半导体装置及半导体装置的制造方法

文档序号:1570655 发布日期:2020-01-24 浏览:33次 >En<

阅读说明:本技术 半导体装置及半导体装置的制造方法 (Semiconductor device and method for manufacturing semiconductor device ) 是由 川*和重 川﨑和重 于 2017-05-29 设计创作,主要内容包括:本发明涉及的半导体装置具有:基板;半导体激光器,其设置于基板的上表面,发出激光;波导,其具有第一导电性层和波导层,该第一导电性层设置于基板的上表面,该波导层设置于第一导电性层之上,对激光进行传导;以及掩埋层,其设置于基板的上表面,将半导体激光器和波导包围,在波导的与半导体激光器连接的端部的两侧,通过使掩埋层在波导的波导方向被截断,由此设置使基板从掩埋层露出的露出部,在端部设置第一导电性层在波导方向被截断的截断区域。(The semiconductor device according to the present invention includes: a substrate; a semiconductor laser which is provided on the upper surface of the substrate and emits laser light; a waveguide having a first conductive layer provided on an upper surface of the substrate and a waveguide layer provided on the first conductive layer for guiding laser light; and a buried layer provided on the upper surface of the substrate, surrounding the semiconductor laser and the waveguide, and provided with an exposed portion exposing the substrate from the buried layer by cutting the buried layer in the waveguide direction of the waveguide on both sides of an end portion of the waveguide connected to the semiconductor laser, and a cut region where the first conductive layer is cut in the waveguide direction on the end portion.)

半导体装置及半导体装置的制造方法

技术领域

本发明涉及半导体装置及半导体装置的制造方法。

背景技术

在专利文献1公开了一种光半导体元件。就该光半导体元件而言,在半导体基板与光波导层之间设置具有比半导体基板的热导率低的热导率的多个岛状半导体中间层。在多个岛状半导体中间层之间形成有空隙。通过该结构能够适当地进行光波导层的温度控制。

专利文献1:日本特开2015-170750号公报

发明内容

例如,如专利文献1所示,就与半导体激光器耦合的波导而言,通常在对激光进行传导的波导层与基板之间设置具有导电性的层。此时,在对半导体激光器进行驱动时,有时电流从半导体激光器与波导的耦合部扩散至该具有导电性的层。因此,有可能使得半导体激光器的特性变得不稳定,消耗电力变大。

本发明是为了解决上述问题而提出的,其目的在于得到一种能够降低消耗电力的半导体装置以及半导体装置的制造方法。

本发明涉及的半导体装置具有:基板;半导体激光器,其设置于该基板的上表面,发出激光;波导,其具有第一导电性层和波导层,该第一导电性层设置于该基板的上表面,该波导层设置于该第一导电性层之上,对该激光进行传导;以及掩埋层,其设置于该基板的上表面,将该半导体激光器和该波导包围,在该波导的与该半导体激光器连接的端部的两侧,通过使该掩埋层在该波导的波导方向被截断,由此设置使该基板从该掩埋层露出的露出部,在该端部设置该第一导电性层在该波导方向被截断的截断区域。

本发明涉及的半导体装置的制造方法具有以下工序:在基板的上表面形成发出激光的半导体激光器;形成波导,该波导具有第一导电性层和波导层,该第一导电性层设置于该基板的上表面,该波导层设置于该第一导电性层之上,对该激光进行传导;在该基板的上表面形成将该半导体激光器和该波导包围的掩埋层;以使该掩埋层在该波导的波导方向被截断的方式,在该波导的与该半导体激光器连接的端部的两侧去除该掩埋层的一部分,形成使该基板从该掩埋层露出的露出部;通过绝缘膜将该半导体激光器、该波导、该掩埋层和该露出部覆盖;开口形成工序,在该绝缘膜,在该波导的两侧分别设置多个开口,使该露出部露出;以及蚀刻工序,将该绝缘膜作为掩模,使用对该第一导电性层的蚀刻速率大于对该波导层的蚀刻速率的蚀刻液进行湿蚀刻,在该端部去除该第一导电性层的一部分,在该端部设置该第一导电性层在该波导方向被截断的截断区域。

发明的效果

就本发明涉及的半导体装置而言,在波导的半导体激光器侧的端部,在基板与波导层之间设置的第一导电性层在波导方向被截断。因此,能够抑制电流经过第一导电性层从半导体激光器泄漏至波导侧。因此,能够降低消耗电力。

就本发明涉及的半导体装置的制造方法而言,在波导的半导体激光器侧的端部,在基板与波导层之间设置的第一导电性层在波导方向被截断。因此,能够抑制电流经过第一导电性层从半导体激光器泄漏至波导侧。因此,能够降低消耗电力。

附图说明

图1是实施方式1涉及的半导体装置的俯视图。

图2是通过沿直线I-II切断图1而得到的半导体装置的剖面图。

图3是通过沿直线III-IV切断图1而得到的半导体装置的剖面图。

图4是波导的端部的剖面图,示出将掩埋层的一部分去除后的状态。

图5是示出形成了绝缘膜的状态的剖面图。

图6是说明实施方式1的开口形成工序的俯视图。

图7是说明实施方式1的开口形成工序的剖面图。

图8是说明实施方式1的蚀刻工序的剖面图。

图9是说明实施方式2的半导体装置的制造方法的剖面图。

图10是说明实施方式2的蚀刻工序的剖面图。

图11是实施方式3的半导体装置的剖面图。

图12是实施方式4的半导体装置的剖面图。

具体实施方式

参照附图对本发明的实施方式涉及的半导体装置以及半导体装置的制造方法进行说明。对于相同或对应的结构要素标注相同的标号,有时省略重复的说明。

实施方式1.

图1是实施方式1涉及的半导体装置100的俯视图。半导体装置100具有基板20。基板20是绝缘性基板。基板20由i-InP形成。半导体装置100具有半导体激光器12,该半导体激光器12设置于基板20的上表面,发出激光。另外,半导体装置100具有对半导体激光器12发出的激光进行传导的波导16。半导体装置100是光半导体元件。

就本实施方式而言,半导体装置100具有4个半导体激光器12。波导16具有四个输入端和一个输出端。波导16的多个输入端分别与多个半导体激光器12连接。波导16将多个半导体激光器12发出的多束激光汇聚为1束,从输出端射出。多个半导体激光器12分别发出波长相互不同的激光。半导体装置100是能够进行高速光通信的4波长集成元件。半导体装置100所具有的半导体激光器12的数量大于或等于一个即可。

半导体装置100具有掩埋层14,该掩埋层14设置于基板20的上表面,将半导体激光器12和波导16包围。半导体激光器12的侧面和波导16的侧面被掩埋层14掩埋。掩埋层14是电流阻挡层。

在波导16的与半导体激光器12连接的端部17的两侧设置使基板20从掩埋层14露出的露出部18。露出部18是通过使掩埋层14在波导16的波导方向被截断而形成的。在此,波导方向是激光从半导体激光器12射出的方向。在露出部18,掩埋层14被下挖至基板20。波导16的端部17的侧面通过露出部18从掩埋层14露出。多束激光经过将掩埋层14去除后的区域,汇聚为一束。

在基板20,槽22设置于端部17的正下方。槽22的与波导方向垂直的方向的宽度比波导16的宽度宽。槽22经过端部17的下方,从波导16的两侧的露出部18中的一方延伸至另一方。

图2是通过沿着直线I-II切断图1而得到的半导体装置100的剖面图。在基板20的上表面设置第一导电性层24。第一导电性层24是外延生长层。第一导电性层24由n-InP形成。在第一导电性层24之上设置发光层26。发光层26发出激光。发光层26由AlGaInAs形成。在第一导电性层24之上,与发光层26邻接地设置波导层32。波导层32对由发光层26发出的激光进行传导。波导层32由InGaAsP形成。

在发光层26和波导层32之上设置第二导电性层28。第二导电性层28是外延生长层。第二导电性层28由p-InP形成。在第二导电性层28之上,在发光层26的上部设置电极形成用外延层30。电极形成用外延层30是外延生长层。电极形成用外延层30由P-InGaAs形成。第一导电性层24、发光层26、第二导电性层28和电极形成用外延层30构成半导体激光器12。另外,第一导电性层24、波导层32和第二导电性层28构成波导16。

在波导16的与半导体激光器12连接的端部17设置有截断区域23。在截断区域23,第一导电性层24在波导方向被截断。在截断区域23,去除了第一导电性层24。此外,槽22设置于截断区域23的正下方。在截断区域23,在波导层32和基板20之间形成有空腔25。

图3是通过沿直线III-IV切断图1而得到的半导体装置100的剖面图。在截断区域23,去除了第一导电性层24。另外,在截断区域23的正下方,在基板20的上表面形成槽22。因此,在截断区域23,形成在剖视观察时波导16浮在基板20上方的结构。另外,在图3用虚线表示第一导电性层24以及基板20被去除的部分。

接着,说明半导体装置100的制造方法。首先,在基板20的上表面形成半导体激光器12。另外,在基板20的上表面形成波导16。接着,在基板20的上表面形成将半导体激光器12和波导16包围的掩埋层14。

接着,在波导16的与半导体激光器12连接的端部17的两侧去除掩埋层14的一部分。图4是波导16的端部17的剖面图,示出将掩埋层14的一部分去除后的状态。此时,去除掩埋层14的一部分,以使得掩埋层14在波导16的波导方向被截断。另外,通过去除掩埋层14的一部分,使基板20从掩埋层14露出。基板20从掩埋层14露出的部分是露出部18。另外,去除掩埋层14的一部分,以使得波导16的侧面露出。在波导16与半导体激光器12的耦合区域,通过去除掩埋层14,从而去除除了半导体激光器12与波导16以外的具有导电性的层。

接着,通过绝缘膜34将半导体激光器12、波导16、掩埋层14和露出部18覆盖。图5是示出形成了绝缘膜34的状态的剖面图。绝缘膜34通过覆盖性良好的溅射法或P-CVD(PlasmaChemical VaporDeposition,等离子体化学气相沉积)法成膜。由此,从掩埋层14露出的波导16的侧面也被绝缘膜34覆盖。

接着,实施开口形成工序。图6是说明实施方式1的开口形成工序的俯视图。图7是说明实施方式1的开口形成工序的剖面图。首先,在绝缘膜34之上形成光致抗蚀层。然后,对光致抗蚀层进行图案化。此时,例如在端部17的两侧在光致抗蚀层设置开口。然后,将光致抗蚀层作为掩模,实施绝缘膜蚀刻。由此,在绝缘膜34设置多个开口36。多个开口36分别设置于波导16的端部17的两侧。露出部18从开口36露出。

接着,实施蚀刻工序。图8是说明实施方式1的蚀刻工序的剖面图。在蚀刻工序中,将绝缘膜34作为掩模,进行湿蚀刻。此时,使用对第一导电性层24的蚀刻速率大于对波导层32的蚀刻速率的蚀刻液。另外,蚀刻液对基板20的蚀刻速率大于对波导层32的蚀刻速率。此时,能够使用HBr类或HCl类的蚀刻液。

在蚀刻工序中,将基板20浸渍于蚀刻液。由此,实施各向同性的蚀刻。蚀刻液从开口36侵蚀基板20,到达第一导电性层24。之后,蚀刻液侵蚀第一导电性层24,到达波导层32。蚀刻在波导层32处停止。由此,在端部17,在波导16和基板20之间形成空腔25。此外,在图8用虚线表示通过蚀刻而去除的部分。在本实施方式涉及的半导体装置100的制造方法中,通过使用HBr类或HCl类的蚀刻液,能够选择性地促进InP层和InGaAsP层中的InP层的蚀刻。

在蚀刻工序中,在端部17去除第一导电性层24的一部分,在端部17设置截断区域23。另外,在基板20,在截断区域23的正下方设置槽22。槽22经过截断区域23的正下方,从波导16的两侧的露出部18中的一方延伸至另一方。在截断区域23,波导16成为中空波导。

就本实施方式涉及的半导体装置100而言,在波导16的端部17的两侧,去除掩埋层14,掩埋层14在波导方向被截断。通过在半导体激光器12与波导16的耦合部的周围去除具有导电性的层,能够抑制因掩埋层14而引起的对激光的波导造成的电气性影响。因此,能够抑制电流向掩埋层14的扩散。

另外,电流容易流过在发光层26和波导层32的正下方设置的第一导电性层24。就本实施方式而言,在波导16的端部17,第一导电性层24在波导方向被截断。因此,能够抑制电流从半导体激光器12与波导16的耦合部泄漏至第一导电性层24的波导16侧。由此,就本实施方式而言,能够使半导体装置100的特性稳定。另外,能够降低半导体装置100的消耗电力。

就本实施方式而言,使半导体装置100为4波长集成元件。不限于此,本实施方式能够应用于将半导体激光器和波导连接的所有构造。该变形能够适当地应用于下面的实施方式涉及的半导体装置以及半导体装置的制造方法。此外,下面的实施方式涉及的半导体装置以及半导体装置的制造方法与实施方式1的共同点多,因此,以与实施方式1的不同点为中心进行说明。

实施方式2.

图9是说明实施方式2的半导体装置200的制造方法的剖面图。就实施方式而言,基板220的构造与实施方式1不同。在基板220的上表面侧设置蚀刻停止层238。第一导电性层24设置于蚀刻停止层238之上。蚀刻停止层238是绝缘性的外延生长层。蚀刻停止层238由i-InGaAsP形成。另外,在露出部218,蚀刻停止层238从掩埋层14露出。

接着,说明本实施方式涉及的半导体装置200的制造方法。直至形成绝缘膜34的工序为止与实施方式1相同。接着,实施开口形成工序。就开口形成工序而言,在波导16的端部17的两侧,在绝缘膜34分别设置多个开口236。多个开口236设置成使蚀刻停止层238和第一导电性层24露出。在此,通过去除绝缘膜34的将第一导电性层24的侧面覆盖的部分,从而第一导电性层24露出。

接着,实施蚀刻工序。图10是说明实施方式2的蚀刻工序的剖面图。在蚀刻工序中,使用对第一导电性层24的蚀刻速率大于对蚀刻停止层238的蚀刻速率的蚀刻液。另外,蚀刻液对第一导电性层24的蚀刻速率大于对波导层32的蚀刻速率。在蚀刻工序中例如能够使用HBr类的蚀刻液。就本实施方式而言,通过在基板220设置蚀刻停止层238,由此,蚀刻液不侵蚀基板220,而是从开口236侵蚀第一导电性层24。与实施方式1相同,如果蚀刻液到达波导层32,则蚀刻停止。

由此,在波导16的端部17形成截断区域23,该截断区域23是第一导电性层24在波导方向被截断的区域。在截断区域23的正下方,在基板220与波导16之间形成空腔225。此外,在图10用虚线表示通过蚀刻而去除的部分。

就本实施方式而言,在蚀刻工序中能够仅去除第一导电性层24。由于使基板220不被侵蚀,从而在后续工序中向半导体装置200设置涂敷膜的情况等下,与实施方式1相比能够提高涂敷膜的均匀性。另外,与实施方式1相比,能够提高半导体装置200针对外力的强度。

实施方式3.

图11是实施方式3的半导体装置300的剖面图。在半导体装置300的截断区域23,波导16在剖视观察时被保护绝缘膜340包围。就本实施方式涉及的半导体装置300的制造方法而言,在形成了截断区域23之后,通过CVD(Chemical Vapor Deposition,化学气相沉积)成膜法在波导16的端部17形成保护绝缘膜340。就本实施方式而言,通过使用覆盖性良好的CVD成膜法,在截断区域23处使波导16被保护绝缘膜340包围。此时,获得波导16的侧面和背面也被保护绝缘膜340覆盖的构造。波导16的背面是波导16的与基板20相对的面。

就本实施方式而言,通过使用覆盖性良好的成膜方法,能够通过保护绝缘膜340将作为中空波导的波导16的端部17覆盖。由此,能够提高后续工序中的耐化学性。另外,与实施方式1相比,能够提高半导体装置300针对外力的强度。另外,通过对保护绝缘膜340的厚度或者折射率进行控制,能够使激光的波导特性稳定。

实施方式4.

图12是实施方式4的半导体装置400的剖面图。半导体装置400具有聚酰亚胺442,该聚酰亚胺442在截断区域23将波导层32与基板20之间填埋。聚酰亚胺442以将半导体激光器12、波导16、掩埋层14以及露出部18覆盖的方式设置。本实施方式涉及的半导体装置400的制造方法具有在半导体激光器12、波导16、掩埋层14以及露出部18涂敷聚酰亚胺442的工序。由于聚酰亚胺442是涂敷膜,因此,在截断区域23,波导层32与基板20之间被聚酰亚胺442填埋。

就本实施方式而言,波导层32和基板20之间被涂敷膜填埋,因此,能够提高后续工序的耐化学性。另外,与实施方式1相比,能够提高半导体装置400针对外力的强度。另外,通过折射率低的聚酰亚胺442将波导16覆盖,由此,能够使激光的波导特性稳定。作为本实施方式的变形例,也可以使用BCB(Benzocyclobutene,苯并环丁烯)来取代聚酰亚胺442。此外,也可以适当地对在各实施方式所说明的技术特征进行组合而使用。

标号的说明

100、200、300、400半导体装置,12半导体激光器,14掩埋层,16波导,17端部,18、218露出部,20、220基板,22槽,23截断区域,24第一导电性层,32波导层,34绝缘膜,36、236开口,238蚀刻停止层,340保护绝缘膜,442聚酰亚胺

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:边缘发射的半导体激光器和这种半导体激光器的运行方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类