一种混合驱动无人驾驶矿用卡车的能量管理方法

文档序号:180802 发布日期:2021-11-02 浏览:32次 >En<

阅读说明:本技术 一种混合驱动无人驾驶矿用卡车的能量管理方法 (Energy management method for hybrid drive unmanned mining truck ) 是由 田韶鹏 赵国强 罗毅 于 2021-08-11 设计创作,主要内容包括:本发明公开了一种混合驱动无人驾驶矿用卡车的能量管理方法,所述方法包括在云端服务器上设置人工输入的装料点及卸料点;路测控制单元采集道路信息,实时上传到云端服务器;云端服务器规划矿用卡车的物料运输路径,发至无人驾驶上层;无人驾驶上层对当前矿用卡车进行速度规划得到规划车速,并将规划车速发送至无人驾驶上层的功率输出模块;车速传感器采集实际车速并反馈给功率输出模块;功率输出模块根据实际车速与规划车速的差值得到所需输出功率,并下发给整车控制器;整车控制器根据所需输出功率控制燃料电池模块和动力蓄电池模块,实行最优的功率分配。本发明更加准确的得到所需输出功率,提高矿用卡车的燃料电池和动力蓄电池使用寿命。(The invention discloses an energy management method of a hybrid drive unmanned mining truck, which comprises the steps of setting manually input charging points and discharging points on a cloud server; the road test control unit acquires road information and uploads the road information to the cloud server in real time; the cloud server plans a material transportation path of the mining truck and sends the material transportation path to an unmanned driving upper layer; the unmanned driving upper layer performs speed planning on the current mining truck to obtain a planned speed, and the planned speed is sent to a power output module of the unmanned driving upper layer; the vehicle speed sensor collects the actual vehicle speed and feeds the actual vehicle speed back to the power output module; the power output module obtains required output power according to the difference value between the actual vehicle speed and the planned vehicle speed and sends the required output power to the whole vehicle controller; and the vehicle control unit controls the fuel cell module and the power storage battery module according to the required output power to realize optimal power distribution. The invention can more accurately obtain the required output power and prolong the service life of the fuel cell and the power storage battery of the mining truck.)

一种混合驱动无人驾驶矿用卡车的能量管理方法

技术领域

本发明属于无人驾驶汽车的能量管理的技术领域,具体涉及一种混合驱动无人驾驶矿用卡车的能量管理方法。

背景技术

国内目前大部分的露天矿山的运输作业具有组织性,计划性和封闭性等特点,并且大部分工作人员的工作环境恶劣。在矿区发展无人驾驶矿用卡车不仅能避免,减少对驾驶人员的健康以及安全造成危害,而且能大幅度提高工作效率,减少成本,降低排放,提高环保性能。

在当前能源短缺以及环境污染严重的时代背景下,燃料电池作为少数兼具噪音低,污染少,效率高,可靠性高和连续工作能力等优点的动力设备,除了在一般的乘用车上得到研究应用以外,在某些特定场合使用的矿用卡车上也开始慢慢采用燃料电池作为动力源。但是由于燃料电池作为动力源具有输出特性较疲软等缺陷,一般采用以燃料电池作为主动力源,动力蓄电池作为辅助动力源的混合驱动方式。

发明内容

发明要解决的技术问题是:针对现有技术存在的问题,提供一种混合驱动无人驾驶矿用卡车的能量管理方法,更加准确得到所需输出功率,能克服以燃料电池作为单一动力源时输出功率不足的缺点,解决混合动力矿用卡车续航里程较短问题,提高矿用卡车的燃料电池和动力蓄电池使用寿命,降低系统能耗。

为了解决上述问题,本发明提出了一种混合驱动无人驾驶矿用卡车的能量管理方法,通过能量管理优化系统分配混合驱动无人驾驶矿用卡车在行驶过程中的燃料电池和动力蓄电池提供的功率,其中能量管理优化系统包括无人驾驶上层、整车控制器、通信单元、车速传感器、燃料电池模块、动力蓄电池模块、路测控制单元和云端服务器;

该能量管理方法的步骤如下:

S1:在云端服务器上设置人工输入的装料点及卸料点;

S2:路测控制单元采集包括道路坡度、弯道角度、道路限速的道路信息,实时上传到云端服务器;

S3:云端服务器计算分析道路坡度与弯道角度,规划矿用卡车的物料运输路径,通过通信单元将物料运输路径发至无人驾驶上层;

S4:无人驾驶上层随后在策略优化模块内,采用基于动态规划算法的矿用卡车控制策略,对当前矿用卡车进行速度规划得到规划车速,并将规划车速发送至无人驾驶上层的功率输出模块;

S5:车速传感器采集矿用卡车的实际车速后,将实际车速反馈给无人驾驶上层的功率输出模块;

S6:无人驾驶上层的功率输出模块根据实际车速与规划车速的差值,采用PID算法得到所需输出功率,作为需求功率信号下发给整车控制器;

S7:整车控制器接收无人驾驶上层下发的需求功率信号以后,控制燃料电池模块和动力蓄电池模块,增加或减少其各自的输出功率,实行最优的功率分配。

进一步,所述的基于动态规划算法的矿用卡车控制策略为:以该矿用卡车在装料点与卸料点矿场之间的行驶中等效氢消耗量累积值最小为优化目标函数,以动力蓄电池SOC值为状态变量,以燃料电池和动力蓄电池的输出功率为控制变量,以动力蓄电池电量SOC值上下限、路测控制单元所采集的道路限速为约束条件,无人驾驶上层的策略优化模块对当前矿用卡车进行速度规划,得到规划车速。

进一步,所述等效氢消耗量累积值的计算方法是指采用以下公式优化得到不同路段的最小等效氢消耗量:

其中,J为等效氢消耗量累积值,mf(k)为第k行驶路段的等效氢消耗量,为燃料电池单个控制周期内的耗氢量函数,η为动力蓄电池能量转换效率,Pbatt(k)为动力蓄电池输出功率,Hfuel为氢气的低热值,SOC(k)表示第k行驶路段的动力蓄电池SOC值,Pfc(k)表示第k行驶路段的燃料电池输出功率,k表示第k行驶路段,k>0且k为整数,N表示总的行驶路段数量。

进一步,所述的PID算法是:

其中,e[n]为n时刻的实际车速与规划车速的差值,e[n-1]为n-1时刻的实际车速与规划车速的差值,e[n-2]为n-2时刻的实际车速与规划车速的差值,n为大于3的正整数,kP、ki、kd分别为PID控制器的比例系数、积分系数和微分系数,P0为该矿用卡车起动前所需的初始功率,P[n]为第n时刻所需功率,P[n-1]为第n-1时刻所需输出功率,Vfact为矿用卡车实际运输车速,Vgoal为无人驾驶上层所下发的规划车速。

与现有技术相比,本发明的优点在于:

1)无人驾驶上层策略优化模块根据基于动态规划算法所下发的规划车速指令和车载车速传感器等所反馈到的实际车速,以这两者之间的差值为基础,运用PID算法对被控对象(车速)进行修正,最后来确定燃料电池和动力蓄电池各自的所需功率,可以更加准确的得到所需功率,使得能量管理实现最优。

2)本发明基于动态规划算法,以动力蓄电池SOC值为状态变量,以燃料电池和动力蓄电池输出功率分配为控制变量,以实现整个物料运输路段的不同路段的最小等效氢消耗量,有利于对所需功率进行合理分配,有利于增加该无人驾驶矿用卡车的续航里程,增加燃料电池和动力蓄电池的使用寿命,降低矿用卡车使用过程之中的维护成本。

附图说明

图1为本发明实施例提供的一种混合驱动无人驾驶矿用卡车的能量管理优化系统的结构图。

图2为本发明实施例提供的一种混合驱动无人驾驶矿用卡车的功率分配的控制原理图。

具体实施方式

下面结合实施例及附图1对本发明作进一步说明,但不限定本发明。

本发明提出的一种混合驱动无人驾驶矿用卡车的能量管理方法,能克服以燃料电池作为单一动力源时输出功率不足的缺点,解决混合动力矿用卡车续航里程较短问题,提高矿用卡车的燃料电池和动力蓄电池使用寿命,降低系统能耗。

本发明提供的一种混合驱动无人驾驶矿用卡车的能量管理方法,通过能量管理优化系统分配混合驱动无人驾驶矿用卡车在行驶过程中的燃料电池和动力蓄电池提供的功率,参见图1,能量管理优化系统包括无人驾驶上层3、整车控制器4、通信单元(图中未示出)、车速传感器7、燃料电池模块5、动力蓄电池模块6、路测控制单元1和云端服务器2,无人驾驶上层3包括策略优化模块301和功率输出模块302,无人驾驶上层3、通信单元、车速传感器7、整车控制器4、燃料电池模块5和动力蓄电池模块6位于无人驾驶矿用卡车端。无人驾驶上层3通过通信单元分别与云端服务器和车速传感器7通信。

其主要实施步骤和原理如下所示:

S1、在云端服务器上设置人工输入的装料点及卸料点;

工作人员在云端服务器里导入矿场的物料装卸点的位置信息,结合矿用卡车上面的GPS定位装置,来保证矿用卡车在固定运输路段行驶。

S2、路测控制单元采集包括道路坡度、弯道角度、道路限速的道路信息,实时上传到云端服务器;

在行驶途中,路测控制单元通过采集沿途的道路信息(包括道路坡度,弯道角度,道路限速),将实时道路信息上传给云端服务器。

S3、云端服务器计算分析道路坡度与弯道角度,规划矿用卡车的物料运输路径,通过通信单元将物料运输路径发至无人驾驶上层;

云端服务器通过对道路坡度和弯道角度进行分析,在矿用卡车行驶在最小道路坡度路面的前提下,结合实时的弯道角度,确保转向系统转弯及时,以此来规划最适宜的物料运输路径,并将该物料运输路径通过通信单元下发给无人驾驶上层。

S4:无人驾驶上层随后在策略优化模块内,采用基于动态规划算法的矿用卡车控制策略,对当前矿用卡车进行速度规划得到规划车速,并将规划车速发送至无人驾驶上层的功率输出模块;

无人驾驶上层收到规划的物料运输路径信号之后,在策略优化模块内,采用基于动态规划算法的矿用卡车控制策略,以该矿用卡车在装料点与卸料点矿场之间的行驶中等效氢消耗量累积值最小为优化目标函数,以动力蓄电池SOC值为状态变量,以燃料电池和动力蓄电池的输出功率为控制变量,以动力蓄电池电量SOC值上下限、路测控制单元所采集的道路限速为约束条件,对当前矿用卡车进行速度规划得到规划车速,并将规划车速发送至无人驾驶上层的功率输出模块;

其中,等效氢消耗量累积值最小可由如下公式计算得到:

其中,J为等效氢消耗量累积值,mf(k)为第k行驶路段的等效氢消耗量,为燃料电池单个控制周期内的耗氢量函数,η为动力蓄电池能量转换效率,Pbatt(k)为动力蓄电池输出功率,Hfuel为氢气的低热值,SOC(k)表示第k行驶路段的动力蓄电池SOC值,Pfc(k)表示第k行驶路段的燃料电池输出功率,k表示第k行驶路段,k>0且k为整数,N表示总的行驶路段数量。

S5、车速传感器采集矿用卡车的实际车速后,将实际车速反馈给无人驾驶上层的功率输出模块;

与此同时,车载车速传感器监测矿用卡车的实际轮速信息,并将实际轮速信息转化为实际车速,以电信号形式通过通信单元,反馈给无人驾驶上层的功率输出模块。

S6、无人驾驶上层的功率输出模块根据实际车速与规划车速的差值,采用PID算法得到所需输出功率,作为需求功率信号下发给整车控制器。

其中,该PID算法的原理如下所述,根据车载车速传感器得到该矿用卡车的实际车速,通过和无人驾驶上层下发的规划速度相对比,得到速度误差值e[n],运用PID控制算法对被控对象(即车速)进行修正,使得车速维持良好的动态稳定状态。无人驾驶上层根据速度误差值e[n]来确定所需输出功率,获取该所需输出功率的计算方法如下:

1)获取模糊控制规则,预先设置并存储在无人驾驶上层。

2)利用模糊规则表对e[n](车速误差)进行模糊化处理得出相应的隶属度。

3)利用所得出的隶属度以及相应的隶属度的横坐标(PB,PS)即可求得比例系数初始值Kp0、积分系数初始值Ki0、微分系数初始值Kd0各自的增量ΔKp、ΔKi、ΔKd。

4)由Kp=Kp0+ΔKp,Ki=Ki0+ΔKi,Kd=Kd0+ΔKd得出整定后的系数Kp、Ki、Kd,并带入PID控制器中运算,得到该所需输出功率的计算式为:

其中,e[n]为n时刻的实际车速与规划车速的差值,e[n-1]为n-1时刻的实际车速与规划车速的差值,e[n-2]为n-2时刻的实际车速与规划车速的差值,n为大于3的正整数,kP、kI、kD分别为PID控制器的比例系数、积分系数和微分系数,P0为该矿用卡车起动前所需的初始功率,P[n]为n时刻所需输出功率,P[n-1]为n-1时刻所需输出功率,Vfact为矿用卡车实际运输车速,Vgoal为无人驾驶上层所下发的规划车速,t为不同行驶时刻对应的时间。

S7、整车控制器接收无人驾驶上层所下发的功率信号以后,控制燃料电池模块和动力蓄电池模块执行相应动作,实行功率分配。

参见图2,图2为一种混合驱动无人驾驶矿用卡车的功率分配的控制原理图,整车控制器控制燃料电池模块和动力蓄电池模块,执行相应动作,对应的逻辑为:

在需求功率Pr不超过动力蓄电池额定功率Pe的20%时,此时为起步状态,由动力蓄电池单独提供所需功率;

在需求功率Pr超过动力蓄电池额定功率Pe的20%,但是未超过动力蓄电池额定功率Pe的80%时,此时为加速状态,燃料电池处于预备状态,准备启动,动力蓄电池提供需求功率;

当需求功率Pr超出动力蓄电池额定功率Pe的80%时,燃料电池启动,此时为满载运行状态,主要由燃料电池驱动,提供所需功率,动力蓄电池辅助,多余功率由动力蓄电池提供或者为动力蓄电池充电;

制动时,燃料电池关闭,此时处于再生制动模式,多余制动能量为动力蓄电池充电。

以上对本发明所提供的一种混合驱动驾驶矿用卡车的能量管理方法进行了详细介绍,以上实施说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种城市轨道交通线缆架

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!