发光器、发光器件、光学装置和信息处理设备

文档序号:1218183 发布日期:2020-09-04 浏览:9次 >En<

阅读说明:本技术 发光器、发光器件、光学装置和信息处理设备 (Light emitter, light emitting device, optical device, and information processing apparatus ) 是由 稻田智志 大野健一 皆见健史 大塚勤 樋口贵史 于 2019-09-03 设计创作,主要内容包括:一种发光器、发光器件、光学设备和信息处理设备,该发光器包括:基板;电容器,该电容器被设置在所述基板上;光源,该光源被设置在所述基板上并且被供应来自所述电容器中累积的电荷的驱动电流;覆盖部,该覆盖部被从所述光源发射的光透射通过并且被设置在所述光源的光轴方向上;以及支撑部,该支撑部被设置在所述基板的除了所述电容器和所述光源之间的部分之外的部分上并且支撑所述覆盖部。(A light emitter, a light emitting device, an optical apparatus, and an information processing apparatus, the light emitter comprising: a substrate; a capacitor disposed on the substrate; a light source that is provided on the substrate and is supplied with a drive current from the electric charge accumulated in the capacitor; a cover portion that is transmitted through by light emitted from the light source and is disposed in an optical axis direction of the light source; and a support portion that is provided on a portion of the substrate other than a portion between the capacitor and the light source and supports the cover portion.)

发光器、发光器件、光学装置和信息处理设备

技术领域

本发明涉及发光器、发光器件、光学装置和信息处理设备。

背景技术

JP-A-2018-32654公开了一种包括布置在平面上的多个垂直谐振器型发光元件的垂直谐振器型发光元件模块具有:接合表面,该接合表面被设置在基板上的来自彼此相邻的垂直谐振器型发光元件的激光束之间的区域中并且位于激光束的发射方向侧;以及外壁,该外壁面对激光束透射通过的波束空间。

顺带一提,为了提高测量精度,通过飞行时间(ToF)方法执行三维感测的光源必须以更高的速度接通和断开大电流。因此,当在电容器和光源之间设置支撑扩散来自光源的光的扩散板的壁以用于释放电荷以便在短时间内供应大电流时,因为壁成为障碍物,所以难以使电容器和光源彼此接近。因此,难以减小电容器与光源之间的接线电感,并且这在高速打开和关闭光源的情况下成为约束。

发明内容

技术问题

本发明的一个目的是提供一种发光器,在该发光器中,与在光源和电容器之间另外设置与其它部分处的壁类似的支撑扩散板的壁的情况相比,光源和电容器可以被容易地设置成彼此接近。

问题的解决方案

根据本发明的第一方面,提供了一种发光器,该发光器包括:基板;电容器,该电容器被设置在所述基板上;光源,该光源被设置在所述基板上并且被供应来自所述电容器中累积的电荷的驱动电流;覆盖部,该覆盖部被从所述光源发射的光透射通过并且被设置在所述光源的光轴方向上;以及支撑部,该支撑部被设置在所述基板的除了所述电容器和所述光源之间的部分之外的部分上并且支撑所述覆盖部。

根据本发明的第二方面,在根据第一方面所述的发光器中,所述光源可以包括多个发光元件,所述覆盖部可以是扩散并透射从所述发光元件发射的光的扩散板,并且所述覆盖部的没有设置用于所述覆盖部的所述支撑部的一侧的端部可以被设置成透射来自所述光源中的设置在没有设置所述支撑部的一侧的端部处的发光元件的发射强度为50%或更高的光。

根据本发明的第三方面,在根据第二方面所述的发光器中,所述覆盖部的没有设置用于所述覆盖部的所述支撑部的一侧的端部可以被设置成使得透射来自所述光源中的设置在没有设置所述支撑部的一侧的端部处的所述发光元件的发射强度为0.1%或更高的光。

根据本发明的第四方面,在根据第一方面至第三方面中任一方面所述的发光器中,所述覆盖部可以覆盖所述电容器的表面的至少一部分。

根据本发明的第五方面,在根据第四方面的发光器中,除了所述电容器之外,所述基板还包括在所述基板上的没有被所述覆盖部覆盖的电路构件。

根据本发明的第六方面,在根据第一方面所述的发光器中,所述支撑部可以是被设置成围绕所述光源和所述电容器的壁。

根据本发明的第七方面,根据第六方面所述的发光器还可以包括:阻挡部,该阻挡部被设置成从所述电容器侧的所述支撑部的所述壁朝向所述光源侧延伸并且阻挡光的透射。

根据本发明的第八方面,在根据第七方面所述的发光器中,所述阻挡部和所述支撑部可以被形成为单个构件。

根据本发明的第九方面,根据第三方面所述的发光器还可以包括:梁部分,该梁部分被设置在所述电容器侧的所述覆盖部的端部,以从所述覆盖部侧朝向所述电容器侧延伸。

根据本发明的第十方面,在根据第九方面所述的发光器中,所述梁部分可以被设置成与所述电容器的表面接触。

根据本发明的第十一方面,在根据第九方面或第十方面所述的发光器中,所述梁部分和所述支撑部可以被形成为单个构件。

根据本发明的第十二方面,提供了一种发光器,该发光器包括:基板;电容器,该电容器被设置在所述基板上;光源,该光源被设置在所述基板上并且被供应来自所述电容器中累积的电荷的驱动电流;覆盖部,该覆盖部被从所述光源发射的光透射通过并且被设置在所述光源的光轴方向上;以及支撑部,该支撑部被设置在所述基板上,具有位于所述电容器和所述光源之间并且比其它部分薄的部分,并且支撑所述覆盖部。

根据本发明的第十三方面,提供了一种发光器件,该发光器件包括:根据第一方面至第十二方面中任一方面所述的发光器;以及壳体,该壳体容纳所述发光器,其中,所述发光器的所述覆盖部是扩散板,并且所述壳体包括透射部板,所述透射部板透射通过用所述扩散板扩散来自所述发光器中的所述光源的光而产生的光。

根据本发明的第十四方面,在根据第十三方面所述的发光器件中,所述发光器中的所述光源和所述电容器之间的距离可以小于所述光源和所述透射部板之间的距离。

根据本发明的第十五方面,提供了一种光学装置,该光学装置包括:根据第一方面至第十二方面中任一方面所述的发光器;以及光接收部,该光接收部接收从所述发光器中的所述光源发射并且被测量目标反射的光,其中,所述光接收部输出与自从所述光源发射光直至所述光接收部接收光的时间对应的信号。

根据本发明的第十六方面,提供了一种信息处理设备,该信息处理设备包括:根据第十五方面所述的光学装置;以及形状指定部,该形状指定部基于从所述光学装置中的光源发射、被所述测量目标反射并且被所述光学装置中的所述光接收部接收的光来指定所述测量目标的三维形状。

根据本发明的第十七方面,根据第十六方面所述的信息处理设备还可以包括认证处理部,该认证处理部基于所述形状指定部的指定结果对所述信息处理设备的使用执行认证处理。

本发明的有利效果

根据第一方面,与在光源和电容器之间另外设置与其它部分处的壁类似的支撑扩散板的壁的情况相比,光源和电容器可以被容易地布置成彼此接近。

根据第二方面,与强度低于50%的光被设置成被透射的情况相比,防止了高强度光在没有扩散的情况下发射到外部。

根据第三方面,与强度低于0.1%的光被设置成被透射的情况相比,防止了高强度光在没有扩散的情况下发射到外部。

根据第四方面,与电容器的表面的至少一部分没有被覆盖的情况相比,光源和电容器可以被布置成彼此接近。

根据第五方面,与电路构件也被覆盖的情况相比,可以减小昂贵的覆盖部的面积。

根据第六方面,与光源和电容器没有被围绕的情况相比,防止了异物进入。

根据第七方面,与没有设置光阻挡部的情况相比,可以减小昂贵的覆盖部的面积。

根据第八方面,与阻挡部和支撑部没有被形成为单个构件的情况相比,可以减少组装步骤的数目。

根据第九方面,与没有设置梁部分的情况相比,防止了异物进入。

根据第十方面,与梁部分没有包括阻挡光的透射的任何构件的情况相比,可以防止高强度光被施加到外部。

根据第十一方面,与梁部分和支撑部没有被形成为单个构件的情况相比,可以减少组装步骤的数目。

根据第十二方面,与壁被设置成具有恒定厚度的情况相比,可以在接线电感减小的同时增强覆盖部的支撑。

根据第十三方面,与扩散板被暴露于外部的情况相比,可以防止扩散板受损。

根据第十四方面,与光源和电容器之间的距离大于光源和透射部板之间的距离的情况相比,使光源和驱动部彼此接近。

根据第十五方面,提供了一种执行三维测量的光学装置。

根据第十六方面,提供了一种可以测量三维形状的信息处理设备。

根据第十七方面,提供了一种信息处理设备,该信息处理设备具有基于三维形状来执行认证处理的认证处理部。

附图说明

将基于以下附图来详细地描述本发明的示例性实施方式,其中:

图1是例示了信息处理设备的示例的视图;

图2是例示了信息处理设备的配置的框图;

图3是光源的平面图;

图4是用于例示光源中的一个VCSEL的截面结构的视图;

图5A和5B是用于例示扩散板的示例的视图;图5A是平面图,并且图5B是沿着图5A的线VB-VB截取的截面图;

图6是例示了用于通过低侧驱动来驱动光源的等效电路的示例的视图;

图7A和图7B是用于例示应用第一示例性实施方式的发光器的视图;图7A是平面图,并且图7B是沿着图7A中的线VIIB-VIIB截取的截面图;

图8A和图8B是例示为了比较而例示的发光器的视图;图8A是平面图,并且图8B是沿着图8A中的线VIIIB-VIIIB截取的截面图;

图9A和图9B是用于例示应用第一示例性实施方式的发光器的修改例的平面图;图9A是根据修改例1的发光器,并且图9B是根据修改例2的发光器;

图10A和图10B是用于例示应用第二示例性实施方式的发光器的视图;图10A是平面图,并且图10B是沿着图10A中的线XB-XB截取的截面图;

图11A和图11B是用于例示应用第三示例性实施方式的发光器的视图;图11A是平面图,并且图11B是沿着图11A中的线XIB-XIB截取的截面图;

图12A和图12B是用于例示作为应用第三示例性实施方式的发光器的修改例的发光器的视图;图12A是平面图,并且图12B是沿着图12A中的线XIIB-XIIB截取的截面图;

图13A和图13B是用于例示应用第四示例性实施方式的发光器的视图;图13A是平面图,并且图13B是沿着图13A中的线XIIIB-XIIIB截取的截面图;并且

图14是用于例示使用发光器的信息处理设备的截面结构的视图。

具体实施方式

下文中,将参照附图详细描述本发明的示例性实施方式。

信息处理设备识别是否允许访问信息处理设备的用户访问,并且在许多情况下,只有在经认证用户是被允许访问的用户的情况下,才允许使用该设备(信息处理设备)。到目前为止,已经采用了使用密码、指纹、虹膜等来认证用户的方法。近年来,需要采用安全性更高的认证方法。作为该方法,执行使用诸如用户脸部形状等这样的三维图像的认证。

这里,作为示例,信息处理设备被描述为便携式信息处理终端,并且被描述为通过识别被捕获为三维图像的脸部的形状来认证用户的设备。另外,除了便携式信息终端之外,信息处理设备还可以被应用于诸如个人计算机(PC)这样的信息处理设备。

此外,在本示例性实施方式中描述的配置、功能、方法等也可以被应用于除了脸部形状的识别之外的三维形状的识别。换句话说,本示例性实施方式还可以被应用于识别除了脸部之外的物体的形状。另外,与测量目标的距离无关紧要。

第一示例性实施方式

信息处理设备1

图1是例示了信息处理设备1的示例的视图。如上所述,作为示例,信息处理设备1是便携式信息处理终端。

信息处理设备1包括:用户界面部分(在下文中,被称为UI部分)2;以及获取三维图像的光学装置3。UI部分2具有例如显示装置和输入装置形成一体的配置,其中,显示装置向用户显示信息,并且通过用户的操作向输入装置中输入用于信息处理的指令。显示装置例如是液晶显示器或有机EL显示器,并且输入装置例如是触摸面板。

光学装置3包括发光器4和三维传感器(下文中,被称为3D传感器)5。发光器4朝向用于获取三维图像的测量目标即这里描述的示例中的脸部发射光。3D传感器5获取从发光器4发射、被脸部反射并返回的光。这里,基于使用光的飞行时间的所谓的飞行时间(ToF)方法来获取脸部的三维图像。下文中,即使在获取脸部的三维图像的情况下,脸部也将被称为测量目标。另外,可以获取除了脸部之外的三维图像。在某些情况下,获取三维图像被称为3D感测。

另外,信息处理设备1被配置为包括CPU、ROM、RAM等的计算机。另外,ROM包括诸如闪存这样的非易失性可重写存储器。另外,ROM中累积的程序或常数在RAM中被开发,并且通过运行CPU,操作信息处理设备1并且执行各种类型的信息处理。

图2是例示了信息处理设备1的配置的框图。

信息处理设备1包括上述光学装置3、光学装置控制器8和系统控制器9。光学装置控制器8控制光学装置3。另外,光学装置控制器8包括形状指定部81。系统控制器9将整个信息处理设备1作为系统进行控制。另外,系统控制器9包括认证处理部91。另外,UI部分2、扬声器92、二维相机(在图2中,被称为2D相机)93等连接到系统控制器9。另外,3D传感器5是光接收部的示例,并且光学装置控制器8是控制器的示例。

下文中,将给出更详细的描述。

发光器4包括基板10、光源20、扩散板30、光量监视光接收元件(在图2和以后的附图中被称为PD)40、驱动部50、支撑部60和电容器70A和70B。光源20、PD 40、驱动部50、电容器70A和70B被设置在基板10上。另外,扩散板30由支撑部60保持成与基板10相距预定距离,并且被设置为覆盖光源20和PD 40。扩散板30是覆盖部的示例。

另外,在基板10上,除了上述构件之外,还安装3D传感器5、电阻元件6和电容器7。电阻元件6和电容器7被设置用于操作驱动部50或3D传感器5。另外,分别描述了一个电阻元件6和一个电容器7,但是可以安装多个电阻元件6和电容器7。另外,在图1中,3D传感器5也被设置在基板10上,而3D传感器5可以不设置在基板10上。

发光器4中的光源20包括以发光元件阵列的形式二维布置的多个发光元件。作为示例,发光元件是垂直谐振器表面发光激光器元件VCSEL(垂直腔面发射激光器)。下文中,发光元件将被描述为垂直谐振器表面发光激光器元件VCSEL。垂直谐振器表面发光激光器元件VCSEL将被称为VCSEL。光源20在垂直于基板10的方向上发射光。在通过ToF方法执行三维感测的情况下,需要光源20例如通过驱动部50发射等于或大于100MHz并且具有1ns或更少的上升时间的脉冲光。下文中,所发射的脉冲光被称为发射脉冲。另外,在脸部认证作为示例的情况下,光发射的距离是从大致10cm至大致1m。另外,用于对测量目标的3D形状进行测量的范围为大致1平方米。下文中,光发射的距离被称为测量距离,并且用于对测量目标的3D形状进行测量的范围被称为测量范围或照射范围。另外,虚拟设置在测量范围或照射范围内的表面被称为照射表面。

随后,将描述发光器4中的基板10、扩散板30、PD 40、驱动部50、支撑部60和电容器70A和70B。另外,随后将详细描述光源20。

3D传感器5包括多个光接收单元。例如,光接收单元中的每一个被配置为针对来自光源20的发射脉冲接收来自测量目标的反射光,并且针对每个光接收单元累积与直到接收反射光为止的时间对应的电荷。下文中,接收到的反射光将被称为光接收脉冲。3D传感器5被配置为CMOS结构的器件,其中每个光接收单元包括两个栅极和对应于这两个栅极的电荷累积部。另外,通过将脉冲交替地添加到这两个栅极,所产生的光电子高速传递到两个电荷累积部中的任一个。在两个电荷累积部中,累积与发射脉冲和光接收脉冲之间的相位差对应的电荷。另外,3D传感器5经由AD转换器针对每个接收单元输出与发射脉冲和光接收脉冲之间的相位差对应的数字值作为信号。换句话说,3D传感器5输出与从光源20发射光之后直到由3D传感器5接收光为止的时间对应的信号。另外,AD转换器可以被设置在3D传感器5中,或者可以被设置在3D传感器5外。

光学装置控制器8的形状指定部81在每个光接收单元中获取从3D传感器5获得的数字值,并且针对每个光接收单元计算与测量目标的距离。另外,通过计算出的距离,指定测量目标的3D形状。

在形状指定部81所指定的测量目标的3D形状具有预先累积在ROM等中的3D形状的情况下,系统控制器9的认证处理部91执行与信息处理设备1的使用相关的认证处理。另外,作为示例,与信息处理设备1的使用相关的认证处理是确定是否允许使用作为设备的信息处理设备1的处理。例如,在确定作为测量目标的脸部的3D形状与存储在诸如ROM这样的存储构件中的脸部形状匹配的情况下,允许使用信息处理设备1,包括信息处理设备1所提供的各种应用等。

上述形状指定部81和认证处理部91包括作为示例的程序。另选地,形状指定部81和认证处理部91还可以包括诸如ASIC或FPGA这样的集成电路。此外,形状指定部81和认证处理部91可以包括诸如程序这样的软件和诸如ASIC这样的集成电路。

在图2中,分别例示了光学装置3、光学装置控制器8和系统控制器9,但是系统控制器9可以包括光学装置控制器8。另外,光学装置3可以包括光学装置控制器8。此外,光学装置3、光学装置控制器8和系统控制器9可以一体地形成。

在描述发光器4之前,将描述形成发光器4的光源20、扩散板30、PD 40、驱动部50和电容器70A和70B。

光源20的配置

图3是光源20的平面图。光源20具有多个VCSEL以二维阵列布置的配置。纸面的向右方向是x方向,纸面的向上方向是y方向。逆时针与x方向和y方向正交的方向是z方向。

VCSEL是设置有有源区并且在与半导体基板垂直的方向上发射激光的发光元件,有源区是层叠在半导体基板200上的下多层膜反射镜和上多层膜反射镜之间的发光区域(参见随后将描述的图4)。因此,容易形成二维阵列。光源20中包括的VCSEL的数目例如是100至1000。另外,多个VCSEL彼此并联连接,并且被并行驱动。另外,以上VCSEL的数目是示例,并且可以按照测量距离和测量范围设置VCSEL的数目。

在光源20的表面上,在多个VCSEL中设置公共阳极电极218(参见随后将描述的图4)。另外,阳极电极218经由接合线21A和21B连接到设置在基板10上的阳极接线11A和11B。另外,设置在上侧(+y方向侧)的多条接合线将被称为接合线21A,并且设置在下侧(-y方向侧)的多条接合线将被称为接合线21B。这里,接合线21A连接到阳极接线11A,并且接合线21B连接到阳极接线11B。另外,电容器70A(参照图2)连接到阳极接线11A,并且电容器70B(参照图2)连接到阳极接线11B。、另外,阴极电极214(参见随后将描述的图4)被设置在光源20的后表面上并且用导电粘合剂等接合到阴极接线12,其中阴极电极214设置在基板10上。导电粘合剂例如是银膏。

这里,阳极接线11A和11B被设置在光源20的上下方向上,并且通过接合线21A和21B连接到阳极电极218。因此,与上下方向平行地向光源20供应电流。当接合线被设置在阳极电极218的向上方向上或向下方向上的一侧并且向光源20供应电流时,接合线附近的VCSEL具有高电流密度和高光强度,并且接合线远侧的VCSEL具有低电流密度和低光强度。换句话说,在光源20的多个VCSEL中,所发射光的强度往往会发生偏差。

相反,如图3中例示的,光源20在垂直方向上设置有阳极接线11A和11B,并且设置接合线21A和21B以便连接到阳极电极218,使得在垂直方向上向光源20供应电流。因此,防止了从光源20中的多个VCSEL发射的光的强度有偏差。另外,可以仅使用阳极接线11A和阳极接线11B中的一者。在这种情况下,仅需要电容器70A和70B中的一个。另外,在图2中,电容器70A和70B中的每一个被例示为一个电容器,但是电容器70A和70B中的每一个可以包括并列设置的多个电容器。

VCSEL的结构

图4是用于例示光源20中的一个VCSEL的截面结构的视图。VCSEL是具有λ谐振器结构的VCSEL。纸面的向上方向是z方向。

VCSEL具有以下配置:其中具有不同Al组分的AlGaAs层彼此交替重叠的n型下分布布拉格型反射镜(DBR:分布式布拉格反射器)202、包括被夹在上间隔层和下间隔层之间的量子阱层的有源区206以及其中具有不同Al组分的AlGaAs层彼此交替重叠的p型上分布布拉格型反射镜208被层叠在诸如n型GaAs这样的半导体基板200上。下文中,分布布拉格反射镜将被称为DBR。

n型下DBR 202是层叠体,其中Al0.9Ga0.1As层和GaAs层被制成一对,每层的厚度为λ/4nr(而λ是振荡波长并且nr是介质的折射率),并且这些层交替层叠40个循环。在掺杂作为n型杂质的硅之后的载流子浓度例如为3×1018cm-3

有源区206具有其中层叠有下间隔层、量子阱有源层和上间隔层的配置。例如,下间隔层是未掺杂的Al0.6Ga0.4As层,量子阱有源层是未掺杂的InGaAs量子阱层和未掺杂的GaAs势垒层,并且上间隔层是未掺杂的Al0.6Ga0.4As层。

p型上DBR 208是层叠体,其中p型Al0.9Ga0.1As层和GaAs层被制成一对,每层的厚度为λ/4nr,并且这些层交替层叠29个循环。在掺杂作为p型杂质的碳之后的载流子浓度例如为3×1018cm-3。优选地,在上DBR 208的最上层,形成由p型GaAs制成的接触层,并且在上DBR208的最下面或内侧,形成p型AlAs的电流限制层210。

通过蚀刻从上DBR 208起层叠直至到达下DBR 202的半导体层,在半导体基板200上形成圆柱形台面M。因此,电流限制层210被暴露在台面M的侧表面上。通过氧化步骤,在电流限制层210,形成从台面M的侧表面氧化的氧化区域210A和被氧化区域210A围绕的导电区域210B。另外,在氧化步骤中,由于AlAs层的氧化速度高于AlGaAs层的氧化速度并且氧化区域210A基本上以相同的速度从台面M的侧表面向内氧化,因此与导电区域210B的半导体基板200平行的平面形状具有反映台面M的外形的形状(也就是说,圆形形状),并且其中心与台面M的轴向方向(点划线)基本上匹配。另外,在示例性实施方式中,台面M具有柱状结构。

在台面M的最上层,形成由其中层叠有Ti/Au等的金属制成的环状p侧电极212。p侧电极212与设置在上DBR 208上的接触层欧姆接触。环状p侧电极212的内侧是发光端口212A,激光通过发光端口212A发射到外部。换句话说,在VCSEL中,光在垂直于半导体基板200的方向上发射,并且台面M的轴向方向是光轴。此外,在半导体基板200的后表面上,阴极电极214被形成为n侧电极。另外,p侧电极212内侧的上DBR 208的表面是发光表面。

另外,除了发光端口212A和连接p侧电极212的阳极电极(随后将描述的阳极电极218)的部分之外,设置绝缘层216以便覆盖台面M的表面。另外,除了发光端口212A之外,阳极电极218被设置成与p侧电极212欧姆接触。另外,阳极电极218是针对多个VCSEL共同设置的。换句话说,p侧电极212中的每一个通过阳极电极218并联连接到形成光源20的多个VCSEL。

另外,VCSEL可以在单横模式下振荡,并且可以在多横模式(多模式)下振荡。举例来说,VCSEL之一的光输出为4mW至8mW。

位于+y方向侧的端部的VCSEL组22A是处于随后将描述的图7A和图7B中例示的电容器70A侧的VCSEL,并且位于-y方向侧的端部的VCSEL组22B是处于随后将描述的图7A和图7B中例示的电容器70B侧的VCSEL。

扩散板30的配置

图5A和图5B是用于例示扩散板30的示例的视图。图5A是平面图,并且图5B是沿着图5A的线VB-VB截取的截面图。在图5A中,纸面的向右方向是x方向,纸面的向上方向是y方向。逆时针与x方向和y方向正交的方向是z方向。因此,在图5B中,纸面的向右方向是x方向,纸面的向上方向是z方向。

如图5B中例示的,扩散板30具有彼此平行的两个表面,并且包括树脂层32,在树脂层32上形成有用于将光向着平坦玻璃基材31的一个表面(这里,作为后表面的-z方向侧)扩散的不平整处。扩散板30进一步扩展从光源20的VCSEL入射的光的扩展角并且发射光。换句话说,形成在扩散板30的树脂层32上的不平整处折射或散射光,并且使所发射光的扩展角β大于入射光的扩展角α。换句话说,如图5A和图5B中例示的,透射通过扩散板30的从扩散板30出射的光的扩展角β变成大于从VCSEL发射的光的扩展角α(α<β)。因此,当使用扩散板30时,被从光源20发射的光照射的表面的面积大于不使用扩散板30时。另外,被照射表面上的光密度降低。另外,光密度是指每单位面积的照射度,并且扩展角α和β是半峰全宽(FWHM)。

另外,扩散板30具有例如正方形平面形状,其在x方向上的宽度Wx和在y方向上的纵向宽度Wy为1mm至10mm,并且在z方向上的厚度td为0.1mm至1mm。另外,+y方向侧的端部是扩散板30的端部33A,而-y方向侧的端部是扩散板30的端部33B。如随后将参考图7A和图7B描述的,端部33A在电容器70A侧,而端部33B在电容器70B侧。另外,扩散板30的平面形状可以是诸如多边形形状或圆形形状这样的其它形状。另外,在上述尺寸和形状的情况下,特别地,提供了光扩散构件,该光扩散构件适用于便携式信息终端的脸部认证或大致几米的相对短距离的测量。

PD 40

PD 40是由硅等制成的光电二极管,用于输出与其接收到的光量(下文中,被称为接收光量)对应的电信号。PD 40被设置为接收从光源20发射并且被扩散板30的后表面(随后将描述的图7B中的-z方向上的表面)反射的光。控制光源20,以基于PD 40接收到的光量保持预定光量并发射光。换句话说,如随后将描述的,光学装置控制器8监视PD 40接收到的光量,控制驱动部50,并且控制从光源20发射的光量。

驱动部50和电容器70A和70B

在期望以更高速度驱动光源20的情况下,优选地执行低侧驱动。低侧驱动指诸如MOS晶体管这样的驱动元件相对于诸如VCSEL这样的驱动目标位于电流路径的下游侧的配置。相反,驱动元件处于上游侧的配置被称为高侧驱动。

图6是例示了用于通过低侧驱动来驱动光源20的等效电路的示例的视图。在图6中,例示了光源20的VCSEL、驱动部50、电容器70A和70B、电源82、PD 40和用于检测流过PD40的电流的检测电阻元件41。另外,电容器70A和70B并联连接到电源82。

电源82被设置在图2中例示的光学装置控制器8中。电源82产生DC电压,而+侧是电源电势,-侧是地电势。电源电势被供应到电源线83,并且地电势被供应到地线84。

光源20具有如上所述的多个VCSEL彼此并联连接的配置。VCSEL的阳极电极218(参照图4)经由设置在基板10上的阳极接线11A和11B连接到电源线83。

驱动部50包括n沟道MOS晶体管51和信号发生电路52,以使MOS晶体管51导通和截止。MOS晶体管51的漏极经由设置在基板10上的阴极接线12连接到VCSEL的阴极电极214(参照图4)。MOS晶体管51的源极连接到地线84。另外,MOS晶体管51的栅极连接到信号发生电路52。换句话说,光源20的VCSEL和驱动部50的MOS晶体管51在电源线83和地线84之间彼此串联连接。通过控制光学装置控制器8,信号发生电路52生成用于使MOS晶体管51导通的“H电平”信号和用于使MOS晶体管51截止的“L电平”信号。

在电容器70A和70B中,一个端子连接到电源线83,并且另一个端子连接到地线84。另外,电容器70A和70B包括例如电解电容器或陶瓷电容器。

在PD 40中,阴极连接到电源线83,并且阳极连接到检测电阻元件41的一个端子。另外,检测电阻元件41的另一个端子连接到地线84。换句话说,PD 40和检测电阻元件41在电源线83和地线84之间彼此串联连接。另外,作为PD 40和检测电阻元件41之间的连接点的输出端子42连接到光学装置控制器8。

接下来,将描述作为低侧驱动的光源20的驱动方法。

首先,驱动部50中的信号发生电路52所生成的信号是“L电平”。在这种情况下,MOS晶体管51截止。换句话说,电流没有在MOS晶体管51的源极和漏极之间流动。因此,电流没有流向彼此串联连接的VCSEL。VCSEL不发光。

此时,由电源82对电容器70A和70B充电。换句话说,电容器70A和70B的一个端子是电源电势而另一个端子是地电势。在电容器70A和70B中,累积由电容、电源电压(电源电势-地电势)和时间确定的电荷。

接下来,当驱动部50中的信号发生电路52所生成的信号为“H电平”时,MOS晶体管51从OFF变为ON。然后,累积在电容器70中的电荷流向(被放电至)彼此串联连接的MOS晶体管51和VCSEL,并且VCSEL发光。

另外,当驱动部50中的信号发生电路52所生成的信号为“L电平”时,MOS晶体管51从ON变为OFF。因此,VCSEL停止发光。然后,电源82恢复电容器70A和70B中的电荷累积。

如上所述,每当从信号发生电路52输出的信号变为“L电平”和“H电平”时,重复作为VCSEL的发光停止的不发光和发光。换句话说,发射来自VCSEL的光脉冲。

另外,在不设置电容器70A和70B的情况下,电荷(电流)可以直接从电源82供应到VCSEL,但是通过在电容器70A和70B中累积电荷、借助MOS晶体管51的开关释放累积的电荷并且将电流快速供应到VCSEL,VCSEL的发光的上升时间缩短。此外,当光源20和电容器70A和70B之间的距离减小使得接线的电感减小时,光源20可以高速打开和关闭。这里,如图3中所示,电荷通过电容器70A从+y方向侧供应到光源20,并且通过电容器70B从-y方向侧供应。另外,光源20和电容器70A和70B之间的距离可以优选地等于或小于1mm。

PD 40经由检测电阻元件41在反向方向上连接在电源线83和地线84之间。因此,在不发光的状态下,没有电流流动。当PD 40接收VCSEL所发射的光中被扩散板30反射的光部分时,与接收光量对应的电流在PD 40中流动。因此,通过输出端子42的电压测量流过PD 40的电流,并且检测光源20的光强度。这里,光学装置控制器8执行控制,使得光源20的光强度是根据由PD 40接收到的光量的预定光强度。换句话说,在光源20的光强度低于预定光强度的情况下,光学装置控制器8通过增大电源82的电源电势来增加累积在电容器70A和70B中的电荷量,并且增大流向VCSEL的电流。此外,在光源20的光强度高于预定光强度的情况下,通过降低电源82的电源电势,光学装置控制器8减少累积在电容器70A和70B中的电荷量,并且减少流向VCSEL的电流。以这种方式,控制光源20的光强度。

另外,在PD 40接收的光量已极度减少的情况下,有一个问题是当扩散板30脱离或受损时,从光源20发射的光被直接发射到外部。在这种情况下,光学装置控制器8降低光源20的光强度。例如,光源20停止发光,也就是说,停止用光照射测量目标。

另外,基板10例如采用具有三层的多层基板的形式。换句话说,从安装有光源20或驱动部50的一侧起,基板10包括第一导电层、第二导电层和第三导电层。另外,在第一导电层和第二导电层之间以及第二导电层和第三导电层之间,设置绝缘层。例如,第三导电层是电源线83并且第二导电层是地线84。另外,通过第一导电层,形成端子或类似物的电路图案,其中光源20的阳极接线11A和11B、阴极接线12、PD 40、检测电阻元件41、电容器70A和70B等连接到所述端子或类似物。第一导电层、第二导电层和第三导电层由诸如铜(Cu)或银(Ag)这样的金属或诸如包含金属的导电膏这样的导电材料制成。绝缘层由例如环氧树脂或陶瓷制成。

第三导电层的电源线83通过通孔连接到设置在第一导电层上的阳极接线11A和11B、通过通孔连接到PD 40的阴极所连接的端子等、电容器70A和70B的电源线83所连接的端子。类似地,第二导电层的地线84通过通孔连接到驱动部50的MOS晶体管51的源极所连接的端子、检测电阻元件41的地线84所连接的端子等。因此,由第三导电层制成的电源线83和由第二导电层制成的地线84防止电源电势和地电势的变化。

发光器4

接下来,将详细描述发光器4。

图7A和图7B是用于例示应用第一示例性实施方式的发光器4的视图。图7A是平面图,并且图7B是沿着图7A的线VIIB-VIIB截取的截面图。这里,在图7A中,纸面的向右方向是x方向,纸面的向上方向是y方向。逆时针与x方向和y方向正交的方向是z方向。因此,在图7B中,纸面的向右方向是y方向,纸面的向上方向是z方向。这也适用于下面的类似附图。

如上所述,发光器4包括基板10、光源20、扩散板30、PD 40、驱动部50和支撑部60。另外,在发光器4的基板10上,还安装有诸如3D传感器5、电阻元件6和电容器7这样的电路构件。另外,如上所述,在基板10上设置有电路图案,所述电路图案连接阳极接线11A和11B、阴极接线12、光源20、PD 40、驱动部50、3D传感器5、电阻元件6、电容器7等。

在发光器4中,例如,PD 40、光源20和驱动部50按此次序在+x方向上设置在基板10上。另外,电容器70A和70B分别被设置成将光源20夹在基板10的光源20的±y方向上。

扩散板30被设置成覆盖光源20和PD 40。另外,扩散板30没有覆盖驱动部50、电容器70A和70B、3D传感器5、电阻元件6和电容器7。换句话说,没有用扩散板30覆盖的电路构件被安装在基板10上。扩散板30覆盖基板10的一部分,而不覆盖整个基板10。

光源20可以被直接安装在其上形成有上述电路图案等的基板10上。另外,光源20被设置在由诸如铝氧化物或铝氮化物这样的散热基材制成的散热基板上,并且散热基板可以被安装在基板10上。另外,光源20可以被安装在基板上,所述基板的安装光源20的部分凹进。这里,基板10包括具有电路图案的电路板、包括散热基板的电路板、为了安装光源20而凹进的基板等。

如图7B中例示的,扩散板30由支撑部60支撑在距光源20预定距离处。支撑部60包括壁部分61A和61B。壁部分61A被设置在PD 40侧,并且壁部分61B被设置在驱动部50侧。壁部分61A和61B形成yz平面。换句话说,在支撑部60中,壁部分没有设置在设置有电容器70A的一侧(被称为电容器70A侧,并且这将适用于其他情况)和电容器70B侧。换句话说,在光源20和电容器70A和70B之间,没有设置壁部分。这里,在光源20和电容器70A和70B之间没有设置壁部分的情况被称为在光源20和电容器70A和70B之间没有设置支撑部60的情况。另外,在不分别区分壁部分61A和61B的情况下,存在壁部分61A和61B被称为壁部分或壁的情况。

另外,如图7A和图7B中例示的,具有正方形平面形状的扩散板30的两侧由支撑部60的壁部分61A和61B支撑。支撑部60例如是用诸如液晶聚合物或陶瓷这样的树脂材料一体成型的单个构件,壁部分的厚度为300μm,并且壁部分的高度为450至550μm。另外,支撑部60被制成黑色等,以便吸收从光源20发射的光。另外,支撑部60的壁部分的一个端面被接合到基板10,并且另一个端面被接合到扩散板30。

如图7A和图7B中例示的,在光源20和电容器70A和70B之间,没有设置壁部分即支撑部60。在这种结构中,光源20和电容器70A和70B彼此接近地设置,使得用于将来自电容器70A和70B的用于光发射的电流供应到光源20的接线被缩短,并且接线电感减小。因此,光源20高速打开和关闭。

如图7B中例示的,PD 40与光源20一起被扩散板30覆盖。因此,PD 40接收从光源20发射的光中的被扩散板30反射的光的一部分。因此,如图6中描述的,PD 40检测(监视)从光源20发射的光的强度。

用于比较的发光器4’

图8A和图8B是用于例示为了比较而例示的发光器4’的视图。图8A是平面图,并且图8B是沿着图8A的线VIIIB-VIIIB截取的截面图。下文中,将描述与应用图7A和图7B中例示的第一示例性实施方式的发光器4不同的部分。

在图8A和图8B中例示的发光器4'中,除了壁部分61A和61B之外,支撑部60'还包括壁部分62A和62B。壁部分62A被设置在光源20和电容器70A之间,壁部分62B被设置在光源20和电容器70B之间,并且壁部分62A和壁部分62B二者形成xz平面。另外,壁部分61A、61B、62A和62B在侧表面上彼此连接。换句话说,支撑部60在z方向上的截面形状形成正方形的边。另外,在发光器4’中,光源20和PD 40被支撑部60的壁部分61A、61B、62A和62B围绕。在发光器4’中,由于存在于光源20和电容器70A之间的壁部分62A以及存在于光源20和电容器70B之间的壁部分62B,导致光源20和电容器70A和70B之间的距离应该被设置成大于壁部分62A和62B的厚度。如上所述,当壁部分的厚度为300μm时,用于将来自电容器70A和70B的用于光发射的电流供应到光源20的接线变得比对应于至少壁部分62A和62B的厚度的300μm长。因此,有一个问题是在高速打开和关闭光源20的情况下,接线电感的增加成为约束。

应用图7A和图7B中例示的第一示例性实施方式的发光器4不包括在光源20和电容器70A和70B之间的支撑部。因此,如图7B中的箭头所指示的,有一个问题是从光源20发射到电容器70A侧和电容器70B侧的光在不透射通过扩散板30的情况下发射到外部。特别地,有一个问题是具有高强度的光从被例示为由图3中的虚线围绕并被设置在光源20的驱动部50侧的端部中的VCSEL组22A和22B发射到外部。另外,光强度有时被称为发射强度。

这里,如图7B中例示,扩散板30的在电容器70A侧的端部33A的位置可以优选地被设置成使得具有50%或更高的强度(发射强度)并且从VCSEL组22A发射的光入射到扩散板30上,并且扩散板30的在电容器70B侧的端部33B的位置可以优选地被设置成使得具有50%的强度(发射强度)并且从VCSEL组22B发射的光入射到扩散板30上。利用这样的设置,发射到外部而没有被扩散板30扩散的光的强度被设置成低于VCSEL所发射的光的强度(发射强度)的50%。利用这样的设置,防止了从光源20向测量目标施加高强度的光。

此外,扩散板30的在电容器70A侧的端部33A的位置可以被设置成使得具有0.1%或更高的强度(发射强度)并且从VCSEL组22A发射的光入射到扩散板30上,并且扩散板30的在电容器70B侧的端部33B的位置可以被设置成使得具有0.1%或更高的强度并且从VCSEL组22B发射的光入射到扩散板30上。利用这样的设置,发射到外部而没有被扩散板30扩散的光的强度被设置成低于VCSEL所发射的光的强度(发射强度)的0.1%。利用这样的设置,防止了从光源20向测量目标施加高强度的光。在这种情况下,当VSCEL所发射的光的扩展角相同时,扩散板30的端部33A和33B可以延伸到没有设置支撑部60的支撑壁的一侧,也就是说,电容器70A和70B侧。

发光器4的修改例

将描述应用图7A和图7B中例示的第一示例性实施方式的发光器4的修改例。

在发光器4中,扩散板30覆盖光源20和PD 40,不覆盖电容器70A和70B。在应用第一示例性实施方式的发光器4的修改例中,扩散板30覆盖电容器70A和70B的表面的一部分。

图9A和图9B是用于例示应用第一示例性实施方式的发光器4的修改例的平面图。图9A是根据修改例1的发光器4-1,并且图9B是根据修改例2的发光器4-2。另外,在图9A和图9B中,仅涉及光源20、扩散板30、PD 40和支撑部60。另外,与图7A和图7B中例示的发光器4相同的部分将被赋予相同的附图标记,并且将省略对其的描述。

在图9A中例示的根据修改例1的发光器4-1中,扩散板30悬垂于电容器70A和70B侧并且还覆盖电容器70A和70B的一部分。在图9B中例示的根据修改例2的发光器4-2中,扩散板30悬垂于电容器70A和70B并且还覆盖电容器70A和70B。换句话说,扩散板30的垂直宽度Wy比发光器4的垂直宽度宽。另外,在发光器4-1和4-2中,利用扩散板30的悬垂,支撑部60的壁部分61A和61B悬垂于电容器70A和70B侧。

在发光器4-1和4-2中,扩散板30悬垂于电容器70A和70B侧,因此,设置在光源20的在电容器70A和70B侧的端部中的VCSEL组22A和22B与扩散板30的端部33A和33B之间的距离增大。因此,可以容易地防止从扩散板30的端部施加高强度的光。例如,选择性地,在透射通过扩散板30的光等于或高于50%的情况下,可以使用发光器4-1,并且在透射通过扩散板30的光等于或高于0.1%的情况下,可以使用发光器4-2。

第二示例性实施方式

在应用第二示例性实施方式的发光器4A中,设置从扩散板30侧朝向电容器70A和70B侧的设置在扩散板30的电容器70A和70B侧的梁部分。

图10A和图10B是用于例示应用第二示例性实施方式的发光器4A的视图。图10A是平面图,并且图10B是沿着图10A的线XB-XB截取的截面图。与图7A和图7B中例示的发光器4相同的部分将被赋予相同的附图标记,并且将省略对其的描述。

如图10A中例示的,扩散板30覆盖光源20和PD 40。另外,支撑部60A设置有壁部分61A和61B,用于相对于基板10支撑扩散板30的两侧。另外,发光器4A包括从扩散板30剩下的两侧朝电容器70A和70B侧设置的梁部分65A和65B。如图10B中例示的,梁部分65A和65B的上表面(+z方向侧的表面)被接合到扩散板30。另外,梁部分65A和65B的下表面(-z方向侧的表面)与基板10的上表面(+z方向侧的表面)有距离。这里,梁部分65A和65B的下表面面对基板10的该表面,但是可以被设置为面对电容器70A和70B的表面。此时,梁部分65A和65B的下表面可以与电容器70A和70B的表面接触。

支撑部60的壁部分61A和61B以及梁部分65A和65B可以通过一体成型等被形成为单个构件。因此,与组装多个支撑构件的情况相比,组装步骤的数目减少。另外,被形成为单个构件的支撑部60(壁部分61A和61B)和梁部分65A和65B将被称为支撑部60A。

当梁部分65A和65B由光吸收材料制成时,防止来自位于光源20的在电容器70A和70B侧的端部处的VCSEL组22A和22B的高强度的光在没有透射通过扩散板30的情况下去往外部。换句话说,与没有设置梁部分65A和65B的情况相比,扩散板30在电容器70A和70B侧的悬垂可以减少。换句话说,扩散板30的面积减小。

另外,梁部分65A和65B可以防止诸如灰尘或污垢这样的异物进入光源20周围。

第三示例性实施方式

在应用第三示例性实施方式的发光器4B中,设置支撑部60B以围绕光源20、PD 40和电容器70A和70B。

图11A和图11B是应用第三示例性实施方式的发光器4B的平面图。图11A是平面图,并且图11B是沿着图11A的线XIB-XIB截取的截面图。与图7A和图7B中例示的发光器4相同的部分将被赋予相同的附图标记,并且将省略对其的描述。

在发光器4B中,光源20、PD 40和电容器70A和70B被扩散板30覆盖。另外,支撑部60B包括壁部分61A、61B、66A和66B,壁部分61A、61B、66A和66B在四侧支撑扩散板30并且被设置为围绕光源20、PD 40和电容器70A和70B。另外,通过一体成型等将支撑部60B(壁部分61A、61B、66A和66B)形成为单个构件。支撑部60B由光吸收材料制成。

在这种情况下,在发光器4B的光源20中,光轴方向侧被扩散板30覆盖,并且侧表面侧被支撑部60覆盖。由于支撑部60由光吸收材料制成,因此防止了从光源20发射的光直接泄漏到外部。另外,由于支撑部60B被形成为单个构件,因此与组装多个支撑构件的情况相比,可以减少组装步骤的数目。

发光器4B的修改例

在应用第三示例性实施方式的发光器4B中,扩散板30还覆盖电容器70A和70B。通常,在扩散板30中,面积越大,价格越高。另外,不需要扩散板30覆盖电容器70A和70B。这里,在作为发光器4B的修改例的发光器4B-1中,用于阻挡光的透射的阻挡部被设置在图11A中例示的发光器4B的支撑部60B上侧的一部分处,并且扩散板30的面积减小。

图12A和图12B是用于例示发光器4B-1的视图,发光器4B-1是应用第三示例性实施方式的发光器4B的修改例。图12A是平面图,并且图12B是沿着图12A的线XIIB-XIIB截取的截面图。与图11A和图11B中例示的发光器4B相同的部分将被赋予相同的附图标记,并且将省略对其的描述。

在发光器4B-1中,扩散板30仅设置在光源20的光轴方向侧,并且电容器70A和70B没有被扩散板30覆盖而是被阻挡部67A和67B覆盖。如图12A中例示的,类似于发光器4B的支撑部60B,发光器4B-1设置有壁部分61A、61B、66A和66B。另外,阻挡部67A和67B被设置在支撑部60B的上开口的一部分处(图12A)。阻挡部67A在壁部分66A侧,以便不阻挡从光源20发射并透射通过扩散板30的光,并且被设置为覆盖电容器70A。阻挡部67B在壁部分66B侧,以便不阻挡从光源20发射并透射通过扩散板30的光,并且被设置为覆盖电容器70B。

另外,阻挡部67A和67B的表面(+z方向侧的表面)被形成为与壁部分61A、61B、66A和66B的表面齐平的表面。另外,在阻挡部67A和67B的后表面(-z方向侧的表面)与电容器70A和70B之间提供间隙,以便不与电容器70A和70B接触。另外,通过一体成型将支撑部60B(壁部分61A、61B、66A和66B)和阻挡部67A和67B形成为单个构件。扩散板30被接合并固定到壁部分61A和61B的上表面以及阻挡部67A和67B的表面的端部。换句话说,扩散板30被设置成密封由壁部分61A和61B以及阻挡部67A和67B形成的开口。以这种方式,形成单个构件的支撑部60B和阻挡部67A和67B被称为支撑部60B-1。

即使在发光器4B-1中,在光源20中,光轴方向侧也被扩散板30覆盖,并且侧表面侧被支撑部60B-1覆盖。由于支撑部60B-1由光吸收材料制成,因此防止了从光源20发射的光直接泄漏到外部。另外,与发光器4B的扩散板30相比,扩散板30的面积变小。因此,光学装置3的价格保持低。另外,由于支撑部60B-1被形成为单个构件,因此与组装多个支撑构件的情况相比,可以减少组装步骤的数目。

第四示例性实施方式

在应用第一示例性实施方式的发光器4、4-1和4-2、应用第二示例性实施方式的发光器4A以及应用第三示例性实施方式的发光器4B和4B-1中,在光源20和电容器70A和70B之间没有设置壁部分即支撑部。应用第四示例性实施方式的发光器4C包括支撑部60C,支撑部60C设置有在光源20和驱动部50之间的壁部分68A和68B。

图13A和图13B是用于例示应用第四示例性实施方式的发光器4C的视图。图13A是平面图,并且图13B是沿着图13A的线XIIIB-XIIIB截取的截面图。与图7A和图7B中例示的发光器4相同的部分将被赋予相同的附图标记,并且将省略对其的描述。

发光器4C的支撑部60C包括设置在扩散板30的两侧的壁部分61A和61B以及剩下两侧的壁部分68A和68B。另外,壁部分61A和61B以及壁部分68A和68B的厚度彼此不同。具体地,壁部分68A和68B的厚度t2小于壁部分61A和61B的厚度t1(t1>t2)。厚的壁部分61A和61B主要支撑扩散板30。另外,壁部分68A和68B的厚度可以被设置成减弱对将光源20和电容器70A和70B彼此连接的接线的电感的任何影响。当设置壁部分68A和68B时,防止了来自光源20的光在不经过扩散板30的情况下去往外部。另外,由于光源20被支撑部60C和扩散板30围绕,因为防止了诸如灰尘或污垢这样的异物进入光源20周围。

通过一体成型将支撑部60C(壁部分61A、61B、68A和68B)形成为单个构件。因此,与组装多个支撑构件的情况相比,组装步骤的数目减少。

第五示例性实施方式

将描述使用应用第一示例性实施方式的发光器4、4-1至4-2、应用第二示例性实施方式的发光器4A、应用第三示例性实施方式的发光器4B和4B-1和应用第四示例性实施方式的发光器4C的信息处理设备1的截面结构。另外,信息处理设备1是发光器件的示例。

信息处理设备1的截面结构

这里,将描述当信息处理设备1使用应用第一示例性实施方式的发光器4时的信息处理设备1的截面结构。另外,这将同样适用于使用其它发光器的情况。

图14是用于例示使用发光器的4的信息处理设备1的截面结构的视图。图14例示图7A中的xz平面上的截面。

信息处理设备1包括光学装置3和壳体100。如上所述,光学装置3包括发光器4和3D传感器5。换句话说,壳体100容纳发光器4。这里,类似于图7A和图7B中例示的发光器4,3D传感器5被安装在设置在发光器4中的基板10上。

壳体100包括透射部板110和透射部板120,从发光器4中包括的光源20发射的光透射通过透射部板110,并且由3D传感器5接收到的光透射通过透射部板120。透射部板110被设置在与光源20发射光的区域对应的部分处,并且透射部板120被设置在与3D传感器5接收光的区域对应的部分处。壳体100例如由诸如铝或镁这样的金属材料或树脂材料制成。另外,透射部板110和120由诸如玻璃或丙烯酸(acrylic)这样的透明材料构成。

基板10被基板保持装置101保持,以便相对于壳体100保持基板10。另外,在3D传感器5上,设置有用于将透射通过透射部板120的光会聚到3D传感器5的透镜130。透镜130被透镜保持装置131保持,以便相对于基板10保持透镜130。基板保持器101例如是诸如螺杆这样的紧固件或由树脂等制成的装配构件。

在信息处理设备1中,发光器4的光源20和驱动部50之间的距离被设置为小于光源20和透射部板110之间的距离。

另外,透射部板120可以具有透镜130的功能。

在透射通过扩散板30之后,从发光器4的光源20发射的光透射通过透射部板110并且被施加到测量目标。

当发光器4(光学装置3)以这种方式被容纳在壳体100中时,防止了扩散板30受损。换句话说,防止了由于扩散板30受损而将高强度光直接施加到外部。

在上述的第一示例性实施方式至第五示例性实施方式中,增大发光元件所发射的光的扩展角的扩散板30被描述为覆盖部的示例。作为扩散板30的替代,覆盖部可以是光透射通过的构件,例如,诸如保护盖这样的透明基材、诸如具有会聚作用以相反地减小扩展角的会聚透镜和微透镜阵列这样的光学构件等。这里,采用包括构件的覆盖部。

38页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:发光器、发光器件、光学装置和信息处理设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类