一种电化学储能聚合物电解质及制备方法

文档序号:1924308 发布日期:2021-12-03 浏览:12次 >En<

阅读说明:本技术 一种电化学储能聚合物电解质及制备方法 (Electrochemical energy storage polymer electrolyte and preparation method thereof ) 是由 张楚璠 付春 贾凤 孔京 黄伟 陈琛 于 2020-05-27 设计创作,主要内容包括:本发明公开了一种电化学储能聚合物电解质及制备方法。其组成包括聚合物、电解质锂盐、离子液体、固体氧化物、引发剂和螯合剂,聚合物均匀度好、机械强度佳、离子电导率高。该发明中的聚合物电解质含有FSI-、TFSI-、PFSI-阴离子的离子液体的加入提高了聚合物电解质的阻燃性、热稳定性及电化学稳定性,锂盐LiFSI、LiTFSI、LiPFSI的加入提高了离子电导率。螯合剂有助于离子液体和锂盐较为均匀地分散在聚合物立体骨架结构中,有利于提高聚合物电解质的离子传输效率,同时体系的均匀度和制备聚合物电解质的一致性也得到提高。(The invention discloses an electrochemical energy storage polymer electrolyte and a preparation method thereof. The lithium ion battery electrolyte comprises a polymer, electrolyte lithium salt, ionic liquid, solid oxide, an initiator and a chelating agent, and the polymer has good uniformity, good mechanical strength and high ionic conductivity. The polymer electrolyte in the invention contains ionic liquid of FSI-, TFSI-and PFSI-anions, so that the flame retardance, the thermal stability and the electrochemical stability of the polymer electrolyte are improved, and the ionic conductivity is improved by adding lithium salt LiFSI, LiTFSI and LiPFSI. The chelating agent helps the ionic liquid and the lithium salt to be uniformly dispersed in the polymer three-dimensional skeleton structure, is beneficial to improving the ion transmission efficiency of the polymer electrolyte, and simultaneously improves the uniformity of the system and the consistency of the prepared polymer electrolyte.)

一种电化学储能聚合物电解质及制备方法

技术领域

本发明涉及一种电化学储能聚合物电解质及制备方法,属于锂离子电池技术领域。

背景技术

近二十年来,随着技术的发展和需求的进一步升级,市场对高性能特别是高安全性的锂离子电池给出了更高的期待。目前市场化的动力电池大都为液流锂离子电池,这种传统电池在进一步提高能量密度和安全性保障上均受到限制。液流电池由于易发生容量跳水、失效等性能衰减缺陷,甚至过热、爆炸等安全事故等问题,难以应用新型电极材料,因而需要加快新型电池的研发和产业化。固态电池被誉为下一代电池,其与常用锂离子电池的区别在于电解质为固态材料,主要可分为聚合物、氧化物和硫化物等。由于传统锂离子电池的发展遇到了瓶颈如安全性、能量密度限制等,固态电池被普遍看好。

新体系电池的研发和应用发展迅速,目前锂空电池、锂硫电池和固态电池的能量密度分别达到700 Wh/kg、500 Wh/kg和近300 Wh/kg。固态电池电池能量密度大,相比目前最好的锂电池提升了一倍多,电动车的续航里程能从256英里提升到480英里,价格更便宜,每千瓦时100美元。因为不含液态电解质,不需要额外增加冷却装臵和电子控件等,能够有效的减少重量。其中,聚合物全固态电池因具有质轻、黏弹性好、成膜性好、电化学及化学稳定性好、锂离子迁移数较高等优势发展较为迅速,已有企业将其应用于电动汽车上。但仍存在一些问题如电极与电解质的界面阻抗或应力、电解质的稳定性、应用温度、电化学窗口和电导率限制等,阻碍着固态聚合物电池的产业化应用和进一步推广。因此,开发能在宽温度范围使用,电导率与电化学稳定性更高的固体电解质是热点的研究方向。已有研究表明,添加微量液体电解质如溶剂或离子液体、制备凝胶电解质等手段有助于兼顾电导率、界面和安全性并获得一个可行的解决方案。

研究人员将聚合物单体、引发剂和锂盐等按一定比例混合均匀后组装电池,在一定的外界条件(如热引发、光引发、伽马射线等)下引发聚合反应,单体聚合得到立体骨架结构电解质。但由于原位聚合过程中存在外界条件作用不均匀、聚合过程热量效应等因素,这种原位聚合的电解质在一致性、安全性等方面还存在挑战。

离子液体电解液是一种导电熔融盐,具有无饱和蒸气压、电化学窗口宽、电化学稳定性好的优点,在锂电池、超级电容器、电化学传感器、储能等电化学领域具有广泛的应用前景。利用离子液体难燃、挥发性弱、稳定性好、液程宽、导电性好、电化学窗口宽等优点,作为固态电解质的添加剂或主要构成成分,可使所构建的电池工作温度范围拓宽,电极/电解质界面接触问题得到改善,同时相较于其他液态电解质电化学稳定性更好,且防爆性能和阻燃性能明显提升,安全性能更好,符合未来锂电池行业的发展方向,具有广阔的应用前景。

为了进一步兼顾固态电解质的机械性能,保持凝胶固态聚合物的结构,可以通过添加固体颗粒来增强机械性能,同时已有文献报道固态颗粒有可能有助于减少固态电解质的结晶,减少由于结晶造成的分子链段运动抑制等情况。

此外,在聚合和后处理过程中,聚合物电解质体系的均匀性可能不佳,因此采用螯合剂或者说络合剂作为一种“分散剂”将有利于提高体系的均匀度和制备聚合物电解质的一致性。

发明内容

本发明旨在提供一种电化学储能聚合物电解质及制备方法,制备以聚合物、离子液体、锂盐为主要成分的机械强度佳、离子电导率高的聚合物电解质。

一种电化学储能聚合物电解质及制备方法,其特征在于:包括离子液体、锂盐、聚合物、无机氧化物、引发剂及螯合剂;所述离子液体的阴离子为双三氟甲基磺酰亚胺(TFSI-)或双氟磺酰亚胺(FSI-)或双五氟苯基磺酰亚胺阴离子(PFSI-),结构如下:

双三氟甲基磺酰亚胺(TFSI-

双氟磺酰亚胺(FSI-

双五氟苯基磺酰亚胺阴离子(PFSI-

结构中阳离子选自咪唑类、吡咯烷类、哌啶类的一种,结构通式如下:

结构中R1、R2为碳原子数在1~5的烷基。

所述锂盐的阴离子为离子液体相应的阴离子。

所述聚合物由所述单体聚合而成,所述单体为碳酸亚乙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸丙烯酯、甲基丙烯酸甲酯、偏氟乙烯、六氟丙烯、γ-丁内酯、ε-己内酯、乙二醇二丙烯酸酯、丙三醇三丙烯酸酯中的一种或多种。

所述无机氧化物为二氧化硅、三氧化二铝、二氧化钛中的一种或多种。

所述引发剂为过氧化二苯甲酰胺、偶氮二异丁腈,偶氮二异丁酸二甲酯、三氟化硼中的一种或多种。

所述螯合剂为柠檬酸、EDTA、酒石酸中的一种或多种。

进一步地,所述聚合物的制备方法如下:

S1:首先将聚合物单体溶于溶剂中,在30~60℃下混合至均匀;

S2:将离子液体、锂盐、无机固体氧化物、引发剂和螯合剂加入到前述体系中,在60~120℃下搅拌,保温6~12h;

S3:将多余溶剂旋蒸去除。

进一步地,所述锂盐的浓度为0.5~2mol/L。

进一步地,所述无机固体氧化物占电解质总质量的比例为0.1~10%。

进一步地,所述引发剂占电解质总质量的比例为0.1~5%。

进一步地,所述螯合剂占电解质总质量的比例为1~5%。

有益效果:

本发明提出的一种电化学储能聚合物电解质及制备方法,含有FSI-、TFSI-、PFSI-阴离子的离子液体的加入提高了聚合物电解质的阻燃性、热稳定性及电化学稳定性,锂盐LiFSI、LiTFSI、LiPFSI的加入也能够提高电流效率。同时,在聚合阶段加入配合螯合剂,能够使离子液体和锂盐较为均匀地分散在聚合物立体骨架结构中,有助于提高聚合物电解质的离子传输效率。螯合剂也有利于提高体系的均匀度和制备聚合物电解质的一致性。

具体实施方式

下面通过实施例对本发明进行具体描述,但不能理解为对本发明专利保护范围的限制。

实施例1

一种电化学储能聚合物电解质及制备方法,选取碳酸乙烯酯、丙二醇二丙酸酯作为聚合物单体(单体比例1:1),在60℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiFSI(1mol/L),离子液体EMImFSI(2mol/L,结构如下),二氧化硅(含量3%),过氧化二苯甲酰胺(含量0.5%),柠檬酸(含量5%)加入到前述体系中,在80℃下加热12h;最后将多余溶剂在100℃旋蒸去除。

EMimFSI

电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为3.4×10-3

实施例2

一种电化学储能聚合物电解质及制备方法,选取碳酸甲乙酯、甲基丙烯酸甲酯作为聚合物单体(单体比例1.5:1),在60℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(1mol/L),离子液体MMimPFSI(1.5mol/L,结构如下),二氧化钛(含量3%),偶氮二异丁腈(含量2.5%),EDTA(含量2%)加入到前述体系中,在80℃下加热10h;最后将多余溶剂在100℃旋蒸去除。

电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为2.6×10-3

实施例3

一种电化学储能聚合物电解质及制备方法,选取偏氟乙烯、六氟丙烯作为聚合物单体(单体比例1:1),在80℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(2mol/L),离子液体PYR13TFSI(1.5mol/L,结构如下),三氧化二铝(含量5%),偶氮二异丁酸二甲酯(含量1.5%),酒石酸(含量5%)加入到前述体系中,在90℃下加热8h;最后将多余溶剂在100℃旋蒸去除。

电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为5.2×10-3

实施例4

一种电化学储能聚合物电解质及制备方法,选取丙三醇三丙烯酸酯、甲基丙烯酸甲酯、ε-己内酯作为聚合物单体(单体比例2.2:1:0.6),在80℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(1.5mol/L),离子液体PYR22TFSI(1.5mol/L,结构如下),二氧化硅(含量2.5%),偶氮二异丁酸二甲酯(含量1.5%),柠檬酸(含量5%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。

电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.6×10-3

实施例5

一种电化学储能聚合物电解质及制备方法,选取乙二醇二丙烯酸酯、甲基丙烯酸甲酯、γ-丁内酯作为聚合物单体(单体比例2:1.8:0.2),在100℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(2mol/L),离子液体PP13FSI(1.5mol/L,结构如下),二氧化硅、三氧化二铝(含量分别为1%、1.5%),过氧化二苯甲酰胺(含量1%),柠檬酸(含量3%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。

电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.1×10-3

实施例6

一种电化学储能聚合物电解质及制备方法,选取碳酸二乙酯、甲基丙烯酸甲酯、亚硫酸乙烯酯作为聚合物单体(单体比例2:1:1),在100℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(2mol/L),离子液体PP14PFSI(1.5mol/L,结构如下),二氧化硅、二氧化钛(含量各1%),过氧化二苯甲酰胺(含量1%),柠檬酸(含量3%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。

电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.1×10-3

实施例7

一种电化学储能聚合物电解质及制备方法,选取碳酸二甲酯、甲基丙烯酸甲酯作为聚合物单体(单体比例1:1),在100℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiFSI(2mol/L),离子液体PP14FSI(2mol/L,结构如下),二氧化钛(含量分别为1.5%),过氧化二苯甲酰胺(含量1%),酒石酸(含量2.5%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。

电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.8×10-3

对比例

同实施例1,不同之处在于:

不使用离子液体和螯合剂,其他相同。测得的离子电导率为2.0×10-3

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:固体电解质及其制造方法、以及全固体电池及其制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类