Accuse temperature contact plate and evaporation equipment

文档序号:1486267 发布日期:2020-02-28 浏览:16次 中文

阅读说明:本技术 一种控温接触板和蒸镀设备 (Accuse temperature contact plate and evaporation equipment ) 是由 王海燕 孙玉俊 于 2019-11-06 设计创作,主要内容包括:本发明公开一种控温接触板和蒸镀设备,所述的控温接触板包括了依次设置的接触板顶面、导热层和接触板底面,同时所述导热层之间设置有制冷半导体单元,所述制冷半导体单元通过导热层与所述接触板顶面与接触板底面相连。在本方案中,接触板底面在蒸镀过程中产生的热量通过制冷半导体单元的作用,以降低降低接触板底面表明的温度。从而保证基板上冷却温度的一致性,提高蒸镀膜层的均匀性。此外,降低了团簇与结晶形成的概率,从而改善目标膜层内部缺陷,提高膜层结构的稳定性。(The invention discloses a temperature control contact plate and evaporation equipment, wherein the temperature control contact plate comprises a contact plate top surface, a heat conduction layer and a contact plate bottom surface which are sequentially arranged, meanwhile, a refrigeration semiconductor unit is arranged between the heat conduction layers, and the refrigeration semiconductor unit is connected with the contact plate top surface and the contact plate bottom surface through the heat conduction layer. In this embodiment, the heat generated by the bottom surface of the contact plate during the evaporation process is used to reduce the temperature at the surface of the bottom surface of the contact plate by the action of the refrigerating semiconductor unit. Thereby ensuring the consistency of the cooling temperature on the substrate and improving the uniformity of the vapor-deposited film layer. In addition, the probability of cluster and crystal formation is reduced, so that the internal defects of the target film layer are improved, and the stability of the film layer structure is improved.)

1. A temperature control contact plate is characterized in that the contact plate comprises a contact plate top surface, a heat conduction layer and a contact plate bottom surface which are arranged in sequence;

the heat-conducting layer is horizontally laminated with the contact plate top surface and the contact plate bottom surface, a refrigeration semiconductor unit is arranged between the heat-conducting layers, the refrigeration semiconductor unit is connected with the contact plate top surface and the contact plate bottom surface through the heat-conducting layer, the contact plate top surface is provided with heat dissipation holes, the cold end of the refrigeration semiconductor is arranged on one side close to the contact plate bottom surface, the hot end of the refrigeration semiconductor is arranged on one side close to the contact plate top surface, and the contact plate bottom surface is horizontally laminated with a substrate.

2. A temperature-controlled contact plate according to claim 1, wherein the thermally conductive layer further comprises thermally conductive particles disposed therein, the thermally conductive particles being disposed uniformly within the thermally conductive layer.

3. A temperature-controlled contact plate according to claim 2, wherein the thermally conductive particles comprise graphene, carbon nanotubes, alumina, magnesia, zinc oxide, aluminium nitride, boron nitride, silver, copper, gold or aluminium.

4. The temperature-controlled contact plate according to claim 1, wherein the cooling semiconductor unit comprises a metal lower electrode, a metal upper electrode, an N-type semiconductor and a P-type semiconductor, the metal lower electrode is disposed near the bottom surface of the contact plate for absorbing heat, and the metal upper electrode is disposed near the top surface of the contact plate for emitting heat;

the N-type semiconductor is connected with the P-type semiconductor through the lower metal electrode, and the P-type semiconductor is connected with the other N-type semiconductor through the upper metal electrode.

5. A temperature-controlled contact plate according to claim 4, wherein the metal upper electrode is provided with heat dissipation holes.

6. An evaporation equipment, which is characterized in that the evaporation equipment comprises a magnetic plate, a temperature-controlled contact plate, a substrate, a mask plate and an evaporation source which are sequentially arranged from top to bottom, wherein the temperature-controlled contact plate, the substrate, the mask plate and the evaporation source are in any one of claims 1 to 5;

the evaporation source comprises a crucible and a coating material, the coating material is arranged in the crucible, and the contact plate is horizontally attached to the substrate.

Technical Field

The invention relates to the technical field of evaporation equipment, in particular to a temperature-control contact plate and evaporation equipment.

Background

An Organic Light-Emitting Diode (OLED) has excellent properties of self-luminescence, ultra-lightness and thinness, fast response speed, wide viewing angle, low power consumption, and the like. At present, the Organic Light Emitting Diode (OLED) process is mostly performed by using evaporation equipment. The existing evaporation plating machine mainly comprises an evaporation plating source, a metal mask plate, a contact plate, a magnetic plate and the like. The metal mask plate is arranged below the substrate and above the evaporation source, and the magnetic plate is used for adsorbing so that the coating material can pass through the metal mask plate and be deposited on the target substrate in a target pattern. In the evaporation, the contact plate is in contact with the substrate and is positioned between the magnetic plate and the substrate so as to ensure the flatness of the laminated substrate and the heat dissipation in the evaporation process.

Disclosure of Invention

Therefore, it is desirable to provide a temperature-controlled contact plate and an evaporation apparatus to reduce the temperature of the touch panel during operation, thereby improving the stability of the film structure and the quality of the film.

In order to achieve the above object, the inventor provides a temperature-controlled contact plate, which comprises a contact plate top surface, a heat conduction layer and a contact plate bottom surface which are arranged in sequence;

the heat-conducting layer is horizontally laminated with the contact plate top surface and the contact plate bottom surface, a refrigeration semiconductor unit is arranged between the heat-conducting layers, the refrigeration semiconductor unit is connected with the contact plate top surface and the contact plate bottom surface through the heat-conducting layer, the contact plate top surface is provided with heat dissipation holes, the cold end of the refrigeration semiconductor is arranged on one side close to the contact plate bottom surface, the hot end of the refrigeration semiconductor is arranged on one side close to the contact plate top surface, and the contact plate bottom surface is horizontally laminated with a substrate.

Further, heat conduction particles are arranged in the heat conduction layer, and the heat conduction particles are uniformly arranged in the heat conduction layer.

Further, the thermally conductive particles include graphene, carbon nanotubes, aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, boron nitride, silver, copper, gold, or aluminum.

Furthermore, the refrigeration semiconductor unit comprises a metal lower electrode, a metal upper electrode, an N-type semiconductor and a P-type semiconductor, wherein the metal lower electrode is arranged on one side close to the bottom surface of the contact plate and used for absorbing heat, and the metal upper electrode is arranged on one side close to the top surface of the contact plate and used for emitting heat;

the N-type semiconductor is connected with the P-type semiconductor through the lower metal electrode, and the P-type semiconductor is connected with the other N-type semiconductor through the upper metal electrode.

Further, the metal upper electrode is provided with a heat radiation hole.

The invention provides evaporation equipment which comprises a magnetic plate, a temperature-control contact plate, a substrate, a mask plate and an evaporation source, wherein the magnetic plate, the substrate, the mask plate and the evaporation source are sequentially arranged from top to bottom.

The evaporation source comprises a crucible and a coating material, the coating material is arranged in the crucible, and the contact plate is horizontally attached to the substrate.

Be different from prior art, above-mentioned technical scheme provides a accuse temperature contact plate, accuse temperature contact plate including contact plate top surface, heat-conducting layer and the contact plate bottom surface that sets gradually, simultaneously be provided with refrigeration semiconductor unit between the heat-conducting layer, refrigeration semiconductor unit pass through the heat-conducting layer with the contact plate top surface links to each other with the contact plate bottom surface. The heat produced by the bottom surface of the contact plate in the evaporation process affects the quality of the finished product. The temperature of one side of the refrigeration semiconductor unit is lower than the temperatures of the contact plate bottom plate and the heat conduction layer contacted with the contact plate bottom plate, so that the refrigeration semiconductor unit absorbs the heat generated by the contact plate bottom plate, and releases the heat absorbed by the refrigeration semiconductor unit through the other side of the refrigeration semiconductor unit, the heat conduction layer and the contact plate top surface, thereby reducing the temperature of the contact plate bottom surface. The uniform heat dissipation efficiency of the contact plate is improved, and meanwhile, the temperature difference of the operation area and the probability of cluster formation and crystallization are reduced.

Drawings

FIG. 1 is a schematic structural diagram of a target substrate carried by a film forming assembly of an evaporation machine according to an embodiment;

FIG. 2 is a schematic diagram of a prior art contact plate according to an embodiment;

fig. 3 is a schematic cross-sectional view of a temperature-controlled contact plate according to an embodiment.

Description of reference numerals:

1. a magnetic plate;

2. a contact plate;

201. a contact plate top surface;

202. contacting the bottom surface of the plate;

203. a heat conductive layer;

204. a metal upper electrode;

205. a metal lower electrode;

206. an N-type semiconductor;

207. a P-type semiconductor;

208. thermally conductive particles;

209. an aperture;

210. a hot end;

211. cold end

212. A refrigeration semiconductor unit.

3. A substrate;

4. a mask plate;

5. a crucible;

6. coating materials;

7. and (4) an evaporation source.

Detailed Description

To explain technical contents, structural features, and objects and effects of the technical solutions in detail, the following detailed description is given with reference to the accompanying drawings in conjunction with the embodiments.

Referring to fig. 1 to fig. 3, the present embodiment provides a temperature-controlled contact plate, and the contact plate 2 includes a contact plate top surface 201, a heat conductive layer 203, and a contact plate bottom surface 202, which are sequentially disposed. Heat-conducting layer 203 and contact plate top surface 201, the horizontal laminating of contact plate bottom surface 202, be provided with refrigeration semiconductor unit 212 in the heat-conducting layer 203, refrigeration semiconductor unit 212 through heat-conducting layer 203 with contact plate top surface 201 links to each other with contact plate bottom surface 202, contact plate top surface 201 is provided with louvre 209, refrigeration semiconductor's cold junction sets up in the one side that is close to contact plate 2 bottom surface, refrigeration semiconductor's hot junction sets up in the one side that is close to contact plate 2 top surface, contact plate 2 bottom surface is used for laminating with base plate 3 level. In order to reduce the temperature difference generated by the contact plate bottom surface 202 during operation, which affects the quality of the finished product, in this embodiment, the heat generated by the contact plate bottom surface 202 is conducted to the cooling semiconductor unit 212 through the heat conducting layer 203. Since the temperature of one side of the cooling semiconductor unit 212 is lower than the temperature of the contact plate bottom plate and the heat conductive layer 203 in contact with the contact plate bottom plate, the cooling semiconductor unit 212 absorbs heat generated by the contact plate bottom surface 202, and the heat absorbed by the cooling semiconductor unit 212 is released through the other side of the cooling semiconductor unit 212, the heat conductive layer 203 and the contact plate top surface 201, so that the temperature of the contact plate bottom surface 202 is reduced. The efficiency of uniform heat dissipation from the contact plate 2 is improved, and the temperature difference between the bottom surface 202 of the contact plate and the working area is reduced, and the probability of cluster and crystal generation on the film is reduced.

In order to further improve the heat conduction efficiency of the heat conduction layer 203, referring to fig. 3, in the present embodiment, heat conduction particles 208 are further disposed in the heat conduction layer 203, and the heat conduction particles 208 are uniformly disposed in the heat conduction layer 203. The thermal conductive particles 208 are made of a material with a relatively high thermal conductivity, such as one or more of graphene, carbon nanotubes, aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, boron nitride, silver, copper, gold, aluminum, and alloys thereof. The heat conducting particles 208 will further improve the heat conduction efficiency, and at the same time promote the heat conversion by the higher heat conductivity coefficient.

In this embodiment, the cooling semiconductor unit 212 includes a metal lower electrode 205, a metal upper electrode 204, an N-type semiconductor 206, and a P-type semiconductor 207, where the metal lower electrode 205 is disposed near the contact plate bottom surface 202 for absorbing heat, and is referred to as a cold end 211; the metal top electrode 204 is disposed near the top surface 201 of the contact plate for emitting heat, and is referred to as a hot end 210. The N-type semiconductor 206 is connected to the P-type semiconductor 207 via the lower metal electrode 205, and the P-type semiconductor 207 is connected to the other N-type semiconductor 206 via the upper metal electrode 204, thereby forming a peltier structure. The contact portions between the N-type semiconductor 206 and the metal bottom electrode 205 and the contact portions between the P-type semiconductor 207 and the metal bottom electrode 205 absorb heat. The N-type semiconductor 206 and the metal upper electrode 204, and the P-type semiconductor 207 and the metal upper electrode 204 release heat at their contact portions. The metal bottom electrode 205 is close to the substrate 3 for absorbing heat transferred from the substrate 3 during operation, and the metal top electrode 204 is far from the substrate 3 and close to the contact plate top surface 201 for releasing heat absorbed by the cold end 211.

In order to further increase the heat dissipation efficiency of the metal top electrode 204 and the contact plate top surface 201, in the present embodiment, heat dissipation holes 209 are disposed on both the contact plate top surface 201 and the metal top electrode 204 away from the substrate 3. The heat dissipation hole 209 will improve the efficiency of heat dissipation by increasing the contact area, etc. After the contact plate bottom surface 202 conducts heat energy to the heat conduction layer 203 and the metal lower electrode 205, the heat energy is released through the contact plate top surface 201, the metal upper electrode 204 and the heat dissipation holes formed therein.

Referring to fig. 1, the present invention provides another evaporation apparatus, which is characterized in that the evaporation apparatus includes a magnetic plate 1, a temperature-controlled contact plate 2 according to any one of the embodiments of the present invention, a substrate 3, a mask plate 4, and an evaporation source 7, which are sequentially disposed from top to bottom. The evaporation source 7 comprises a crucible 5 and a coating material 6, the coating material 6 is arranged in the crucible 5, and the contact plate 2 is horizontally attached to the substrate 3. In this embodiment, the crucible 5 is heated in the evaporation source 7, and the coating material 6 is evaporated from the crucible 5 onto the substrate 3 to form a target film layer. The contact plate 2 has heat dissipation holes 209 uniformly distributed thereon for dissipating heat from the substrate 3 during the evaporation process. The uniformity of the vapor-deposited film layer is improved by controlling the uniformity of the cooling temperature when the film-coating material 6 is formed on the substrate 3 and the uniform temperature reduction characteristic of the contact plate 2. In addition, the lower the cooling temperature of the coating material 6 when the coating material is formed on the substrate 3, the lower the probability that material atoms form clusters and crystals due to the temperature difference of the substrate 3, which is more beneficial to reducing the internal defects of the target film deposited on the substrate 3, thereby improving the stability of the film structure and being beneficial to the photoelectric performance of the device.

It should be noted that, although the above embodiments have been described herein, the invention is not limited thereto. Therefore, based on the innovative concepts of the present invention, the technical solutions of the present invention can be directly or indirectly applied to other related technical fields by making changes and modifications to the embodiments described herein, or by using equivalent structures or equivalent processes performed in the content of the present specification and the attached drawings, which are included in the scope of the present patent.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于处理腔室的涂覆材料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!