一种双波长单片集成面发射半导体激光器

文档序号:1130091 发布日期:2020-10-02 浏览:22次 >En<

阅读说明:本技术 一种双波长单片集成面发射半导体激光器 (Dual-wavelength monolithic integrated surface emitting semiconductor laser ) 是由 曾丽娜 李林 李再金 李功捷 乔忠良 赵志斌 刘国军 曲轶 彭鸿雁 于 2020-06-28 设计创作,主要内容包括:本发明公开了一种双波长单片集成面发射半导体激光器,包括蓝宝石衬底,所述蓝宝石衬底顶端自下而上依次生长有缓冲层,第一底部DBR层,第一下势垒层,第一有源层,隧道结层,电流注入层,第一上势垒层,第一顶部DBR层,欧姆接触层,第二底部DBR层,第二下势垒层,第二有源层,第二上势垒层,第二顶部DBR层,盖层,第三底部DBR层,第三下势垒层,第三有源层,第三上势垒层,第三顶部DBR层,窗口层。本发明不仅能够获得高质量的高反射率腔镜,还能有效减小谐振腔的腔长,有利于芯片集成。(The invention discloses a dual-wavelength monolithic integrated surface emitting semiconductor laser, which comprises a sapphire substrate, wherein a buffer layer, a first bottom DBR layer, a first lower barrier layer, a first active layer, a tunnel junction layer, a current injection layer, a first upper barrier layer, a first top DBR layer, an ohmic contact layer, a second bottom DBR layer, a second lower barrier layer, a second active layer, a second upper barrier layer, a second top DBR layer, a cover layer, a third bottom DBR layer, a third lower barrier layer, a third active layer, a third upper barrier layer, a third top DBR layer and a window layer are sequentially grown at the top end of the sapphire substrate from bottom to top. The invention can obtain a high-quality high-reflectivity cavity mirror, can effectively reduce the cavity length of the resonant cavity and is beneficial to chip integration.)

一种双波长单片集成面发射半导体激光器

技术领域

本发明属于半导体光电子技术领域,更具体的说是涉及一种双波长单片集成面发射半导体激光器。

背景技术

近年来,GaN基半导体材料在外延生长和光电子器件制备方面均取得了重大科技突破,其中发光二极管(LED)和边发射激光器(EEL)已经实现产业化。蓝绿光双波长单片集成面发射半导体激光器,在高密度光存储、激光显示、激光打印、激光照明、激光电视、水下通信、海洋资源探测及激光生物医学等领域具有广阔的应用前景。

面发射半导体激光谐振腔通常由高反射率的分布布拉格反射镜(DBR)组成。然而对GaN基半导体激光而言,外延生长DBR非常困难,一般由多层介质膜DBR来获得高反射率谐振腔。由于介质膜不导电,因此目前面发射半导体激光器通常采用ITO膜内腔电极,ITO膜内腔电极吸收引起的损耗以及ITO/GaN界面带来的损耗导致较高的阈值电流和较低的光输出。双波长单片集成面发射半导体激光器均利用键合技术,把两种不同发射波长的激光芯片键合在一起,集成度较低。双波长激光的输出特性受到键合温度、压力以及键合剂等因素的影响,不易获得稳定的激光输出特性,不利于芯片集成。

因此,如何提供一种双波长单片集成面发射半导体激光器是本领域技术人员亟需解决的问题。

发明内容

有鉴于此,本发明提供了一种双波长单片集成面发射半导体激光器,不仅能够获得高质量的高反射率腔镜,还能有效减小谐振腔的腔长,有利于芯片集成。

为了实现上述目的,本发明采用如下技术方案:

一种双波长单片集成面发射半导体激光器,包括:蓝宝石衬底,所述蓝宝石衬底顶端自下而上依次生长有缓冲层,第一底部DBR层,第一下势垒层,第一有源层,隧道结层,电流注入层,第一上势垒层,第一顶部DBR层,欧姆接触层,第二底部DBR层,第二下势垒层,第二有源层,第二上势垒层,第二顶部DBR层,盖层,第三底部DBR层,第三下势垒层,第三有源层,第三上势垒层,第三顶部DBR层,窗口层。

优选的,半导体激光器经过第一次ICP刻蚀,形成第一次光刻、ICP刻蚀沟道,所述第一次光刻、ICP刻蚀沟道由所述隧道结层延伸至所述窗口层。

优选的,半导体激光器经过第二次ICP刻蚀,形成第二次光刻、ICP刻蚀沟道,所述第二次光刻、ICP刻蚀沟道由所述第一底部DBR层延伸至所述窗口层。

优选的,所述第一底部DBR层,为外延生长不同掺杂浓度的n型n-GaN/n+-GaN DBR同质结材料,n-GaN与n+-GaN共20对,厚度分别为35nm和50nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3

优选的,隧道结层为重掺杂n+-GaN/p+-GaN,n+-GaN和p+-GaN的掺杂浓度均5E19/cm3,厚度分别为15nm和10nm。

优选的,第一顶部DBR层为外延生长不同掺杂浓度的n型n-GaN/n+-GaNDBR同质结材料,n-GaN与n+-GaN DBR总共15对,厚度分别为35nm和50nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3

优选的,第二底部DBR层为外延生长不同掺杂浓度的n型n-GaN/n+-GaNDBR同质结材料,n-GaN与n+-GaN总共20对,厚度分别为40nm和55nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3

优选的,第二顶部DBR层为外延生长不同掺杂浓度的n型n-GaN/n+-GaNDBR同质结材料,n-GaN与n+-GaN总共15对,厚度分别为40nm和55nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3

优选的,第三底部DBR层为外延生长不同掺杂浓度的n型n-GaN/n+-GaNDBR同质结材料,n-GaN与n+-GaN总共20对,厚度分别为50nm和70nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3

优选的,第三顶部DBR层为外延生长不同掺杂浓度的n型n-GaN/n+-GaNDBR同质结材料,n-GaN与n+-GaN总共15对,厚度分别为50nm和70nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3

本发明的有益效果在于:

本发明结构紧凑,是外延生长近紫外到蓝绿光波长的面发射半导体激光器结构,形成近紫外激光泵浦蓝绿双波长单片集成面发射半导体激光器,所有半导体激光器结构直接由外延生长获得,解决了外延生长DBR的难题,实现一次外延生长即可完成三个不同发光波长有源层和多对DBR层。这种双波长单片集成面发射半导体激光器,不仅能够获得高质量的高反射率腔镜,还能有效减小谐振腔的腔长,有利于芯片集成。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1附图为本发明的结构示意图。

图2附图为本发明双波长单片集成面发射半导体激光器经过两次ICP刻蚀后的结构示意图。

其中,图中,

1为蓝宝石衬底,2为缓冲层,3为第一底部DBR层,4为第一下势垒层,5为第一有源层,6为隧道结层,7为电流注入层,8为第一上势垒层,9为第一顶部DBR层,10为欧姆接触层,11为第二底部DBR层,12为第二下势垒层,13为第二有源层,14为第二上势垒层,15为第二顶部DBR层,16为盖层,17为第三底部DBR层,18为第三下势垒层,19为第三有源层,20为第三上势垒层,21为第三顶部DBR层,22为窗口层,30为第一底部DBR刻蚀区,31为隧道结刻蚀区,32为电流注入孔径区,33为第一顶部DBR刻蚀区,34为第二底部DBR刻蚀区,35为第二顶部DBR刻蚀区,36为第三底部DBR刻蚀区,37为第三顶部DBR刻蚀区,40为第一次光刻、ICP刻蚀沟道,41为第二次光刻、ICP刻蚀沟道。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

请参阅附图1-2,本发明提供了一种双波长单片集成面发射半导体激光器,包括:蓝宝石衬底1,所述蓝宝石衬底1顶端自下而上依次生长有缓冲层2,第一底部DBR层3,第一下势垒层4,第一有源层5,隧道结层6,电流注入层7,第一上势垒层8,第一顶部DBR层9,欧姆接触层10,第二底部DBR层11,第二下势垒层12,第二有源层13,第二上势垒层14,第二顶部DBR层15,盖层16,第三底部DBR层17,第三下势垒层18,第三有源层19,第三上势垒层20,第三顶部DBR层21,窗口层22。

其中,蓝宝石衬底1用于在其上外延生长垂直腔面发射激光器各层材料。

缓冲层2为厚度是1000nm的GaN材料,该缓冲层2生长在蓝宝石衬底1上,用于阻止蓝宝石衬底1中缺陷的转移。

第一底部DBR层3,为外延生长不同掺杂浓度的n型n-GaN/n+-GaN DBR同质结材料,n-GaN与n+-GaN共20对,厚度分别为35nm和50nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3。该层紫外光的反射率可以达到99.5%以上,作为底部DBR全反射第一有源层产生的紫外光。

第一下势垒层4为厚度是100nm的GaN材料。

第一有源层5为多量子阱层,其发光波长为380nm~390nm。该波段的紫外光在谐振腔中震荡激射发光,发出的紫外光由第一有源层向第二有源层方向出射。

隧道结层6为重掺杂n+-GaN/p+-GaN,n+-GaN和p+-GaN的掺杂浓度均5E19/cm3,厚度分别为15nm和10nm。如果增大隧道结层掺杂浓度或者减小隧道结层厚度,则可降低器件的阈值电流密度;如果隧道结层厚度过大,则会降低电子的隧穿效率。

电流注入层7为厚度是50nm的n+-GaN材料,掺杂浓度为n=5E19/cm3。电流注入层的厚度及掺杂浓度会影响电流的注入效率,增大掺杂浓度会增加电流的注入效率。

第一上势垒层8为厚度是100nm的GaN材料。

第一顶部DBR层9为外延生长不同掺杂浓度的n型n-GaN/n+-GaN DBR同质结材料,n-GaN与n+-GaN DBR总共15对,厚度分别为35nm和50nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3。第一顶部DBR层材料厚度要满足紫外光在该层的反射率可以达到99%以上。如果该层DBR的掺杂浓度的比值大于10,所获得的DBR层的折射率差值为0.5左右,有利于减小DBR层的总对数。

欧姆接触层10为厚度是300nm的n+-GaN材料,掺杂浓度为n=5E19/cm3。该层有利于降低器件的接触电阻,如增加该层的掺杂浓度,会降低欧姆接触的电阻。

第二底部DBR层11为外延生长不同掺杂浓度的n型n-GaN/n+-GaN DBR同质结材料,n-GaN与n+-GaN总共20对,厚度分别为40nm和55nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3。该层的蓝光的反射率可以达到99.5%以上,作为底部DBR全反射第二有源层产生的蓝光。

第二下势垒层12为厚度是100nm的GaN材料。

第二有源层13为多量子阱层,其发光波长为420nm~430nm。该波段的蓝光在谐振腔中震荡激射发光,发出的蓝光由第二有源层向第三有源层方向出射。

第二上势垒层14为厚度是100nm的GaN材料。

第二顶部DBR层15为外延生长不同掺杂浓度的n型n-GaN/n+-GaN DBR同质结材料,n-GaN与n+-GaN总共15对,厚度分别为40nm和55nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3。第二顶部DBR层材料厚度要满足蓝光在该层的反射率可以达到99%以上。如果该层DBR的掺杂浓度的比值大于10,所获得的DBR层的折射率差值为0.5左右,有利于减小DBR层的总对数。

盖层16为厚度是200nm的n+-GaN材料,掺杂浓度为n=1E18/cm3

第三底部DBR层17为外延生长不同掺杂浓度的n型n-GaN/n+-GaN DBR同质结材料,n-GaN与n+-GaN总共20对,厚度分别为50nm和70nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3。该层的绿光的反射率可以达到99.5%以上,作为底部DBR全反射第三有源层产生的绿光。

第三下势垒层18为厚度是100nm的GaN材料。

第三有源层19为多量子阱层,其发光波长为520nm~530nm。该波段的绿光在谐振腔中震荡激射发光,发出的绿光由第三有源层向窗口层方向出射。

第三上势垒层20为厚度是100nm的GaN材料。

第三顶部DBR层21为外延生长不同掺杂浓度的n型n-GaN/n+-GaN DBR同质结材料,n-GaN与n+-GaN总共15对,厚度分别为50nm和70nm,n-GaN掺杂浓度为n=1E18/cm3,n+-GaN掺杂浓度为n=1E19/cm3。第三顶部DBR层材料厚度要满足绿光在该层的反射率可以达到99%以上。如果该层DBR的掺杂浓度的比值大于10,所获得的DBR层的折射率差值为0.5左右,有利于减小DBR层的总对数。

窗口层22为厚度是100nm的GaN材料。

本发明提出一种双波长单片集成面发射半导体激光器DBR和电流注入孔径的制作方法,具体步骤如下:首先利用MOCVD外延生长设备,在衬底层上由下至上外延生长各层材料,从外延生长缓冲层2开始直到窗口层22,一次外延生长完成,不需要二次外延生长,从而避免了在二次外延生长过程中外延片污染,保证芯片材料的外延生长质量。

其次,半导体激光器经过第一次ICP刻蚀,形成第一次光刻、ICP刻蚀沟道40,第一次光刻、ICP刻蚀沟道40由隧道结层6延伸至窗口层22,第一次ICP刻蚀在隧道结层6形成隧道结刻蚀区31,在电流注入层7形成电流注入孔径区32。第一次ICP刻蚀后,利用电化学刻蚀工艺,刻蚀溶液为强酸(例如:硫酸或硝酸)或强碱(例如:氢氧化钠或氢氧化钾),调节刻蚀电压1.5V至3V,刻蚀3至5小时后,获得所需要的电流注入孔径尺寸(10微米至30微米)后,升高电压至原来刻蚀电压的2至3倍,5分钟后反应结束,制作出面发射激光器外延片近紫外激光的电流孔径。电流注入孔径可以形成电流的注入通道,有效降低注入电流的横向扩散损耗,有利于降低器件的阈值电流密度。

然后半导体激光器经过第二次ICP刻蚀,形成第二次光刻、ICP刻蚀沟道41,第二次光刻、ICP刻蚀沟道41由第一底部DBR层3延伸至窗口层22,二次ICP刻蚀在第一底部DBR层3形成第一底部DBR刻蚀区30,在第一顶部DBR层9形成第一顶部DBR刻蚀区33,在第二底部DBR层11形成第二底部DBR刻蚀区34,在第二顶部DBR层15形成第二顶部DBR刻蚀区35,在第三底部DBR层17形成第三底部DBR刻蚀区36,在第三顶部DBR层21形成第三顶部DBR刻蚀区37。第二次ICP刻蚀后,利用电化学刻蚀工艺,刻蚀溶液为强酸(例如:硫酸或硝酸)或强碱(例如:氢氧化钠或氢氧化钾),调节刻蚀电压1.5V至3V,刻蚀5至8小时后,一次完成外延片结构中DBR的制作,实现芯片中全部谐振腔的制作。利用常规的芯片电极制备工艺,实现电泵浦激射发光。第一底部DBR刻蚀区和第一顶部DBR刻蚀区构成紫外光的谐振腔,有利于获得紫外光激光输出;第二底部DBR刻蚀区和第二顶部DBR刻蚀区构成蓝光的谐振腔,有利于蓝光激光输出;第三底部DBR刻蚀区和第三顶部DBR刻蚀区构成绿光的谐振腔,有利于绿光激光的输出。本发明有利于实现多级泵浦光单片集成电光混合泵浦输出激光,首先由第一级电泵浦激射获得紫外光,然后由第一级紫外光泵浦第二级获得蓝光激光,再由第二级蓝光泵浦第三级获得绿光激光输出,以此类推,最终实现多级泵浦光单片集成激光。

其中,ICP刻蚀气体为SF6/BCl3混合气体(气体体积比为2:3),刻蚀速率为10nm/min,能获得可控的刻蚀速率。刻蚀掩膜材料为SiO2或Si3N4,和SiO2掩膜材料相比,使用Si3N4掩膜材料获得刻蚀侧壁更垂直光滑。

本发明经过第一次光刻和ICP干法刻蚀工艺后,实现近紫外面发射激光器外延片电流注入孔径制作,经过第二次光刻和ICP干法刻蚀工艺后,完成蓝绿光双波长单片集成垂直腔面发射激光器制备工艺。

本发明提出一种双波长单片集成面发射半导体激光器电极制作方法,是利用常规的半导体激光芯片的电极制作工艺,芯片电极分别制作在欧姆接触层和缓冲层上。

本发明由第一有源区提供电泵浦激射产生近紫外激光,在第一有源区注入电流产生电注入激发的近紫外激光,近紫外激光作为泵浦源,泵浦第二有源区和第三有源区,从而在单芯片上获得蓝绿光双波长激光。

本发明提出一种双波长单片集成面发射半导体激光器结构,由外延生长同质结DBR来实现高反射率的面发射激光器谐振腔,无需高反射率的谐振腔镀膜工艺,从而能够保证获得高质量的腔镜材料,能解决腔镜复杂模系设计及高反射膜、增透膜制备的问题。

本发明结构紧凑,是外延生长近紫外到蓝绿光波长的面发射半导体激光器结构,形成近紫外激光泵浦蓝绿双波长单片集成面发射半导体激光器,所有半导体激光器结构直接由外延生长获得,解决了外延生长DBR的难题,实现一次外延生长即可完成三个不同发光波长有源层和多对DBR层。这种双波长单片集成面发射半导体激光器,不仅能够获得高质量的高反射率腔镜,还能有效减小谐振腔的腔长,有利于芯片集成。本发明采用近紫外波长的面发射半导体激光器作为泵浦光源,获得近紫外单芯片激光集成泵浦源,实现蓝绿光双波长单片集成面发射半导体激光。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于锥形双包层拉曼增益光纤的中红外全光纤激光振荡器及产生中红外激光的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类