Multi-beam millimeter wave phased array chip and manufacturing method thereof

文档序号:1111967 发布日期:2020-09-29 浏览:9次 中文

阅读说明:本技术 一种多波束毫米波相控阵芯片及制造方法 (Multi-beam millimeter wave phased array chip and manufacturing method thereof ) 是由 邹光南 朱进宇 王艳峰 于 2020-06-05 设计创作,主要内容包括:本发明公开了一种多波束毫米波相控阵芯片及制造方法。芯片包括N个天线连接端、N个可逆的<Image he="127" wi="117" file="DDA0002526833140000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"></Image>的第一耦合器、多个移相衰减器、M个可逆的<Image he="128" wi="106" file="DDA0002526833140000012.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"></Image>的第二耦合器、M个信号连接端;<Image he="120" wi="71" file="DDA0002526833140000013.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"></Image>个频率的K个极化方向波束传输至M个信号连接端,信号连接端与第二耦合器的第一端一一对应连接;N个第一耦合器分为K组,每组传输一种极化方向波束;同种极化方向波束传输通道上的第一耦合器的第二端与第二耦合器的第二端之间分别连接一个移相衰减器;当为发射芯片时,还包括N个功率放大器;当为接收芯片时,还包括N个低噪声放大器。同一极化方向的不同载波频率波束共用与阵元对应的同一功率放大器或低噪声放大器,减少功率放大器或低噪声放大器数量,提高了相控阵芯片集成度。(The invention discloses a multi-beam millimeter wave phased array chip and a manufacturing method thereof. The chip comprises N antenna connection ends and N reversible terminals A plurality of phase-shift attenuators, M reversibility The second coupler, M signal connection terminals; k polarization direction wave beams of each frequency are transmitted to M signal connecting ends, and the signal connecting ends are connected with the first ends of the second couplers in a one-to-one correspondence mode; n number ofThe first coupler is divided into K groups, and each group transmits a polarized beam; a phase-shifting attenuator is respectively connected between the second end of the first coupler and the second end of the second coupler on the wave beam transmission channel with the same polarization direction; when the chip is a transmitting chip, the chip also comprises N power amplifiers; when the receiving chip is used, the receiving chip also comprises N low noise amplifiers. Different carrier frequency wave beams in the same polarization direction share the same power amplifier or low noise amplifier corresponding to the array element, so that the number of the power amplifiers or low noise amplifiers is reduced, and the integration level of the phased array chip is improved.)

1. The multi-beam millimeter wave phased array chip is characterized by comprising N antenna connecting ends and N reversible antenna connecting ends

Figure FDA0002526833110000011

the K polarization direction wave beams of each frequency are respectively transmitted to the M signal connecting ends, and the signal connecting ends are correspondingly connected with the first ends of the second couplers one by one; the N first couplers are divided into K groups, and each group transmits a polarized directional wave beam;

a phase-shifting attenuator is respectively connected between the second end of the first coupler and the second end of the second coupler on the wave beam transmission channel with the same polarization direction;

when the multi-beam millimeter wave phased array chip is used as a transmitting chip, the multi-beam millimeter wave phased array chip further comprises N power amplifiers, the antenna connecting ends are correspondingly connected with the output ends of the power amplifiers one by one, and the input ends of the power amplifiers are correspondingly connected with the first ends of the first couplers one by one;

when the multi-beam millimeter wave phased array chip is used as a receiving chip, the multi-beam millimeter wave phased array chip further comprises N low-noise amplifiers, the antenna connecting ends are correspondingly connected with the input ends of the low-noise amplifiers one by one, and the output ends of the low-noise amplifiers are correspondingly connected with the first ends of the first couplers one by one.

2. The multi-beam millimeter wave phased array chip of claim 1, wherein K is 1 or 2 or 4;

when K is 2, the wave velocity polarization direction comprises horizontal polarization and vertical polarization, or the wave velocity polarization direction comprises left-hand circular polarization and right-hand circular polarization;

when K is 4, the wave velocity polarization directions include horizontal polarization, vertical polarization, left-hand circular polarization, and right-hand circular polarization.

3. The multi-beam millimeter wave phased array chip of claim 1, wherein the first coupler is

Figure FDA0002526833110000021

4. The multi-beam millimeter wave phased array chip of claim 3, wherein the first coupler acts as a transmit chip when the multi-beam millimeter wave phased array chip acts as a transmit chipThe primary coils of all or part of the first couplers are respectively connected with the output end of a phase-shift attenuator and used as an output matching circuit of the phase-shift attenuator, and the second couplers are used as a divider

Figure FDA0002526833110000024

or when the multi-beam millimeter wave phased array chip is used asWhen receiving the chip, the first coupler is used as a branchThe secondary coil of all or part of the first coupler is respectively connected with the input end of a phase-shift attenuator and is used as an input matching circuit of the phase-shift attenuator, and the second coupler is used as an input matching circuit of the phase-shift attenuator

Figure FDA0002526833110000026

5. The multi-beam millimeter wave phased array chip of claim 4, wherein when the multi-beam millimeter wave phased array chip is used as a transmit chip, all or a portion of the secondary coil of the first coupler also serves as an input matching circuit for the power amplifier; when the multi-beam millimeter wave phased array chip is used as a receiving chip, all or part of the primary coils of the first couplers are also used as output matching circuits of the low-noise amplifiers.

6. The multi-beam millimeter wave phased array chip of claim 4, wherein the N first couplers, the M second couplers and the phase-shift attenuator are located in a central region of the chip body, the N antenna connection terminals, the M signal connection terminals, and the N power amplifiers or the N low noise amplifiers are located around the chip body, and the N power amplifiers or the N low noise amplifiers are respectively located in one-to-one correspondence close proximity to the N antenna connection terminals.

7. The multi-beam millimeter wave phased array chip of claim 6, wherein the N antenna connection ends are located on opposite sides of the chip body, and two antenna connection ends connected to the same array element and having opposite polarization directions of transmitted beams are located opposite to each other; m signal connection ends are located the opposite both sides in addition of chip body, and the wave beam of transmission sets up for two signal connection ends that same frequency but polarization direction is relative oppositely.

8. The multi-beam millimeter wave phased array chip of claim 7, wherein the first coupler isThe second coupler isThe microstrip line transformer of (1);

the first end microstrip lines of the N first couplers and the first end microstrip lines of the M second couplers are criss-crossed to form a grid array, a phase-shift attenuator is arranged in a grid for transmitting beams in the same polarization direction on the upper side and the right side, the second end microstrip line of the second coupler connected with the first end of the phase-shift attenuator is arranged on the upper side of the grid, and the second end microstrip line of the first coupler connected with the second end of the phase-shift attenuator is arranged on the right side of the grid.

9. The multi-beam millimeter wave phased array chip of claim 1, wherein the antenna connection end is provided with a first balun matching circuit; and/or the signal connection end is provided with a second balun matching circuit.

10. A method for manufacturing a multi-beam millimeter wave phased array chip, comprising:

step S1, based on the phased array working frequency fcThe equivalent diameter D of the antenna, the equivalent omnidirectional radiation power EIRP and the beam scanning angle theta0Obtaining the number N' of array elements and the output power P of a single transmitting array element under the condition of meeting the requirement of no grating lobeeThe number N' of the array elements is as follows:

N'=INT[0.58(D/d)2-2]*γ*ξ;

the single transmitting array element outputs power PeComprises the following steps:

Figure FDA0002526833110000033

wherein INT [ x ]]Represents rounding down on x; d represents the array element spacing satisfying no grating lobes,c is the vacuum light velocity, gamma is the array sparsity factor, ξ is the aperture utilization ratio of the array antenna, GaRepresents the array gain, Ga=10*lg(N')+Ge-Lohmic-Lscan,GeIndicating array element gain, LohmicAnd LscanRespectively representing ohmic loss and scanning loss;

step S2, obtaining the number of power amplifiers or low gain amplifiers as K × N ', the number of antenna connection ends as K × N', the number of signal connection ends as M, K × N 'reversible and according to the required number M of independent beams, the number K of polarization directions of beams, and the number N' of array elements

Figure FDA0002526833110000042

obtaining the number N of channels integrated on a single chippComprises the following steps:

Figure FDA0002526833110000044

step S3, producing a multi-beam millimeter wave phased array chip according to the chip structure of any one of claims 1 to 9, according to the number of devices in the chip obtained in step S2.

Technical Field

The invention relates to the technical field of integrated circuits, in particular to a multi-beam millimeter wave phased array chip and a manufacturing method thereof.

Background

Millimeter wave band signals are short in wavelength and large in attenuation, but meanwhile, beams are narrow, directivity is good, and the characteristics of beam scanning and beam forming are easily achieved by a phased array.

Millimeter wave phased array communication still faces the problems of large design difficulty, complex system, high cost, large power consumption, difficult heat dissipation, difficult array arrangement and the like at present, and the wide application of the millimeter wave phased array technology is influenced to a great extent by the technical challenges and limitations. Especially for products with strict requirements on volume, power consumption and service capability, the phased array technology has attractive performance and has a plurality of technical difficulties to overcome, and is particularly limited by the condition that a phased array beam forming chip is difficult to realize high integration level and miniaturization, so that the load of the broadband multi-beam millimeter wave phased array with low power consumption is rare at present.

At present, phased array beamforming is divided into digital beamforming and analog beamforming, and under the condition of the prior art, the millimeter wave phased array adopting the analog beamforming has higher realizability and becomes a main beamforming mode. For large-scale phased arrays with broadband frequency/polarization multiplexing, multi-beam and broadband scanning requirements, the beam forming chip is more important and difficult to realize. Therefore, an effective implementation method of the high-integration beam forming phased array chip is sought, and becomes a key for the application of the multi-beam millimeter wave phased array technology.

Disclosure of Invention

The invention aims to at least solve the technical problems in the prior art, and particularly provides a multi-beam millimeter wave phased array chip and a manufacturing method thereof.

To achieve the above object, according to a first aspect of the present invention, there is provided a multi-beam millimeter wave phased array chip including N antenna connection terminals, N reversible antenna connection terminals, and N reversible antenna connection terminals

Figure BDA0002526833120000021

A plurality of phase-shift attenuators, M reversibility

Figure BDA0002526833120000022

The second coupler, M signal connection terminals; the K represents the polarization direction number of the wave beams and is a positive integer;

Figure BDA0002526833120000023

is a positive integer;

Figure BDA0002526833120000024

is a positive integer;

Figure BDA0002526833120000025

the K polarization direction wave beams of each frequency are respectively transmitted to the M signal connecting ends, and the signal connecting ends are correspondingly connected with the first ends of the second couplers one by one; the N first couplers are divided into K groups, and each group transmits a polarized directional wave beam; a phase-shifting attenuator is respectively connected between the second end of the first coupler and the second end of the second coupler on the wave beam transmission channel with the same polarization direction; when the multi-beam millimeter wave phased array chip is used as a transmitting chip, the multi-beam millimeter wave phased array chip further comprises N power amplifiers, the antenna connecting ends are correspondingly connected with the output ends of the power amplifiers one by one, and the input ends of the power amplifiers are correspondingly connected with the first ends of the first couplers one by one; when the multi-beam millimeter wave phased array chip is used as a receiving chip, the multi-beam millimeter wave phased array chip also comprises N low-noise amplifiers, and the antenna connecting end is in one-to-one correspondence with the input ends of the low-noise amplifiersAnd the output ends of the low-noise amplifiers are correspondingly connected with the first ends of the first couplers one by one.

The beneficial effects of the above technical scheme are: the wave beams with different carrier frequencies in the same polarization direction share the same power amplifier or low-noise amplifier corresponding to the array element, so that the number of the power amplifiers or low-noise amplifiers can be reduced to the greatest extent, the power consumption and the area and the cost are reduced, and the integration level of the phased array chip is improved; by utilizing the reversibility of the first coupler and the second coupler, the first coupler and the second coupler can be used as a power divider or a combiner, so that the transmitting chip and the receiving chip of the chip only need to be slightly modified in production, and the research and development and processing costs are reduced; one or more polarization directions of multi-beam transmission or reception may be achieved.

In a preferred embodiment of the invention, K is 1 or 2 or 4; when K is 2, the wave velocity polarization direction comprises horizontal polarization and vertical polarization, or the wave velocity polarization direction comprises left-hand circular polarization and right-hand circular polarization; when K is 4, the wave velocity polarization directions include horizontal polarization, vertical polarization, left-hand circular polarization, and right-hand circular polarization.

The beneficial effects of the above technical scheme are: provides a common selection of polarization directions.

In a preferred embodiment of the present invention, the first coupler isThe transformer of (1); and/or the second coupler is

Figure BDA0002526833120000032

The transformer of (1).

The beneficial effects of the above technical scheme are: it is convenient to make the first coupler and the second coupler reversible.

In a preferred embodiment of the present invention, when the multi-beam millimeter wave phased array chip is used as a transmitting chip, the first coupler is used as a transmitting chipThe primary coils of all or part of the first couplers are respectively connected with the output end of a phase-shift attenuator and used as an output matching circuit of the phase-shift attenuator, and the second couplers are used as a dividerAll or part of secondary coils of the second coupler are respectively connected with the input end of one phase-shift attenuator and used as an input matching circuit of the phase-shift attenuator; or when the multi-beam millimeter wave phased array chip is used as a receiving chip, the first coupler is used as a branch

Figure BDA0002526833120000035

The secondary coil of all or part of the first coupler is respectively connected with the input end of a phase-shift attenuator and is used as an input matching circuit of the phase-shift attenuator, and the second coupler is used as an input matching circuit of the phase-shift attenuatorAnd the primary coils of all or part of the second couplers are respectively connected with the output end of one phase-shifting attenuator and used as an output matching circuit of the phase-shifting attenuator.

The beneficial effects of the above technical scheme are: the first coupler and the second coupler of the transformer structure are adopted, one part of the transformer is skillfully used as the input/output matching part of the phase-shifting attenuator, circuit multiplexing is realized, the area is reduced, a power network functional circuit and the phase-shifting attenuator matching circuit are organically integrated through equivalent transformation and other forms, and the number of matching devices with large area is reduced; the phase-shifting attenuator array layout is facilitated, the transformer serves as a link and a key of a two-dimensional phase-shifting attenuator array, the advantages of compact structure and small area of the transformer are utilized, and the integration level of a phased array chip is improved.

In a preferred embodiment of the present invention, when the multi-beam millimeter wave phased array chip is used as a transmitting chip, all or part of the secondary coil of the first coupler is also used as an input matching circuit of the power amplifier; when the multi-beam millimeter wave phased array chip is used as a receiving chip, all or part of the primary coils of the first couplers are also used as output matching circuits of the low-noise amplifiers.

The beneficial effects of the above technical scheme are: the circuit elements are further multiplexed, the area is further reduced, and the integration level of the phased array chip can be further improved.

In a preferred embodiment of the present invention, the N first couplers, the M second couplers, and the phase-shift attenuator are located in a central region of the chip body, the N antenna connection ends, the M signal connection ends, and the N power amplifiers or the N low noise amplifiers are located around the chip body, and the N power amplifiers or the N low noise amplifiers are respectively disposed close to the N antenna connection ends in a one-to-one correspondence manner.

The beneficial effects of the above technical scheme are: the multi-beam phase-shifting attenuator with high repeatability, the first coupler and the second coupler are arranged in the center of the layout, so that the high-density and compact design of the layout is facilitated, the circuit of the repeating unit is easy to improve the density of the layout, and the minimization of the layout is realized.

In a preferred embodiment of the present invention, the N antenna connection ends are located on opposite sides of the chip body, and two antenna connection ends that are connected to the same array element and have opposite transmission beam polarization directions are oppositely disposed; m signal connection ends are located the opposite both sides in addition of chip body, and the wave beam of transmission sets up for two signal connection ends that same frequency but polarization direction is relative oppositely.

The beneficial effects of the above technical scheme are: the antenna connecting end and the signal connecting end are arranged on the periphery (namely input and output ports), the input odd-even opposition and the output odd-even opposition are separated, different two sides are separated, the phase-shifting attenuator array is equivalently formed into a two-dimensional matrix, the two-dimensional matrix is symmetrically distributed, the symmetry of a domain can be optimized, and therefore the integration level is improved.

In a preferred embodiment of the present invention, the first coupler is

Figure BDA0002526833120000051

The second coupler is

Figure BDA0002526833120000052

The microstrip line transformer of (1); the first end microstrip lines of the N first couplers and the first end microstrip lines of the M second couplers are criss-crossed to form a grid array, a phase-shift attenuator is arranged in a grid for transmitting beams in the same polarization direction on the upper side and the right side, the second end microstrip line of the second coupler connected with the first end of the phase-shift attenuator is arranged on the upper side of the grid, and the second end microstrip line of the first coupler connected with the second end of the phase-shift attenuator is arranged on the right side of the grid.

The beneficial effects of the above technical scheme are: the first coupler, the second coupler and the phase-shifting attenuator form an MXN two-dimensional array form, so that the area is reduced to a great extent, the compactness of the structure is improved, the microstrip line is used as a link and a key of a two-dimensional phase-shifting attenuator matrix and as a link and a key for connecting input and output, the use of large-area passive devices is reduced, and the integration level of a phased array core circuit is skillfully improved.

In a preferred embodiment of the present invention, the antenna connection terminal is provided with a first balun matching circuit; and/or the signal connection end is provided with a second balun matching circuit.

The beneficial effects of the above technical scheme are: and finally, the advantages of a silicon-based process and the electromagnetic field characteristics of millimeter waves are fully utilized, an active circuit is adopted to replace a large-area passive circuit, and a complex electromagnetic coupling device balun is adopted to replace a large-area planar spiral inductor, so that the area can be further reduced, and the chip integration level is improved.

In order to achieve the above object of the present invention, according to a second aspect of the present invention, there is provided a multi-beam millimeter wave phased array chip manufacturing method including: step S1, based on the phased array working frequency fcThe equivalent diameter D of the antenna, the equivalent omnidirectional radiation power EIRP and the beam scanning angle theta0Obtaining the number N' of array elements and the output power P of a single transmitting array element under the condition of meeting the requirement of no grating lobeeThe number N' of the array elements is as follows: INT [0.58(D/D) ]2-2]Gamma ξ, output power P of said single transmitting array elementeComprises the following steps:wherein INT [ x ]]Represents rounding down on x; d represents the array element spacing satisfying no grating lobes,

Figure BDA0002526833120000062

c is the vacuum light velocity, gamma is the array sparsity factor, ξ is the aperture utilization ratio of the array antenna, GaRepresents the array gain, Ga=10*lg(N')+Ge-Lohmic-Lscan,GeIndicating array element gain, LohmicAnd LscanRespectively representing ohmic loss and scanning loss; step S2, obtaining the number of power amplifiers or low gain amplifiers as K × N ', the number of antenna connection ends as K × N', the number of signal connection ends as M, K × N 'reversible and according to the required number M of independent beams, the number K of polarization directions of beams, and the number N' of array elementsFirst coupler of (2), M reversible

Figure BDA0002526833120000064

A second coupler of (a); obtaining the number N of channels integrated on a single chippComprises the following steps:wherein M iskNumber of beams, Q, representing the k-th polarization directionkRepresents MkThe number of corresponding antenna connection ends; n is a radical ofpThe number of phase-shift attenuators in the chip; and step S3, according to the quantity of the devices in the chip obtained in the step S2, producing the multi-beam millimeter wave phased array chip according to the chip structure.

The beneficial effects of the above technical scheme are: besides the beneficial effects of the phased array chip, the phased array beamforming chip has the beneficial effects of high integration level and low power consumption by utilizing the advantages of a silicon-based process and the characteristics of a millimeter wave electromagnetic field, designing a plurality of dimensions from a chip architecture, a circuit design and a layout, forming a two-dimensional beam array through circuit multiplexing, integrated design of a functional circuit and a matching circuit, input and output and adopting a three-dimensional electromagnetic coupling mode.

Drawings

FIG. 1 is a block diagram of a M-input N-output millimeter wave phased array chip according to an embodiment of the present invention;

FIG. 2 is a block diagram of a millimeter wave phased array chip with N inputs and M outputs according to an embodiment of the present invention;

fig. 3 is a schematic diagram of the structure of the multi-beam multiplexing power amplifier in a dual polarization application of the present invention.

Reference numerals:

1, connecting an antenna; 2, a signal connecting end; 3 a first coupler; 4 a second coupler; 5 phase-shifting attenuator.

Detailed Description

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the accompanying drawings are illustrative only for the purpose of explaining the present invention, and are not to be construed as limiting the present invention.

In the description of the present invention, it is to be understood that the terms "longitudinal", "lateral", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", and the like, indicate orientations or positional relationships based on those shown in the drawings, and are used merely for convenience of description and for simplicity of description, and do not indicate or imply that the referenced devices or elements must have a particular orientation, be constructed in a particular orientation, and be operated, and thus, are not to be construed as limiting the present invention.

In the description of the present invention, unless otherwise specified and limited, it is to be noted that the terms "mounted," "connected," and "connected" are to be interpreted broadly, and may be, for example, a mechanical connection or an electrical connection, a communication between two elements, a direct connection, or an indirect connection via an intermediate medium, and specific meanings of the terms may be understood by those skilled in the art according to specific situations.

The invention provides a multi-beam millimeter wave phased array chip, which comprises N antenna connecting ends 1 and N reversible antenna connecting ends 1 in a preferred embodiment as shown in figures 1 and 2A first coupler 3, a plurality of phase-shifting attenuators 5, M reversibleA second coupler 4, M signal connection terminals 2; k represents the polarization direction number of the wave beams and is a positive integer;

Figure BDA0002526833120000083

is a positive integer;is a positive integer;the K polarization direction wave beams of each frequency are respectively transmitted to the M signal connecting ends 2, and the signal connecting ends 2 are correspondingly connected with the first ends of the second couplers 4 one by one; the N first couplers 3 are divided into K groups, and each group transmits a polarized directional beam; a phase-shifting attenuator 5 is respectively connected between the second end of the first coupler 3 and the second end of the second coupler 4 on the wave beam transmission channels with the same polarization direction; when the multi-beam millimeter wave phased array chip is used as a transmitting chip, the multi-beam millimeter wave phased array chip further comprises N power amplifiers, the antenna connecting ends 1 are correspondingly connected with the output ends of the power amplifiers one by one, and the input ends of the power amplifiers are correspondingly connected with the first ends of the first couplers 3 one by one; when the multi-beam millimeter wave phased array chip is used as a receiving chip, the multi-beam millimeter wave phased array chip also comprises N low-noise amplifiers, the antenna connecting ends 1 are connected with the input ends of the low-noise amplifiers in a one-to-one correspondence manner, and the low-noise amplifiers are low in noiseThe output ends of the acoustic amplifiers are connected with the first ends of the first couplers 3 in a one-to-one correspondence.

In the present embodiment, the first coupler 3 has a first end anda second end, the second coupler 4 having a first end and

Figure BDA0002526833120000087

a second end. The number M of multi-beam phased array beams is typically an integer multiple of 2, such as 8, 16, 32, 64, etc., which are common. Preferably, N, M are each powers of 2.

In this embodiment, the signal connection end 2, the second coupler 4, the first coupler 3, the Power Amplifier (PA)/Low Noise Amplifier (LNA) and the antenna signal connection end 1 can be divided into K groups according to different polarization directions, and each group transmits signals in the same polarization direction

Figure BDA0002526833120000088

Each beam having a different carrier frequency. Thus, the first coupler 3 has a ratio ofThe first end with the ratio of 1 is connected with the PA/LNA; the second coupler 3 has a ratio of

Figure BDA00025268331200000810

The first end of the ratio 1 is connected to the signal connection 2.

In this embodiment, the phase shift attenuator includes a phase shifter and an attenuator, preferably, the phase shifter is a reflection-type phase shifter, and the phase shift can be realized by adjusting a coupling and through-end load network, or an active vector synthesis phase shifter; the attenuator adopts a switch embedded structure; the PA and/or LNA may employ a pseudo-differential common source structure.

In this embodiment, preferably, K is 1 or 2 or 4; when K is 2, the wave velocity polarization direction includes horizontal polarization and vertical polarization, or the wave velocity polarization direction includes left-hand circular polarization and right-hand circular polarization; when K is 4, the wave velocity polarization directions include horizontal polarization, vertical polarization, left-hand circular polarization, and right-hand circular polarization. Preferably, an external array element is simultaneously connected with K antenna connection terminals 1 for transmitting beams with different polarization directions, for example, when the polarization directions include left-hand circular polarization and right-hand circular polarization, each array element is connected with 2 antenna connection terminals 1, one antenna connection terminal transmits left-hand circular polarization beams, and the other antenna connection terminal transmits right-hand circular polarization beams.

In an application scenario of the present embodiment, as shown in fig. 1 and fig. 2, at this time, the number of polarization directions is two, the right side is a first polarization direction beam, the left side is a second polarization direction beam, the longitudinal wider microstrip line is the first end of the first coupler 3, and the transverse wider microstrip line is the first end of the second coupler 4, and it can be seen that the upper PA/LNA and the antenna signal connection terminal 1 transmit the first polarization direction beam on the right side, and the lower PA/LNA and the antenna signal connection terminal 1 transmit the second polarization direction beam on the left side.

In another application scenario of this embodiment, as shown in fig. 3, the chip is used as a transmitting chip, and the polarization directions include left-hand circular polarization and right-hand circular polarization, each of which is set to be left-hand circular polarization and right-hand circular polarizationThe wave beams are input into M wave beams to set the external array element as one, two PAs are connected with the external array element, one of the two PAs transmits left-handed circularly polarized wave beams, the other one transmits right-handed circularly polarized wave beams, and the left-handed circularly polarized wave beams

Figure BDA0002526833120000092

The wave beams are respectively combined to the PA by the 1 first coupler 3 after passing through the phase-shift attenuator 5, and are transmitted to the OUT _ L antenna connecting end 1 after being amplified by the PA, and the right-hand circular polarization

Figure BDA0002526833120000093

The wave beams are respectively combined to the PA by the 1 first coupler 3 after passing through the phase-shift attenuator 5, and are transmitted to the OUT _ R antenna connecting end 1 after being amplified by the PA. In the application scenario, for convenience of explaining the technical scheme of the invention, the number of PAs is set to be2, the second coupler 4 is not provided, in practical application, the number of PAs is generally greater than 2, and the second coupler 4 needs to be provided.

In a preferred embodiment, the first coupler 3 isThe transformer of (1); and/or the second coupler 4 isThe transformer of (1).

In the embodiment, the power division and synthesis are realized by using the transformer, and the transformer is a passive device realized by adopting double-layer metal, has the advantages of compact structure, small area, and reversibility.

In a preferred embodiment, the first coupler 3 acts as the transmitting chip when the multi-beam millimeter wave phased array chip acts as the transmitting chipThe combiner comprises a combiner, all or part of the primary coils of the first coupler 3 are respectively connected with the output end of a phase-shift attenuator 5 and used as the output matching circuit of the phase-shift attenuator 5, and the second coupler 4 is used as a branch

Figure BDA0002526833120000104

All or part of secondary coils of the second coupler 4 are respectively connected with the input end of a phase-shift attenuator 5 and used as an input matching circuit of the phase-shift attenuator 5; or when the multi-beam millimeter wave phased array chip is used as a receiving chip, the first coupler 3 is used as a branch

Figure BDA0002526833120000105

All or part of the secondary coils of the first coupler 3 are respectively connected with the input end of a phase-shift attenuator 5 and used as the input matching circuit of the phase-shift attenuator 5, and the second coupler 4 is used as the input matching circuit of the phase-shift attenuator 5

Figure BDA0002526833120000106

The primary coils of all or part of the second couplers 4 of the combiner integrated with the path are respectively connected with the output end of one phase-shift attenuator 5 and used as an output matching circuit of the phase-shift attenuator 5.

In the present embodiment, when the multi-beam millimeter wave phased array chip is used as a transmitting chip, the number of the secondary coils of the first coupler 3 is 1, and the number of the primary coils is 1The number of the primary coils of the second coupler 4 is 1, and the number of the secondary coils thereof is

Figure BDA0002526833120000108

A plurality of; when the multi-beam millimeter wave phased array chip is used as a receiving chip, the number of the primary coils of the first coupler 3 is 1, and the number of the secondary coils is 1

Figure BDA0002526833120000109

1 secondary coil and 1 primary coil of the second coupler 4And (4) respectively. One end of the transformer is skillfully used as a part of the phase-shifting attenuator matching circuit, so that the circuit multiplexing is realized, and the area is further reduced.

In a preferred embodiment, when the multi-beam millimeter wave phased array chip is used as a transmitting chip, all or part of the secondary coil of the first coupler 3 is also used as an input matching circuit of the power amplifier; when the multi-beam millimeter wave phased array chip is used as a receiving chip, all or part of the primary coils of the first couplers 3 also serve as output matching circuits of the low noise amplifiers.

In a preferred embodiment, the N first couplers 3, the M second couplers 4 and the phase-shift attenuator 5 are located in a central region of the chip body, the N antenna connection terminals 1, the M signal connection terminals 2, and the N power amplifiers or the N low noise amplifiers are located around the chip body, and the N power amplifiers or the N low noise amplifiers are respectively disposed close to the N antenna connection terminals 1 in a one-to-one correspondence manner, as shown in fig. 1 and 2.

In this embodiment, a power amplifier or a low noise amplifier is connected near each antenna connection terminal 1, and preferably, the outermost layer of the periphery of the chip is provided with the antenna connection terminal 1 and the signal connection terminal 2, the next outermost layer is provided with the power amplifier or the low noise amplifier, and the most central of the chip is provided with the first coupler 3, the second coupler 4 and the phase-shift attenuator 5.

In a preferred embodiment, the N antenna connection terminals 1 are located at two opposite sides of the chip body, and the two antenna connection terminals 1 which are connected to the same array element and have opposite transmission beam polarization directions are arranged oppositely; m signal connection ends 2 are located the other opposite both sides of chip body, and the wave beam of transmission sets up for two signal connection ends 2 that same frequency but polarization direction is relative oppositely.

In this embodiment, preferably, N antenna connection terminals 1 are numbered in sequence from 1 to N, M signal connection terminals 2 are numbered in sequence from 1 to M, and when the chip shown in fig. 1 is used as a transmitting chip, the signal connection terminal 2 is used as a beam input terminal, the antenna connection terminal 1 is used as a beam output terminal, K is set to be 2, input 1 and input 2, input 3 and input 4, … …, and the beams input to the signal connection terminals 2 of input M-1 and input M are both at the same frequency but with opposite polarization directions, and therefore, the beams output from the antenna connection terminals 1 of output 1 and output 2, output 3 and output 4, … … are both oppositely arranged, and therefore, the beams output from the antenna connection terminals 1 of output N-1 and output N are both at the same frequency but with opposite polarization directions, and are both oppositely arranged. Similarly, the chip shown in fig. 2 is also configured in the same manner as the receiving chip. The input and output are arranged around the array, the chip wave beam input and output are symmetrically distributed on two opposite sides and are arranged in a crossed and numbered mode, the odd number is on the same side, and the even number is on the opposite side; this arrangement ensures high isolation and integration of the channels and uniformity.

In a preferred embodiment, as shown in fig. 1 and 2, the first coupler 3 isThe second coupler 4 isThe microstrip line transformer of (1); the first end microstrip lines of the N first couplers 3 and the first end microstrip lines of the M second couplers 4 are criss-crossed to form a grid array, a phase-shift attenuator 5 is arranged in a grid for transmitting beams in the same polarization direction on the upper side and the right side, the second end microstrip line of the second coupler 4 connected with the first end of the phase-shift attenuator 5 is arranged on the upper side of the grid, and the second end microstrip line of the first coupler 3 connected with the second end of the phase-shift attenuator 5 is arranged on the right side of the grid.

In the present embodiment, the first end microstrip line of the first coupler 3 is a microstrip line having a large longitudinal width, and the first coupler 3 has a microstrip line having a large longitudinal widthThe second end microstrip lines are microstrip lines with smaller transverse width which are respectively connected with the phase-shift attenuator and the first end microstrip line of the first coupler 3; the microstrip line at the first end of the second coupler 4 is a microstrip line with a larger transverse width, and the microstrip line at the first end of the second coupler 4 is a microstrip line with a larger transverse width

Figure BDA0002526833120000124

The second end microstrip lines are microstrip lines with smaller longitudinal width which are respectively connected with the phase-shift attenuator and the first end microstrip line of the second coupler 4. The first end microstrip line of the first coupler 3 and the first end microstrip line of the second coupler 4 are spatially staggered and are not electrically connected to form an array form with M rows and N columns, and layout density is improved by using the characteristics of layout repetition and symmetrical distribution.

In a preferred embodiment, the antenna connection 1 is provided with a first balun matching circuit; and/or the signal connection terminal 2 is provided with a second balun matching circuit.

The invention also discloses a manufacturing method of the multi-beam millimeter wave phased array chip, which comprises the following steps:

step S1, based on the known working frequency f of the phased arraycThe equivalent diameter D of the antenna, the equivalent omnidirectional radiation power EIRP, the maximum saving of the array element number by a triangular array layout, and the beam scanning angle theta0Obtaining the number N' of array elements and the output power P of a single transmitting array element under the condition of meeting the requirement of no grating lobeeAccording to the requirements of sidelobe suppression and isolation, the requirement of the precision digit of each beam attenuator and phase shifter can be determined, and the number N' of the array elements is as follows:

N'=INT[0.58(D/d)2-2]*γ*ξ。

output power P of single transmitting array elementeComprises the following steps:

wherein INT [ x ]]Represents rounding down on x; d represents the array element spacing satisfying no grating lobes,c is the vacuum light velocity, gamma is the array sparsity factor, ξ is the aperture utilization ratio of the array antenna, GaRepresents the array gain, Ga=10*lg(N')+Ge-Lohmic-Lscan,GeIndicating array element gain, LohmicAnd LscanRespectively, ohmic losses and scanning losses.

Step S2, obtaining the number of power amplifiers or low gain amplifiers K × N ', the number of antenna connection ends 1K × N', the number of signal connection ends 2M, K × N 'according to the required number M of independent beams, the number K of polarization directions of beams, and the number N' of array elements 3, M reversible first couplers

Figure BDA0002526833120000134

The second coupler 4; preferably, a chip process is determined by integrating working frequency bands, application backgrounds, index requirements, power consumption efficiency, cost factors and the like; secondly, the integral multiple input and output of 4 is selected by taking the improvement of the chip integration level as a guide and considering the symmetry. And considering the polarization multiplexing requirement, and selecting 8 paths of output for convenient array layout design.

Obtaining the number N of channels integrated on a single chippComprises the following steps:

Figure BDA0002526833120000135

wherein M iskNumber of beams, Q, representing the k-th polarization directionkRepresents MkThe number of corresponding antenna connection ends 1; n is a radical ofpThe number of phase-shift attenuators 5 in the chip. N is a radical ofpOften 4, 8, 16, 32, 64, 128, etc. As described above, NpThe larger the integration degree is, the higher the integration degree is, but the limit that the millimeter wave band d is less than or equal to 5mm is, and the complete integration of the 128-channel multi-beam millimeter wave phased array chip is almost difficult to realize; in general (N)p)max=64,f≥30GHz。

And determining a layout minimization layout mode of the beam forming chip layout. M wave beams (such as M/2 wave beam left-hand circular polarization and M/2 wave beam right-hand circular polarization) are input and distributed left and right, and are distributed in an odd-even cross way; the amplified beam output of M/2 path synthesis is distributed left and right, and distributed in odd-even cross.

And step S3, producing the multi-beam millimeter wave phased array chip according to the phased array chip structure according to the number of the devices in the chip obtained in the step S2. Preferably, the chip is manufactured based on a silicon-based (SiGe BiCMOS, bulk silicon CMOS, SOI CMOS) process.

In the description herein, references to the description of the term "one embodiment," "some embodiments," "an example," "a specific example," or "some examples," etc., mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

While embodiments of the invention have been shown and described, it will be understood by those of ordinary skill in the art that: various changes, modifications, substitutions and alterations can be made to the embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and their equivalents.

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:信号扰动提取电路、信号扰动提取方法及射频接收器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!