发光装置和投影仪

文档序号:1448284 发布日期:2020-02-18 浏览:25次 >En<

阅读说明:本技术 发光装置和投影仪 (Light emitting device and projector ) 是由 西冈大毅 岸野克巳 于 2019-08-01 设计创作,主要内容包括:提供发光装置和投影仪,该发光装置射出的光是直线偏振光。发光装置具有:基体;以及层叠体,其设置于所述基体,具有由p个柱状部构成的柱状部集合体,所述层叠体具有多个所述柱状部集合体,所述p个柱状部分别具有发光层,在从所述层叠体的层叠方向观察时,由所述多个柱状部各自的中心构成的图形是旋转对称的,所述p个柱状部中的q个柱状部的径与所述p个柱状部中的r个柱状部的径不同,所述柱状部集合体的形状不是旋转对称的,所述p是2以上的整数,所述q是1以上且小于p的整数,所述r是满足r=p-q的整数。(Provided are a light-emitting device and a projector, wherein light emitted by the light-emitting device is linearly polarized light. The light emitting device includes: a substrate; and a laminate provided on the substrate, the laminate having a columnar portion aggregate made up of p columnar portions, the laminate having a plurality of the columnar portion aggregates, the p columnar portions each having a light-emitting layer, a pattern formed by the centers of the plurality of columnar portions being rotationally symmetric when viewed from the lamination direction of the laminate, the diameter of q columnar portions of the p columnar portions being different from the diameter of r columnar portions of the p columnar portions, the columnar portion aggregate not being rotationally symmetric in shape, p being an integer of 2 or more, q being an integer of 1 or more and less than p, and r being an integer satisfying r-p-q.)

发光装置和投影仪

技术领域

本发明涉及发光装置和投影仪。

背景技术

半导体激光器被期待作为高亮度的下一代光源。其中,可期待应用了纳米柱的半导体激光器能够通过纳米柱的光子晶体的效应以窄放射角实现高输出的发光。这样的半导体激光器例如被用作投影仪的光源。在使用液晶光阀的投影仪中,希望从光源射出的光是直线偏振光。

在利用了GaN系纳米柱的光子晶体的半导体激光器中,通过改变纳米柱的排列周期或直径,能够进行与RGB的三原色的波长相匹配的设计。但是,为了在红色区域中进行振荡,需要使用直径大的纳米柱,难以得到缺陷或变形较少、发光效率良好的纳米柱的效应。因此,公知有如下的技术:将由直径小的多个纳米柱构成的纳米柱集合体视为纳米柱,并使纳米柱集合体周期性地排列。

这里,如专利文献1所记载的那样,纳米柱按照三角形、正方形、六边形等具有旋转对称性的晶格图案排列,因此从发光装置射出的光不是直线偏振光。

专利文献1:日本特开2013-9002号公报

即使在如上述那样由多个纳米柱形成了纳米柱集合体的情况下,当纳米柱集合体按照具有旋转对称性的晶格图案排列时,从发光装置射出的光不是直线偏振光。

发明内容

本发明的发光装置的一个方式具有:

基体;以及

层叠体,其设置于所述基体,具有由p个柱状部构成的柱状部集合体,

所述层叠体具有多个所述柱状部集合体,

所述p个柱状部分别具有发光层,

在从所述层叠体的层叠方向观察时,由所述p个柱状部各自的中心构成的图形是旋转对称的,

所述p个柱状部中的q个柱状部的径与所述p个柱状部中的r个柱状部的径不同,

所述柱状部集合体的形状不是旋转对称的,

所述p是2以上的整数,

所述q是1以上且小于p的整数,

所述r是满足r=p-q的整数。

本发明的发光装置的一个方式具有:

基体;以及

层叠体,其设置于所述基体,具有由p个柱状部构成的柱状部集合体,

所述层叠体具有多个所述柱状部集合体,

所述p个柱状部分别具有发光层,

在从所述层叠体的层叠方向观察时,在所述基体上规定了旋转对称的所述p个晶格点的情况下,所述p个柱状部中的q个柱状部各自的中心配置于所述晶格点,所述p个柱状部中的r个柱状部各自的中心配置于与所述晶格点不同的位置,

所述柱状部集合体的形状不是旋转对称的,

所述p是3以上的整数,

所述q是2以上且小于p的整数,

所述r是满足r=p-q的整数。

在所述发光装置的一个方式中,

所述q是比所述p的一半大的整数。

本发明的投影仪具有所述发光装置的一个方式。

附图说明

图1是示意性地示出第1实施方式的发光装置的剖视图。

图2是示意性地示出第1实施方式的发光装置的平面图。

图3是示意性地示出第1实施方式的发光装置的柱状部集合体的平面图。

图4是用于对偏振光进行说明的图。

图5是用于对光的强度进行说明的曲线图。

图6是用于对偏振光进行说明的图。

图7是示意性地示出第1实施方式的发光装置的制造工序的剖视图。

图8是示意性地示出第1实施方式的第1变形例的发光装置的柱状部集合体的平面图。

图9是示意性地示出第1实施方式的第2变形例的发光装置的柱状部集合体的平面图。

图10是示意性地示出第1实施方式的第3变形例的发光装置的剖视图。

图11是示意性地示出第2实施方式的发光装置的柱状部集合体的平面图。

图12是示意性地示出第2实施方式的第1变形例的发光装置的柱状部集合体的平面图。

图13是示意性地示出第2实施方式的第2变形例的发光装置的柱状部集合体的平面图。

图14是示意性地示出第3实施方式的投影仪的图。

标号说明

10:基体;20:层叠体;22:缓冲层;30:柱状部;30a:第1柱状部;30b:第2柱状部;31:第1半导体层;32:第1引导层;33:发光层;34:第2引导层;35:第2半导体层;40:柱状部集合体;50:第1电极;52:第2电极;60:掩模层;62:开口部;100:发光装置;100R:红色光源;100G:绿色光源;100B:蓝色光源;110、120、130、200、210、220:发光装置;900:投影仪;902R:第1透镜阵列;902G:第2透镜阵列;902B:第3透镜阵列;904R:第1光调制装置;904G:第2光调制装置;904B:第3光调制装置;906:十字分色棱镜;908:投射装置。

具体实施方式

以下,使用附图对本发明的优选的实施方式进行详细说明。另外,以下说明的实施方式并非不合理地限定权利要求书所记载的本发明的内容。并且,以下说明的结构不一定全部都是本发明的必要构成要素。

1.第1实施方式

1.1.发光装置

首先,参照附图对第1实施方式的发光装置进行说明。图1是示意性地示出第1实施方式的发光装置100的剖视图。图2是示意性地示出第1实施方式的发光装置100的平面图。另外,图1是图2的I-I线剖视图。

如图1和图2所示,发光装置100包含基体10、层叠体20、第1电极50以及第2电极52。另外,为了方面,在图2中,省略了第2电极52的图示。

基体10例如具有板状的形状。基体10例如是Si基板、GaN基板、蓝宝石基板等。

层叠体20设置于基体10。在图示的例子中,层叠体20设置在基体10上。层叠体20例如具有缓冲层22和柱状部30。

另外,在本发明中,“上”是指在层叠体20的层叠方向(以下,也简称为“层叠方向”)上从柱状部30的发光层33观察时远离基体10的方向,“下”是指在层叠方向上从发光层33观察时接近基体10的方向。

并且,在本发明中,“层叠体20的层叠方向”是指柱状部30的第1半导体层31与发光层33的层叠方向。

缓冲层22设置在基体10上。缓冲层22例如是掺杂有Si的n型GaN层等。在缓冲层22上设置有用于形成柱状部30的掩模层60。

柱状部30设置在缓冲层22上。柱状部30的与层叠方向垂直的方向上的截面形状例如是多边形、圆等。在图2所示的例子中,柱状部30的截面形状是正六边形。柱状部30的径例如是nm级,具体来说为10nm以上且500nm以下。柱状部30例如也被称为纳米柱(Nanocolumn)、纳米线、纳米棒、纳米柱状物(Nanopillar)。柱状部30的层叠方向的大小例如为0.1μm以上且5μm以下。

另外,在本发明中,“径”在柱状部30的平面形状为圆的情况下是指直径,在柱状部30的平面形状为多边形的情况下是指内部包含该多边形的最小的圆(即最小包络圆)的直径。并且,“平面形状”是指从层叠方向观察时的形状。

如图1所示,柱状部30具有第1半导体层31、第1引导层32、发光层33、第2引导层34以及第2半导体层35。

第1半导体层31设置在缓冲层22上。第1半导体层31设置在基体10与发光层33之间。第1半导体层31例如是掺杂有Si的n型GaN层等。

第1引导层32设置在第1半导体层31上。第1引导层32具有比第1半导体层31的径大的径。在图示的例子中,第1引导层32的径在层叠方向上是变化的。第1引导层32例如具有由GaN层和InGaN层构成的半导体超晶格(SL)构造。构成第1引导层32的GaN层和InGaN层的数量没有特别地限定。

发光层33设置在第1引导层32上。发光层33设置在第1半导体层31与第2半导体层35之间。发光层33是通过被注入电流而能够产生光的层。发光层33例如具有由GaN层和InGaN层构成的量子阱(MQW)构造。构成发光层33的GaN层和InGaN层的数量没有特别地限定。

第2引导层34设置在发光层33上。第2引导层34例如具有由GaN层和InGaN层构成的半导体超晶格(SL)构造。构成第2引导层34的GaN层和InGaN层的数量没有特别地限定。第1引导层32和第2引导层34是具有如下功能的层:使在与层叠方向垂直的方向上传播的光与发光层33的重叠变大,即,使光封闭系数(光閉じ込め係数)增大。

第2半导体层35设置在第2引导层34上。第2半导体层35是导电类型与第1半导体层31的导电类型不同的层。第2半导体层35例如是掺杂有Mg的p型GaN层等。第1半导体层31和第2半导体层35是具有将光封闭在发光层33中的功能的包覆层。

在发光装置100中,通过p型的第2半导体层35、未掺杂杂质的发光层33、第1引导层32、第2引导层34以及n型的第1半导体层31来构成pin二极管。在发光装置100中,当在第1电极50与第2电极52之间施加pin二极管的正向偏压电压时,向发光层33注入电流而在发光层33中引起电子与空穴的复合。通过该复合而产生发光。在发光层33中产生的光借助第1半导体层31和第2半导体层35而在与层叠方向垂直的方向上传播,通过由多个柱状部30产生的光子晶体的效应来形成驻波,在发光层33中受到增益而进行激光振荡。然后,发光装置100将+1级衍射光和-1级衍射光作为激光而向层叠方向射出。

另外,虽然未图示,但也可以在基体10与缓冲层22之间或者在基体10的下方设置反射层。该反射层例如是DBR(Distributed Bragg Reflector:分布布拉格反射)层。能够通过该反射层使在发光层33中产生的光反射,发光装置100能够仅从第2电极52侧射出光。

柱状部30构成了柱状部集合体40。如图2所示,层叠体20具有多个柱状部集合体40。在图示的例子中,多个柱状部集合体40排列成三角晶格状。在从层叠方向观察时,相邻的柱状部集合体40的中心之间的距离为250nm以上且350nm以下。这里,图3是示意性地示出柱状部集合体40的平面图。

如图2和图3所示,柱状部集合体40由p个柱状部30构成。“p”是2以上的整数,例如是3以上且15以下的整数,优选3以上且7以下的整数。在图示的例子中,“p”是7,柱状部集合体40由7个柱状部30构成。柱状部集合体40是能够使红色区域的光振荡的柱状部30的集合体。在从层叠方向观察时,在柱状部集合体40中,相邻的柱状部30的中心之间的距离为50nm以上且150nm以下。P个柱状部30分别具有发光层33。

在柱状部集合体40中,如图3所示,在从层叠方向观察时,例如,由p个柱状部30各自的中心C构成的图形F是旋转对称的。即,在设n为2以上的整数的情况下,图形F为n次对称。在图示的例子中,图形F为6次对称。这样,由于由例如3个以上的中心C构成的图形F是旋转对称的,所以与图形F不是旋转对称的情况、例如3个以上的柱状部排列成1条直线的情况相比,能够在与层叠方向垂直的方向上进一步将在多个方向上共振的光各向同性地封闭,容易构成能够使红色区域的光振荡的柱状部集合体40。例如,由于能够制作出在3个方向上相同的折射率周期构造,因此能够将在3个方向上共振的光以相同的方式封闭。因此,在共振的3方向上不存在容易漏光的方向,能够有效地将光封闭。在图示的例子中,柱状部30的中心C配置在未图示的正六边形的各顶点和该正六边形的中心。该正六边形的中心与柱状部集合体40的中心重叠。例如,虽然未图示,但用连接相邻的中心C的线段构成的图形是旋转对称的。

在柱状部集合体40中,在从层叠方向观察时,p个柱状部30中的q个第1柱状部30a的径D1与p个柱状部30中的r个第2柱状部30b的径D2不同。第2柱状部30b的径D2比第1柱状部30a的径D1小。“q”是1以上且小于p的整数。“r”是满足r=p-q的整数。

在图示的例子中,“q”是6,“r”是1。由于柱状部集合体40具有径比第1柱状部30a小的第2柱状部30b,所以在从层叠方向观察时,柱状部集合体40的形状不是旋转对称的。即,在设m为2以上的整数的情况下,柱状部集合体40的形状不是m次对称。第2柱状部30b被配置成不与柱状部集合体40的中心重叠。

这里,“柱状部的径”是柱状部30的第1半导体层31的径、第1引导层32的径、发光层33的径、第2引导层34的径以及第2半导体层35的径中的最大径。在图示的例子中,第2柱状部30b的第1半导体层31的径、第1引导层32的径、发光层33的径、第2引导层34的径、第2半导体层35的径分别比第1柱状部30a的第1半导体层31的径、第1引导层32的径、发光层33的径、第2引导层34的径、第2半导体层35的径小。发光层33的径、第2引导层34的径、第2半导体层35的径例如是相同的。

另外,虽然未图示,但柱状部集合体40也可以具有多个第2柱状部30b。但是,当径小的第2柱状部30b为1个时,能够使在与层叠方向垂直的方向上传播的光与发光层33重叠的区域变大。

第1电极50设置在缓冲层22上。缓冲层22可以与第1电极50欧姆接触。第1电极50与第1半导体层31电连接。在图示的例子中,第1电极50经由缓冲层22而与第1半导体层31电连接。第1电极50是用于向发光层33注入电流的一个电极。作为第1电极50,例如,使用从缓冲层22侧起按照Ti层、Al层、Au层的顺序层叠起来而得的电极等。另外,在基体10为导电性的情况下,虽然未图示,但第1电极50也可以设置在基体10的下方。

第2电极52设置在第2半导体层35上。第2半导体层35可以与第2电极52欧姆接触。第2电极52与第2半导体层35电连接。第2电极52是用于向发光层33注入电流的另一个电极。作为第2电极52,例如,使用ITO(indiumtin oxide:铟锡氧化物)等。

另外,在上述内容中,对InGaN系的发光层33进行了说明,但作为本发明的发光层33,可以使用能够通过被注入电流而发光的所有材料系。例如,可以使用AlGaN系、AlGaAs系、InGaAs系、InGaAsP系、InP系、GaP系、AlGaP系等半导体材料。

发光装置100例如具有以下的特征。

在发光装置100中,p个柱状部30中的q个第1柱状部30a的径D1与p个柱状部30中的r个第2柱状部30b的径D2不同,柱状部集合体40的形状不是旋转对称的。因此,从发光装置100射出的光是直线偏振光。因此,发光装置100适合作为使用了液晶光阀的投影仪的光源来使用。并且,发光装置100例如能够射出单峰性的光。

这里,图4是用于对柱状部集合体的形状为旋转对称的情况下的偏振光进行说明的图。图5是用于对图4所示的V-V线的光的强度进行说明的曲线图。图6是用于对发光装置100的偏振光进行说明的图。在柱状部集合体的形状是旋转对称的情况下,例如,如图4所示,射出的光L在各位置处的电场E的振动方向不一致,如图4和图5所示,在中央部,电场E互相抵消,射出的光L的形状(即光束的形状)为环状。另一方面,在发光装置100中,如图6所示,电场E的振动方向全部一致,从发光装置100射出的光是直线偏振光。在图6所示的例子中,射出的光L的形状是圆。即,是单峰性。

并且,在发光装置100中,通过使第1柱状部30a的径与第2柱状部30b的径不同而使柱状部集合体40的形状不是旋转对称,因此,例如与通过减少一个旋转对称的柱状部集合体的柱状部而使柱状部集合体的形状不是旋转对称的情况相比,第2电极52不容易绕入到柱状部30的侧面。因此,例如不容易产生漏电流。进而,能够使在与层叠方向垂直的方向上传播的光与发光层33重叠的区域变大。

1.2.发光装置的制造方法

接着,参照附图对第1实施方式的发光装置100的制造方法进行说明。图7是示意性地示出第1实施方式的发光装置100的制造工序的剖视图。

如图7所示,使缓冲层22在基体10上外延生长。作为外延生长的方法,例如,列举出MOCVD(Metal Organic Chemical Vapor Deposition:金属有机气相沉积)法、MBE(Molecular Beam Epitaxy:分子束外延)法等。

接着,在缓冲层22上形成掩模层60。掩模层60例如是通过电子束蒸镀法或等离子CVD(Chemical Vapor Deposition:化学气相沉积)法等进行成膜、以及通过光刻技术和蚀刻技术进行图案化而形成的。在从层叠方向观察时,掩模层60的用于形成第2柱状部30b的开口部62的面积比掩模层60的用于形成第1柱状部30a的开口部62的面积小。由此,能够使第2柱状部30b的径比第1柱状部30a的径小。

如图1所示,以掩模层60为掩模,使第1半导体层31、第1引导层32、发光层33、第2引导层34以及第2半导体层35按照该顺序在缓冲层22上外延生长。作为外延生长的方法,例如,列举出MOCVD法、MBE法等。通过以上的工序,能够形成由多个柱状部30构成的柱状部集合体40。

接着,在缓冲层22上形成第1电极50,在第2半导体层35上形成第2电极52。第1电极50和第2电极52例如通过真空蒸镀法等形成。另外,第1电极50和第2电极52的形成顺序没有特别地限定。

通过以上的工序,能够制造出发光装置100。

1.3.发光装置的变形例

1.3.1.第1变形例

接着,参照附图对第1实施方式的第1变形例的发光装置进行说明。图8是示意性地示出第1实施方式的第1变形例的发光装置110的柱状部集合体40的平面图。

以下,在第1实施方式的第1变形例的发光装置110中,对与上述第1实施方式的发光装置100的例子不同的点进行说明,对同样的点省略说明。这在以下所示的第1实施方式的第2、第3变形例的发光装置中是同样的。

在上述发光装置100中,如图3所示,柱状部集合体40由7个柱状部30构成。与此相对,在发光装置110中,如图8所示,柱状部集合体40由4个柱状部30构成。在图示的例子中,由4个柱状部30的中心C构成的图形F为2次对称。柱状部30的中心C配置在未图示的菱形的各顶点。

1.3.2.第2变形例

接着,参照附图对第1实施方式的第2变形例的发光装置进行说明。图9是示意性地示出第1实施方式的第2变形例的发光装置120的柱状部集合体40的平面图。

在上述发光装置100中,如图3所示,柱状部集合体40由7个柱状部30构成。与此相对,在发光装置120中,如图9所示,柱状部集合体40由3个柱状部30构成。在图示的例子中,由3个柱状部30的中心C构成的图形F为3次对称。柱状部30的中心C配置在未图示的正三角形的各顶点。

另外,构成本发明的柱状部集合体的多个柱状部的数量并不限定于上述的3个、4个、7个的例子。

1.3.3.第3变形例

接着,参照附图对第1实施方式的第3变形例的发光装置进行说明。图10是示意性地示出第1实施方式的第3变形例的发光装置130的平面图。

在上述发光装置100中,如图1所示,在柱状部30中,发光层33的径与第2半导体层35的径是相同的。与此相对,在发光装置130中,如图10所示,第2半导体层35的径比发光层33的径大。

在图示的例子中,第1引导层32的径、发光层33的径以及第2引导层34的径是相同的。例如,通过对使第1引导层32、发光层33、第2引导层34以及第2半导体层35外延生长时的生长温度进行调整,能够使第2半导体层35的径比第1引导层32的径、发光层33的径以及第2引导层34的径大。

2.第2实施方式

2.1.发光装置

接着,参照附图对第2实施方式的发光装置进行说明。图11是示意性地示出第2实施方式的发光装置200的柱状部集合体40的平面图。

以下,在第2实施方式的发光装置200中,对与上述第1实施方式的发光装置100的例子不同的点进行说明,对同样的点省略说明。

在上述发光装置100中,如图3所示,在从层叠方向观察时,第1柱状部30a的径D1与第2柱状部30b的径D2不同。与此相对,在发光装置200中,如图11所示,在从层叠方向观察时,例如,第1柱状部30a的径与第2柱状部30b的径相同。

发光装置200具有由p个柱状部30构成的柱状部集合体40。在从层叠方向观察时,在基体10上规定了旋转对称的p个晶格点G的情况下,p个柱状部30中的q个第1柱状部30a各自的中心C配置在晶格点G。p个柱状部30中的r个第2柱状部30b各自的中心C配置在与晶格点G不同的位置。晶格点G是从层叠方向观察时在基体10上规定的假想的点。“p”是3以上的整数。“q”是2以上且小于p的整数,例如,是比“p”的一半大的整数。“r”是满足r=p-q的整数。

在图示的例子中,“p”是7,“q”是6,“r”是1。由p个晶格点G构成的图形为6次对称。晶格点G配置在未图示的正六边形的各顶点和该正六边形的中心。第2柱状部30b的中心C与距离第2柱状部30b的中心C最近的晶格点G之间的距离例如为5nm以上且25nm以下。

由于柱状部集合体40具有在与晶格点G不同的位置处具有中心C的第2柱状部30b,所以在从层叠方向观察时,柱状部集合体40的形状不是旋转对称的。

发光装置200例如具有以下的特征。

在发光装置200中,在从层叠方向观察时,在基体10上规定了旋转对称的p个的晶格点G的情况下,p个柱状部30中的q个第1柱状部30a各自的中心C配置在晶格点G,p个柱状部30中的r个第2柱状部30b各自的中心C配置在与晶格点G不同的位置,柱状部集合体的形状不是旋转对称的。因此,与发光装置100同样,从发光装置200射出的光是直线偏振光。此外,通过具有在与晶格点G不同的位置具有中心C的第2柱状部30b,柱状部集合体40的形状不是旋转对称的,因此,例如与通过使第1柱状部30a的径与第2柱状部30b的径不同而使柱状部集合体40的形状不是旋转对称的情况相比,能够使在与层叠方向垂直的方向上传播的光与发光层33重叠的区域增大。

在发光装置200中,“q”是比“p”的一半大的整数。因此,能够将p个柱状部30中的多于半数的柱状部30配置于晶格点G。由此,在发光装置200中,与p个柱状部30中的多于半数的柱状部未配置于晶格点G的情况相比,例如,能够在与层叠方向垂直的方向上进一步将在多个方向上共振的光各向同性地封闭,容易构成能够使红色区域的光振荡的柱状部集合体40。在发光装置200中,例如能够制作出在多个方向上相同的折射率周期构造,因此能够将在多个方向共振的光以相同的方式封闭,有利于光的封闭。

2.2.发光装置的制造方法

接着,对第2实施方式的发光装置200的制造方法进行说明。第2实施方式的发光装置200的制造方法与上述第1实施方式的发光装置100的制造方法基本相同。因此,省略其详细的说明。

2.3.发光装置的变形例

2.3.1.第1变形例

接着,参照附图对第2实施方式的第1变形例的发光装置进行说明。图12是示意性地示出第2实施方式的第1变形例的发光装置210的柱状部集合体40的平面图。

以下,在第2实施方式的第1变形例的发光装置210中,对与上述第2实施方式的发光装置200的例子不同的点进行说明,对同样的点省略说明。这在以下所示的第2实施方式的第2变形例的发光装置中是同样的。

在上述发光装置200中,如图11所示,柱状部集合体40由7个柱状部30构成。与此相对,在发光装置210中,如图12所示,柱状部集合体40由4个柱状部30构成。在图示的例子中,晶格点G配置在未图示的菱形的各顶点。

2.3.2.第2变形例

接着,参照附图对第2实施方式的第2变形例的发光装置进行说明。图13是示意性地示出第2实施方式的第2变形例的发光装置220的柱状部集合体40的平面图。

在上述发光装置200中,如图11所示,柱状部集合体40由7个柱状部30构成。与此相对,在发光装置220中,如图13所示,柱状部集合体40由3个柱状部30构成。在图示的例子中,晶格点G配置在未图示的正三角形菱形的各顶点。

3.第3实施方式

接着,参照附图对第3实施方式的投影仪进行说明。图14是示意性地示出第3实施方式的投影仪900的图。

本发明的投影仪具有本发明的发光装置。以下,对具有发光装置100来作为本发明的发光装置的投影仪900进行说明。

投影仪900具有未图示的壳体和设置于壳体内的分别射出红色光、绿色光、蓝色光的红色光源100R、绿色光源100G、蓝色光源100B。红色光源100R、绿色光源100G以及蓝色光源100B例如分别是如下的结构:将多个发光装置100在与层叠方向垂直的方向上配置成阵列状,并且在多个发光装置100中将基体10作为共用基板。分别构成红色光源100R、绿色光源100G、蓝色光源100B的发光装置100的数量并没有特别地限定。另外,为了方便,在图14中,简化了红色光源100R、绿色光源100G和蓝色光源100B。

投影仪900还具有设置于壳体内的第1透镜阵列902R、第2透镜阵列902G、第3透镜阵列902B、第1光调制装置904R、第2光调制装置904G、第3光调制装置904B以及投射装置908。第1光调制装置904R、第2光调制装置904G以及第3光调制装置904B例如是透射型的液晶光阀。投射装置908例如是投射透镜。

从红色光源100R射出的光入射到第1透镜阵列902R。从红色光源100R射出的光能够被第1透镜阵列902R聚光,例如能够重叠。

被第1透镜阵列902R聚光的光入射到第1光调制装置904R。第1光调制装置904R根据图像信息来调制所入射的光。然后,投射装置908对由第1光调制装置904R形成的像进行放大并投射到屏幕910上。

从绿色光源100G射出的光入射到第2透镜阵列902G。从绿色光源100G射出的光能够被第2透镜阵列902G聚光,例如能够重叠。

被第2透镜阵列902G聚光的光入射到第2光调制装置904G。第2光调制装置904G根据图像信息来调制所入射的光。然后,投射装置908对由第2光调制装置904G形成的像进行放大并投射到屏幕910上。

从蓝色光源100B射出的光入射到第3透镜阵列902B。从蓝色光源100B射出的光能够被第3透镜阵列902B聚光,例如能够重叠。

被第3透镜阵列902B聚光的光入射到第3光调制装置904B。第3光调制装置904B根据图像信息来调制所入射的光。然后,投射装置908对由第3光调制装置904B形成的像进行放大并投射到屏幕910上。

并且,投影仪900可以具有对从第1光调制装置904R、第2光调制装置904G以及第3光调制装置904B射出的光进行合成并引导至投射装置908的十字分色棱镜906。

被第1光调制装置904R、第2光调制装置904G以及第3光调制装置904B调制后的3个色光入射到十字分色棱镜906。十字分色棱镜906是通过将4个直角棱镜贴合起来而形成的,在其内表面呈十字状配置有对红色光进行反射的电介质多层膜和对蓝色光进行反射的电介质多层膜。通过这些电介质多层膜对3个色光进行合成,形成表示彩色图像的光。然后,所合成的光被投射装置908投射到屏幕910上,显示放大后的图像。

在投影仪900中,具有能够射出作为直线偏振光的光的发光装置100。因此,在投影仪900中,能够更可靠地进行光在第1光调制装置904R、第2光调制装置904G以及第3光调制装置904B中的通过和遮断的控制。

本发明的发光装置的用途并不限定于上述实施方式,也可以在投影仪以外的装置中使用。在投影仪以外的用途中,例如存在屋内外的照明、显示器的背光、激光打印机、扫描仪、车载用灯、使用光的传感设备、通信设备等的光源。

本发明也可以在具有本申请所记载的特征和效果的范围内省略一部分结构、或者组合各实施方式和变形例。

本发明并限定于上述实施方式,还能够进行各种变形。例如,本发明包含与在实施方式中说明的结构实际上相同的结构。实际上相同的结构例如是功能、方法及结果相同的结构、或者目的及效果相同的结构。并且,本发明包含将在实施方式中进行了说明的结构的非本质性部分进行替换而得到的结构。并且,本发明包含能够起到与在实施方式中进行了说明的结构相同的作用效果的结构或能够实现相同的目的的结构。并且,本发明包含在实施方式中进行了说明的结构中添加了公知技术的结构。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种定点出气方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类