用于基于加速度计的轮胎法向力估计的方法和设备

文档序号:1665931 发布日期:2019-12-31 浏览:36次 >En<

阅读说明:本技术 用于基于加速度计的轮胎法向力估计的方法和设备 (Method and apparatus for accelerometer-based tire normal force estimation ) 是由 S-K·陈 B·B·利特库西 V·派力普查克 于 2019-05-20 设计创作,主要内容包括:一种用于通过针对估计的道路角度校正测量的加速度来计算地估计用于车辆防抱死制动、自适应巡航控制以及牵引和稳定性控制的轮胎法向力的系统和方法。所述系统和方法可操作以测量车辆的簧载质量上的三个点处的加速度,并且响应于所述三个加速度测量值作为车辆控制器的输入而估计轮胎的轮胎法向力。(A system and method for computationally estimating tire normal forces for vehicle antilock braking, adaptive cruise control, and traction and stability control by correcting measured acceleration for estimated road angles. The system and method are operable to measure acceleration at three points on the sprung mass of the vehicle, and estimate a tire normal force of the tire in response to the three acceleration measurements as inputs to a vehicle controller.)

用于基于加速度计的轮胎法向力估计的方法和设备

技术领域

本发明总体上涉及一种用于估计车辆中的轮胎的垂直力的系统和方法。更具体地,本发明涉及一种用于在不同配置和路况下使用用于车辆的底盘安装式加速度计在计算上实时地估计轮胎法向力以用于车辆防抱死制动、自适应巡航控制以及牵引和稳定性控制的系统和方法。

背景技术

准确的轮胎法向力确定对于许多车辆控制系统的可靠性能至关重要。轮胎法向力或垂直轮胎力是由车辆控制系统(诸如自适应巡航控制、牵引和稳定性控制以及防抱死制动系统)使用的车辆动态变量。轮胎法向力指示在轮胎与路面之间向下作用的垂直力。轮胎法向力是车辆重量、道路的表面坡度和转弯力的乘积。车轮侧壁变形由轮胎法向力引起。通常经由悬架位移传感器和/或简单的负载传递算法来估计轮胎法向力。通常必须针对传感器偏差校准此类传感器,或者必须利用具有高准确度的传感器。

可以测量每个拐角处的轮胎法向力,但是它们的成本影响、校准和维护是它们用于生产车辆的主要缺点。如果轮胎法向力计算通常采用昂贵的传感器或复杂的算法来实时确定轮胎法向力,则需要建立一种可靠且计算效率高的算法,所述算法对于路况和不确定性而言是鲁棒的,且不需要昂贵的传感器以便提高底盘控制和主动安全系统的性能。理想的系统将提供在每个拐角处的可靠轮胎法向力估计,并且对于车辆的主动安全控制系统的路况是鲁棒性的。

发明内容

根据本发明的一方面,公开了一种车辆控制系统,所述车辆控制系统包括:第一加速度计,其用于测量第一点处的第一加速度;第二加速度计,其用于测量第二点处的第二加速度;第三加速度计,其用于测量第三点处的第三加速度;处理器,其用于响应于所述第一加速度、所述第二加速度和所述第三加速度而估计轮胎法向力;以及控制器,其用于响应于所述轮胎法向力而控制所述车辆。

根据本发明的另一方面,公开了一种设备,所述设备包括:第一加速度计,其用于测量车辆的簧载质量上的第一位置的第一加速度;第二加速度计,其用于测量所述车辆的所述簧载质量上的第二位置的第二加速度;第三加速度计,其用于测量所述车辆的所述簧载质量上的第三位置的第三加速度;处理器,其用于响应于所述第一加速度、所述第二加速度和所述第三加速度而估计所述车辆的轮胎的轮胎法向力;以及控制器,其用于响应于所述轮胎法向力而控制所述车辆。

根据本发明的另一方面,公开了一种用于控制车辆的方法,所述方法包括:启动车辆控制系统;测量第一点处的第一加速度、第二点处的第二加速度和第三点处的第三加速度,其中所述第一点、所述第二点和所述第三点是所述车辆的簧载质量上的位置;响应于所述第一加速度、所述第二加速度、所述第三加速度而估计第四点处的垂直加速度,其中所述第四点位于所述车辆的非簧载质量上;响应于所述垂直加速度而产生控制信号;以及响应于所述控制信号而控制所述车辆控制系统。

附图说明

通过结合附图参考本发明的实施例的下列描述,本发明的上述和其它特征和优点以及实现上述和其它特征和优点的方式将更加显而易见且本发明将被更好地理解,其中:

图1是示出用于实施本发明的示例性环境的图。

图2是根据本发明的示例性实施例的车辆上的主动车辆动力学控制系统的示意图。

图3示出了实施根据本发明的用于实施所述方法和系统的示例性系统300。

图4示出了簧载质量力的示例性三维力图。

图5示出了悬架运动学和动力学的示例性二维力图。

图6是根据本发明的示例性实施例的用于估计轮胎法向力的方法的流程图。

本文陈述的范例示出了本发明的优选实施例,并且此类范例不应被解释为以任何方式限制本发明的范围。

具体实施方式

具体实施方式仅仅具有示例性本质并且不旨在限制本公开或其应用和使用。另外,不存在被任何前述的技术背景或具体实施方式中提出的任何理论约束的意图。

参考附图,其中相同的附图标记在若干视图中指代相同或类似的部件,图1是具有多个轮胎14的装置10的示意性局部平面图。装置10可以是车辆12。然而,应当理解,设备10可以是机器人、农具、运动相关设备或任何其他类型的设备。在所示的实施例中,多个轮胎14分别包括第一轮胎16L、第二轮胎16R、第三轮胎18L和第四轮胎18R。然而,应该理解,装置10可以包括任何数量的轮胎。

现在转向图2,示出了车辆上的主动车辆动力学控制系统205的示例性实施例的示意图200。通常,车辆中的车辆动力学控制系统205可以与全球定位系统和/或多个传感器或系统210通信,以便将信号传送到控制器240。车辆动力学控制系统205可以包括用于从多个传感器或系统接收信息或信号的控制器240,所述信息或信号可以包括防抱死制动系统(ABS)状态、牵引力控制系统(TCS)状态、包括GPS速度的位置和传感器数据、横摆率、轮速(每个车轮处的轮速)、横向加速度、转向角(手轮位置)、纵向加速度计中的纵向加速度、俯仰速度和转向角位置。基于这些信号,控制器240控制车辆动力学系统并且可以将信号存储在适当的存储器260中。取决于期望的灵敏度、控制系统的类型和各种其他因素,并非所有列举的信号都可以用于商业应用中。

示例性车辆包括四个车轮250a至250d,每个车轮具有安装在其上的相应轮胎。车辆可以是后轮驱动车辆、前轮驱动车辆、全轮驱动车辆或具有选择性驱动配置的车辆。另外,作为设计选择,车辆还可以具有三个车轮、多个车轴和四个以上的车轮,并且仍然受益于本公开的方面。主动牵引力控制系统230(也可以称为主动转弯离开控制系统)是基于车辆的车载系统,其中其部件位于主车辆上,由主车辆承载或集成到主车辆中。主动牵引力控制系统230可以包括至少以下部件或元件或与其协作,所述部件不限于:车辆传感器子系统210;用户界面子系统220,以及适当数量的存储器260。主动车辆动力学控制系统205的这些和其他元件以适当的方式耦合在一起以适应必要时的数据、控制命令和信号的传送以支持系统的操作。为了简洁起见,本文中可以不详细描述与车辆控制系统、车辆传感器系统、扭矩管理以及系统的其他功能方面(以及系统的单独的操作部件)相关的常规技术。

传感器子系统210适当地被配置为在车辆操作期间收集实时(以及可能是非实时)的车辆状态数据。主动车辆动力学控制系统205可以通过下面描述的方式来处理该车辆状态数据中的一些或全部,并且其他子系统或部件也可以处理或利用该车辆状态数据中的一些或全部。在某些实施例中,传感器子系统210包括传感器(未示出),其收集指示车辆的横摆率、车辆的横向加速度、车辆的速度、车辆的车轮的转速、与车辆的车轮相关联的车轮滑移、垂直和纵向加速度、车辆俯仰、车辆侧倾率、相对于车辆车身的车轮位置等的数据。本文将不描述此类基于车辆的传感器的设计、配置和操作细节,因为这些传感器及其应用是熟悉汽车工业的人所熟知的。

用户界面子系统220适当地被配置为车辆205的人机界面,特别是系统200的人机界面。用户界面子系统220可以使用一个或多个元件,特征、装置或部件(本质上可以是常规的)来实现。例如,用户界面子系统220可以包括但不限于任何数量的:按钮;旋钮;开关;操纵杆;拨号盘;小键盘;触摸屏;触摸板;等。为了支持主动车辆动力学控制系统205,用户界面子系统220可以包括被配置为接收用户选定的驾驶条件设置的一个或多个特征或元件,所述驾驶条件设置指示当前路况、当前道路摩擦系数、当前轮胎-道路牵引值等。在某些实施例中,用户界面子系统220还包括被配置为接收用户选定的车辆操纵设置的一个或多个特征或元件,所述车辆操纵设置可以指示期望的悬架感觉、期望的操纵极限等。

基于拐角的车辆状态估计对于车辆的牵引和稳定性控制系统的可靠性能非常重要。本系统利用一种方法来估计轮胎垂直力,所述轮胎垂直力对于使用低成本加速度计的车辆控制是至关重要的。所述方法可操作以使用至少三个不同点处的垂直加速度和重心(CG)的两个水平加速度来确定所有垂直轮胎力、以及侧倾角和俯仰角。更具体地,所述系统可操作以使用两个不同的簧载质量点的垂直加速度和在重心处的三个加速度分量来确定垂直轮胎力、侧倾、俯仰和升沉状态。

参考图3,示出了用于实施所述方法和系统的示例性系统300。示例性系统300包括多个轮胎310a、310b、310c、310d和多个加速度计315a、315b、315c。加速度计分布在车辆上,其中第一加速度计315a位于(X3,Y3),第二加速度计315b位于(X2,Y2),它们间隔开一定的距离(d)。第三加速度计315c位于(X1,Y1),优选地远离由第一加速度计315a和第二加速度计315b形成的线。第一加速度计315a与第二加速度计315b之间的距离由以下等式定义。

Y2-Y1=k(X2-X1)

在示例性实施例中,为了获得最佳性能,三个加速度计的位置不应是共线的。使用三个不同点处的垂直加速度和CG的两个水平加速度促进所述系统和算法估计所有垂直轮胎力以及侧倾角和俯仰角。当三个加速度计中的两个加速度计接近簧载质量时,估计结果可能对加速度计测量中的噪声变得敏感。简而言之,发生这种情况的原因是因为在CG附近,簧载质量的旋转分量难以从垂直加速度中提取,因为来自三个加速度计中的两个加速度计的测量值变得冗余。

现在转到图4,示出了簧载质量力的示例性三维力图400。车辆的簧载质量通常被定义为由车辆的悬架部件支撑的质量(诸如车身、车架、发动机、乘客和货物)。非簧载质量包括不由悬架系统支撑的质量,诸如车轮、制动盘、车轴、和桥壳。平移簧载质量力根据以下公式制定。

簧载质量矩响应于簧载质量力而确定并且根据以下公式制定。

现在转到图5,示出了悬架运动学和动力学的示例性二维力图500。悬架运动学和动力学根据以下公式制定。

由于悬架模型的特定性(包括车轮中心的垂直位移、速度和加速度),因此希望使用拉普拉斯空间。所涉及的悬架等式使得整个系统能够独特地求解四个轮胎力。可以根据拉普拉斯图像确定单独的轮胎力的解,其中轮胎力继而根据以下公式确定。

其中

Δ=x3(y1-y2)+x1(y2-y3)+x2(y3-y1)≠0

Azi-在位置(xi,yi);i=1,2,3处测量的垂直加速度

现在转到图6,示出了用于基于加速度计的轮胎法向力估计的一个实施例的方法的流程图600。在该示例性实施例中,所述方法可操作以从安装到车辆的簧载质量的三个加速度计接收三个加速度测量值605。三个加速度测量值中的每一者可以包括x、y和z方向分量,或者可以包括矢量信息。可选地,加速度计信息可以包括单个或多个方向加速度,诸如仅z或仅x。

所述方法然后可操作以估计车辆的簧载质量的至少一个拐角的垂直和水平力610。然后所述方法可操作以响应于拐角的估计的垂直和水平力来估计该拐角处的法向轮胎力615。所述方法然后可操作以产生控制信号,所述控制信号指示用于耦合到控制器的估计的法向轮胎力以用于诸如牵引力控制等控制应用620。所述方法然后可操作以响应于控制信号而控制车辆的控制系统(诸如转向或制动系统)625。

详述和图式或图支持并且描述本公开,但是本公开的范围仅仅是由权利要求书限定。虽然已详细地描述了用于执行本教导的某些最佳模式和其它实施例,但是存在用于实践随附权利要求书中限定的本公开的各种替代设计和实施例。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于基于预期的车道偏离控制车辆的系统和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!