据输出电压V-APD与偏置电压Vbias的差值判断是否需要进行修正,若差值为零,进行下一次温度测量;若差值不为零,计算获取修正后的调节电流;

(7)通过指令调节电流ADC芯片的输出电流,直至输出电压V-APD与偏置电压Vbias的差值为零,进行下一次温度测量。

以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:星载激光测高仪在轨标定的激光角反射器口径优化方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!