一种三苯胺-季铵盐型聚合物及其制备方法和应用

文档序号:182700 发布日期:2021-11-02 浏览:23次 >En<

阅读说明:本技术 一种三苯胺-季铵盐型聚合物及其制备方法和应用 (Triphenylamine-quaternary ammonium salt type polymer and preparation method and application thereof ) 是由 籍少敏 唐丽婷 马钰程 邢龙江 何禧瞳 霍延平 陈文铖 于 2021-08-12 设计创作,主要内容包括:本发明公开了一种三苯胺-季铵盐型聚合物及其制备方法和应用。本发明以具有螺旋状非平面结构的三苯胺为供体,具有靶向作用的吡啶阳离子为受体,通过碳碳双键或噻吩进行桥连,合成了三个具有强D-A或D-π-A结构的三苯胺-季铵盐型聚合物。本发明制得的三苯胺-季铵盐型聚合物具有良好的生物相容性、光稳定性和聚集诱导发光性质,能够敏化氧气产生活性氧,且最大发射波长较长,在光动力治疗领域有重要的应用价值。(The invention discloses a triphenylamine-quaternary ammonium salt type polymer and a preparation method and application thereof. The invention takes triphenylamine with a spiral non-planar structure as a donor, takes pyridine cations with a targeting effect as an acceptor, and synthesizes three triphenylamine-quaternary ammonium salt polymers with strong D-A or D-pi-A structures through bridging by carbon-carbon double bonds or thiophene. The triphenylamine-quaternary ammonium salt polymer prepared by the invention has good biocompatibility, photostability and aggregation-induced emission property, can sensitize oxygen to generate active oxygen, has a longer maximum emission wavelength, and has an important application value in the field of photodynamic therapy.)

一种三苯胺-季铵盐型聚合物及其制备方法和应用

技术领域

本发明涉及光动力治疗技术领域,更具体地,涉及一种三苯胺-季铵盐型聚合物及其制备方法和应用。

背景技术

光动力疗法(PDT)是一种微创的癌症治疗方式,其主要机理是光敏剂吸收光,通过系间窜跃从激发单重态跃迁到三重态,与基态氧发生电子转移或能量转移,产生具有细胞毒性的活性氧(ROS),如单线态氧(1O2),超氧阴离子自由基,和羟基自由基,从而诱导癌细胞死亡。光动力治疗对生命系统的影响小,副作用少,侵袭性低,可从整体上提高患者的生活质量。因此许多光敏剂被开发出来用于临床试验。然而,传统光敏剂往往存在一定的缺点,如光稳定性和化学稳定性差,氧气依赖性强,活性氧(ROS)产生能力有限等限制了其在光动力治疗中的应用。

三苯胺是一种给电子基团,具有螺旋状的非平面结构,可以在溶液状态下自由旋转,产生非辐射弛豫,并在聚集体中延长两个平行平面之间的分子间距,产生增强的发射,使其具有潜在的聚集诱导增强(AIE)活性,因此可作为用于光动力治疗的光敏剂的单体,如现有技术(S.Liu,H.Zhang,Y.Li,et al.Strategies to Enhance thePhotosensitization:Polymerization and the Donor–Acceptor Even–Odd Effect[J].Angew.Chem.Int.Ed.2018,57,15189.)公开的三苯胺-苯并噻二唑聚合物P1,但该聚合物还存在生物相容性差和最大发射波长较短(620nm)的问题。因此,研究一种生物相容性良好,具有聚集诱导发光性质,长发射波长和良好活性氧产生能力的三苯胺-季铵盐型聚合物在光动力治疗领域有重要意义。

发明内容

本发明的首要目的是克服上述现有三苯胺聚合物存在生物相容性差和最大发射波长较短的问题,提供一种三苯胺-季铵盐型聚合物。

本发明的另一目的是提供一种三苯胺-季铵盐型聚合物的制备方法。

本发明的进一步目的是提供上述三苯胺-季铵盐型聚合物的应用。

本发明的上述目的通过以下技术方案实现:

一种三苯胺-季铵盐型聚合物,所述三苯胺-季铵盐型聚合物的结构式具有如下式(I)、(II)、(III)中的任一种:

式中,聚合度m=1~15,n=1~10,x=1~14。

本发明以具有螺旋状非平面结构的三苯胺为供体,使分子具有潜在的聚集诱导发光性质;以具有靶向作用的吡啶阳离子为受体,增强分子的亲水性和生物相容性;通过碳碳双键或噻吩进行桥连,增强分子的共轭,促进系间窜跃,制备得到三个具有强D-A或D-π-A结构的三苯胺-季铵盐型聚合物,所得的三苯胺-季铵盐型聚合物具有良好的光稳定性和聚集诱导发光性质,能够敏化氧气产生活性氧,并且三个分子的最大发射波长分别为638nm、690nm和785nm,具有穿透深度深,光损失小,成像信噪比高的特点,在光动力治疗领域有重要的应用价值。

本发明还提供所述三苯胺-季铵盐型聚合物的制备方法,具有如式(I)所述结构式的三苯胺-季铵盐型聚合物的制备方法包括如下步骤:

将4,4'-二(4-吡啶基)三苯胺与1,6-二溴己烷进行门舒特金(Menshutkin)反应,后处理,所得即为式(I)所述聚合物。该方法制备得到的式(I)所述聚合物的聚合度分布在1~15。

优选地,所述门舒特金反应为将4,4'-二(4-吡啶基)三苯胺、1,6-二溴己烷、溶剂混合,在70~90℃条件下反应时间为24~72h。

更优选地,所述门舒特金反应温度为85℃,反应时间为48h。

优选地,所述4,4'-二(4-吡啶基)三苯胺与所述1,6-二溴己烷的摩尔比为(1~1.1):(1~1.5)。更优选为1:1。

本发明所述式(II)结构的三苯胺-季铵盐型聚合物的制备方法包括如下步骤:

将N,N-二(4-甲酰苯基)苯胺与1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物进行诺文葛尔(Knoevenagel)缩合反应,后处理,所得即为式(II)所述聚合物。该方法制备得到的式(II)所述聚合物的聚合度分布在1~10。

优选地,所述诺文葛尔缩合反应为将N,N-二(4-甲酰苯基)苯胺、1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物、溶剂、哌啶混合,在80~100℃条件下反应3~5h。

更优选地,所述诺文葛尔缩合反应温度为90℃,反应时间为4h。

优选地,所述N,N-二(4-甲酰苯基)苯胺与所述1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物的摩尔比为(1~1.1):(1~1.5)。

本发明所述式(III)结构的三苯胺-季铵盐型聚合物的制备方法包括如下步骤:

将5,5'-((苯基氮杂二基)双(4,1-亚苯基))双(噻吩-2-甲醛)与1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物进行诺文葛尔缩合反应,后处理,所得即为式(III)所述聚合物。该方法制备得到的式(III)所述聚合物的聚合度分布在1~14。

优选地,所述诺文葛尔缩合反应为将5,5'-((苯基氮杂二基)双(4,1-亚苯基))双(噻吩-2-甲醛)、1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物、溶剂、哌啶混合,在80~100℃条件下反应为3~5h。

更优选地,所述诺文葛尔缩合反应温度为90℃,反应时间为4h。

优选地,所述5,5'-((苯基氮杂二基)双(4,1-亚苯基))双(噻吩-2-甲醛)与所述1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物的摩尔比为(1~1.1):(1~1.5)。

本领域常规溶剂均可用于本发明中。优选地,所述溶剂选自四氢呋喃或乙醇。

本发明所述后处理具体为将反应后的溶液冷却至室温后减压过滤,再用四氢呋喃和乙醚依次洗涤。

本发明还保护上述三苯胺-季铵盐型聚合物作为光敏剂探针的应用。

与现有技术相比,本发明的有益效果是:

本发明以具有螺旋状非平面结构的三苯胺为荧光核,借助吡啶阳离子的吸电子性质,以碳碳双键或噻吩作为π共轭桥,通过聚合增长共轭链,合成出三种D-A或D-π-A结构的三苯胺-季铵盐型聚合物。本发明制得的三苯胺-季铵盐型聚合物具有良好的生物相容性、光稳定性和聚集诱导发光性质,能够敏化氧气产生活性氧。此外,所得三苯胺-季铵盐型聚合物最大发射波长较长,应用于光动力治疗时具有穿透深度深,对人体的损伤更小的优势。

附图说明

图1为实施例1~3制备得到的分子(I),分子(II)和分子(III)的红外光谱图。

图2为实施例1~3制备得到的分子(I),分子(II)和分子(III)在二甲基亚砜溶液中的吸收图;

图3为实施例1~3制备得到的分子(I),分子(II)和分子(III)在二甲基亚砜溶液中的发射图;

图4为实施例1~3制备得到的分子(I),分子(II)和分子(III)的AIE性质检测图;

图5为实施例1~3制备得到的分子(I),分子(II)和分子(III)的体外活性氧产生能力测试图;

图6为实施例3制备得到的分子(III)的细胞成像研究图;

图7为实施例3制备得到的分子(III)的细胞内活性氧产生能力荧光成像图。

具体实施方式

为了更清楚、完整的描述本发明的技术方案,以下通过具体实施例进一步详细说明本发明,应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明,可以在本发明权利限定的范围内进行各种改变。

下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。

如下实施例中使用的1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物的制备方法可参考文献(Synthesis,Thermal Stability,Crystal Structure and OpticalProperties of 1,1'-(1,n-Alkanediyl)bis(4-methylpyridinium)Bromobismuthates.),也可按如下方法制备得到:

将1,6-二溴己烷、4-甲基吡啶、乙醇混合,在85℃条件下反应48h,反应结束后溶液冷却至室温,减压过滤后再用甲醇和丙酮进行重结晶,用丙酮洗涤晶体,干燥后得到1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物。

5,5'-((苯基氮杂二基)双(4,1-亚苯基))双(噻吩-2-甲醛)的制备方法可参考文献(Di-branched triphenylamine dye sensitized TiO2 nanocomposites with goodphotostability for sensitive photoelectrochemical detection oforganophosphate pesticides),也可按如下方法制备得到:

将4,4'-二溴三苯胺,5-醛基-2-噻吩硼酸、四(三苯基膦)钯,K2CO3,依次加入250ml的双颈烧瓶,将烧瓶在真空下抽空并在干燥氮气中置换三次,然后加入甲醇和四氢呋喃。在70~90℃下加热回流搅拌反应24小时。使用饱和食盐水和二氯甲烷萃取。减压蒸馏,获得橙色固体,使用硅胶粉作固定相,以石油醚/乙酸乙酯为洗脱剂,通过柱层析法获得5,5'-((苯基氮杂二基)双(4,1-亚苯基))双(噻吩-2-甲醛)。

实施例1

一种三苯胺-季铵盐型聚合物,其结构式如下式(I)所示:

所述三苯胺-季铵盐型聚合物的制备方法如下:

将4,4'-二(4-吡啶基)三苯胺(0.04g,0.1mmol)与1,6-二溴己烷(0.024g,0.1mmol),20mL四氢呋喃依次加入50ml圆底烧瓶。在85℃下搅拌反应48小时后,减压蒸馏,除去溶剂,使用四氢呋喃和乙醚依次洗涤滤渣,获得橙黄色固体0.048g(产率65%)。本实施例所得聚合物的聚合度为1~15。

实施例2

一种三苯胺-季铵盐型聚合物,其结构式如下式(II)所示:

所述三苯胺-季铵盐型聚合物的制备方法如下:

将N,N-二(4-甲酰苯基)苯胺(0.03g,0.1mmol)与步骤S2制得的1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物(0.043g,0.1mmol)、几滴哌啶和20mL乙醇中加入到50mL的圆底烧瓶中,在90℃下加热回流搅拌反应4小时。反应完后冷却,减压蒸馏,用四氢呋喃和乙醚依次洗涤获得红色固体0.062g(产率86%)。本实施例所得聚合物的聚合度为1~10。

实施例3

一种三苯胺-季铵盐型聚合物,其结构式如下式(III)所示:

所述三苯胺-季铵盐型聚合物的制备方法如下:

将5,5'-((苯基氮杂二基)双(4,1-亚苯基))双(噻吩-2-甲醛)(0.046g,0.1mmol)与步骤S2制得的1,1'-(己烷-1,6-二基)双(4-甲基吡啶-1-鎓)溴化物(0.043g,0.1mmol)、几滴哌啶和20mL乙醇中加入到50mL的圆底烧瓶中,在90℃下加热回流搅拌反应4小时;反应完后冷却,减压蒸馏,用四氢呋喃和乙醚依次洗涤获得暗红色固体0.075g(产率85%)。本实施例所得聚合物的聚合度为1~14。

表征及性能测试

对实施例1~3所述式(I)、式(II)和式(III)聚合物进行表征和性能测试,结果如图1~7所示。

图1为实施例1~3制备得到的分子(I),分子(II)和分子(III)的红外光谱图。通过查阅文献可知,在2360cm-1处出现的特征峰为季铵盐C-N的伸缩振动峰,1639cm-1、1639cm-1、1636cm-1分别为式(III)、式(II)和式(I)聚合物中吡啶上的C-N特征峰,1050cm-1为TPA-THI-Py中C-S的特征峰,说明三苯胺季铵盐成功聚合。

图2为使用岛津UV-2700紫外可见分光光度计测得的分子(I),分子(II)和分子(III)在溶液状态下的归一化吸收图谱。如图2所示,分子(I)、分子(II)和分子(III)的最大吸收波长分别是438nm,460nm和482nm。

图3为爱丁堡FLS980在激发波长分别为438nm,460nm和498nm下测试所得分子(I),分子(II)和分子(III)的荧光发射图谱。如图3所示,分子(I),分子(II)和分子(III)的最大发射波长分别是638nm,690nm和785nm,均长于现有技术(S.Liu,H.Zhang,Y.Li,etal.Strategies to Enhance the Photosensitization:Polymerization and the Donor–Acceptor Even–Odd Effect[J].Angew.Chem.Int.Ed.2018,57,15189.)公开的三苯胺-苯并噻二唑聚合物P1的最大发射波长(620nm)。

图4为使用二甲基亚砜作为良溶剂,四氢呋喃作为不良溶剂对分子(I)、分子(II)和分子(III)进行AIE性质测试所得的结果图。如图4所示,随着不良溶剂体积百分数的增加,三个分子的荧光比率都随之提高,表明三个分子均具有AIE性质,在聚集状态下荧光增强。

图5为利用活性氧荧光探针(DCFH-DA)作为指示剂对分子(I),分子(II)和分子(III)进行体外活性氧产生能力测试所得的结果图。如图5所示,随着光照时间的增长,与空白对照组相比,三个分子的荧光比率都随之提高,表面三个分子能够敏化氧气,具有强的活性氧产生能力。

图6为分子(III)的细胞成像图,从图中可以看出,分子(III)成功进入细胞中,表明分子(III)所述聚合物具有良好的生物相容性,并且随着孵化时间的延长,分子(III)在细胞中的分布逐渐发生变化。而现有技术(S.Liu,H.Zhang,Y.Li,et al.Strategies toEnhance the Photosensitization:Polymerization and the Donor–Acceptor Even–OddEffect[J].Angew.Chem.Int.Ed.2018,57,15189.)公开的三苯胺-苯并噻二唑聚合物P1不带正电荷,需要和脂质组装成对癌细胞具有靶向性的纳米粒子才能进入细胞。

图7为利用活性氧荧光探针(DCFH-DA)作为指示剂对分子(III)的进行细胞内活性氧产生能力测试所得的结果图,从图中可以看出,随着光照时间的增长,DCFH敏化明显增强,说明在细胞中分子(III)同样具备产生活性氧的能力。

分子(I)和分子(II)的细胞成像图与细胞内活性氧产生能力荧光成像图和分子(III)的类似,此处不再重复赘述。

显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:氯化制备2,3-二氯吡啶的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!