测定异常检测装置及测定异常检测方法

文档序号:411413 发布日期:2021-12-17 浏览:2次 >En<

阅读说明:本技术 测定异常检测装置及测定异常检测方法 (Measurement abnormality detection device and measurement abnormality detection method ) 是由 伊藤敦 市桥素子 我妻美千留 于 2019-12-17 设计创作,主要内容包括:本发明涉及一种测定异常检测装置,其由谐振特性值获得多个样本。多个样本作为具有时间序列的样本组来处理,且各样本具有2个以上彼此不同的量纲。测定异常检测装置具备异常检测部(24),所述异常检测部(24)使用由样本具有的全部量纲而表示的检测指标空间,通过样本组和检测指标空间的逻辑运算,来对测定部取得的样本组中是否包含检测指标空间外的样本进行判断。(The present invention relates to a measurement abnormality detection device that obtains a plurality of samples from a resonance characteristic value. The plurality of samples are processed as a group of samples having a time series, and each sample has 2 or more dimensions different from each other. The measurement abnormality detection device is provided with an abnormality detection unit (24), and the abnormality detection unit (24) uses a detection index space represented by all dimensions of the sample, and determines whether or not the sample group acquired by the measurement unit contains a sample outside the detection index space by logical operation of the sample group and the detection index space.)

测定异常检测装置及测定异常检测方法

技术领域

本发明涉及一种对沉积于晶体振荡器的沉积物的膜厚测定中的测定异常进行检测的测定异常检测装置及测定异常检测方法。

背景技术

进行上述膜厚测定的装置搭载于真空蒸镀装置等的成膜装置。采用膜厚测定装置的QCM(石英晶体微天平(Quartz Crystal Microbalance))法用于根据通过对晶体振荡器励振而得到的串联谐振频率、半值半宽(Half Width at Half Maximum)来测定沉积物的膜厚,或者检测出晶体振荡器已达到产品寿命(例如参照专利文献1、2、3、非专利文献1)。晶体振荡器的串联谐振频率和膜厚的关系例如通过下述式(1)来表示。晶体振荡器的半值半宽和膜厚的关系例如通过下述式(2)来表示。另外,串联谐振频率中的电导值的1/2为半值,描绘以串联谐振频率作为顶点的山形状的函数的半值中的全宽的1/2为半宽。在下述式(2)中,半值中的全宽的1/2也记载为半值半宽Fw。差分ΔFw是半值半宽Fw的变动量,且与彼此不同的两个膜厚间的半值半宽Fw的变动量对应。

下述式(1)使用于将沉积时的晶体振荡器中的串联谐振频率作为系统的输入的情况。式(1)主要使用于金属、金属氧化物等的比较硬的膜沉积于晶体振荡器的情况。

下述式(2)使用于利用复数弹性模量G与损失弹性模量G”用作系统的输入的情况。即,使用于在复数弹性模量G与损耗弹性模量G”的计算中将沉积时的晶体振荡器中的串联谐振频率及半值频率作为系统的输入的情况。串联谐振频率也可以使用基波和基波的3倍波等的n倍波。式(2)使用于有机膜等比较柔软的膜沉积于晶体振荡器的情况。

另外,作为使用式(1)的结构与使用式(2)的结构的差异,可以列举如下:在式(1)中,仅利用串联谐振频率,因此能够简化测定中的结构。另一方面,在式(2)中,因为半值频率作为变量添加等,所以有导出的输入纲量上升的倾向、即计算阶跃数增加的倾向,与测定中的结构主要利用式(1)的结构相比复杂,但是能够期待测定精度的提高。假设在利用专利文献4记载的n倍波等的情况下,测定精度的提高变得更加显著。

[数学式1]

[数学式2]

在式(1)中,ρf是沉积物的密度,tf是沉积物的膜厚,ρq是晶体振荡器的密度,tq是晶体振荡器的膜厚,Z是声阻抗比,fq是未沉积时的晶体振荡器中的串联谐振频率。密度ρf、密度ρq、膜厚tq、声阻抗比Z及串联谐振频率fq通常可以作为常数来处理。在式(1)中,fc是沉积时晶体振荡器中的串联谐振频率,通常是能够测定的值并能够作为输入值。通过利用该变量的输入值与上述各常数,从而只要变量的串联谐振频率fc的值已知,就能算出沉积物的膜厚tf,换言之,如膜厚tf=f(串联谐振频率fc)那样,能够作为串联谐振频率fc的函数来注记。

在式(2)中,差分ΔFw作为未沉积时的晶体振荡器中的半值半宽Fwq与沉积时的晶体振荡器中的半值半宽Fwc的差分而求出。沉积时的晶体振荡器中的半值半宽Fwc一般是能测定的值并能够作为输入值。另外,差分ΔFw如式(2)的右边所示,也能够使用以下说明的参数而求出。G是复数弹性模量,G’是弹性模量,G”是损耗弹性模量。ω是角频率,F0是基本频率,Zq是水晶剪切模式声阻抗。复数弹性模量G、储存弹性模量G’、损耗弹性模量G”使用记载于现有的技术文献的方法测定沉积时的晶体振荡器中的串联谐振频率及半值频率,将其测定结果作为变量的输入值而求出。另外,串联谐振频率例如也能够将基波和其3倍波等的n倍波复合而求出。当利用式(2)时,将串联谐振频率fc和半值频率作为变量的输入值,沉积物的膜厚tf能够如膜厚tf=f(串联谐振频率fc、半值频率)那样记载为串联谐振频率fc和半值频率的函数。

现有技术文献

专利文献

专利文献1:日本特许第6078694号公报

专利文献2:日本再公表特许2016/031138号

专利文献3:日本特开2019-65391号公报

专利文献4:日本特许第5372263号公报

非专利文献

非专利文献1:Sensors and Actuators B37:(1996)111-116

发明内容

发明要解决的课题

此外,若沉积于晶体振荡器的沉积物中混入异物,或是沉积物的性质状态发生变化,则上述各式中的沉积物的密度ρf或声阻抗比Z变动而变得不一样。特别是异物混入沉积物的状态是沉积物的一部分含有密度不同的粒子的状态,在沉积物内的三维的局部密度变动难以由一个参数、即密度ρf来表示。但是,在利用串联谐振频率与膜厚的关系的膜厚测定装置中,即使沉积物的密度ρf或声阻抗比Z如上述那样变动,也可以对视作沉积物的密度ρf或声阻抗比Z没有变动的情况进行计算。也就是说,根据串联谐振频率求出的测定值被适用于解释为沉积物的密度ρf或声阻抗比Z一样的上述关系式,作为没有异物混入沉积物的情况而原样输出。因此,即使是在需要更换晶体振荡器的状态下,由上述这样的不一样的沉积物的密度ρf或声阻抗比Z造成的测定异常,是不能由膜厚测定装置检测出的。另外,在本说明书中,对将包含由上述现有方法无法检测的情况的异常范围作为测定异常,来进行说明,并且对将如产品寿命这样的、由现有方法检测出的异常仅仅作为个体异常,来进行说明。

本发明的目的在于提供一种能够对沉积于晶体振荡器的沉积物的膜厚测定时的测定异常进行检测的测定异常检测装置及测定异常检测方法。

用于解决课题的方案

用于解决上述课题的测定异常检测装置是使用晶体振荡器的谐振特性值来检测膜厚的测定异常的测定异常检测装置,由上述谐振特性值获得的多个样本作为具有时间序列的样本来处理,且分别具有2个以上彼此不同的量纲,所述测定异常检测装置具备异常检测部,所述异常检测部使用由上述2个以上彼此不同的量纲而表示的检测指标空间,通过上述样本与上述检测指标空间的逻辑运算,对测定部所取得的上述样本是否在上述检测指标空间外进行判断,若判断为上述样本在上述检测指标空间外,则检测为测定异常。

用于解决上述课题的测定异常检测方法是使用晶体振荡器的谐振特性值来检测膜厚的测定异常的测定异常检测方法,包括由上述谐振特性值取得多个样本。上述多个指标作为具有时间序列的样本来处理,且分别具有2个以上彼此不同的量纲。测定异常检测方法还包含使用由上述2个以上彼此不同的量纲而表示的检测指标空间,通过上述样本与上述检测指标空间的逻辑运算,对测定部所取得的上述样本是否在上述检测指标空间外进行判断,若判断为上述样本在上述检测指标空间外,则检测为测定异常。

根据上述各结构,采用由彼此不同的量纲而表示的二维以上的检测指标空间,利用样本与检测指标空间的逻辑运算,对测定部所取得的多个样本中是否包含检测指标空间外的样本进行判断。然后,当判断为包含检测指标空间外的样本时,检测为发生测定异常。由此,即使是在仅根据现有的一维的指标不能判断异常的测定环境下,也能够检测出在测定时发生异常。

在上述膜厚测定装置中也可以包含膜厚。

在上述膜厚测定装置中,上述2个以上彼此不同的量纲也可以包含等效串联电阻及串联谐振频率中的至少1个。

附图说明

图1是示出膜厚测定装置的一实施方式具备的测定异常检测装置的结构的结构图。

图2是示出晶体振荡器的等效电路的电路图。

图3是示出电导波形中的串联谐振频率和半值频率的坐标图。

图4是示出频率与等效串联电阻的关系的一例的坐标图。

图5是示出频率与等效串联电阻的关系的其他例的坐标图。

图6是示出等效串联电阻与膜厚的关系的一例的坐标图。

具体实施方式

以下,参照图1至图6,对测定异常检测装置及测定异常检测方法的一实施方式进行说明。在本实施方式中,对将具备测定异常检测装置的膜厚测定装置搭载于成膜装置的例子进行说明。膜厚测定装置进行膜厚的测定及膜厚测定的异常判断。成膜装置是根据从膜厚测定装置输出的膜厚及判断结果,对成膜材料的沉积速度执行反馈控制等。

如图1所示,成膜装置具备真空槽11。真空槽11将蒸镀源12及检测装置14收容于内部。蒸镀源12与外部的电源13连接。蒸镀源12从电源13接受电力供给而使成膜材料朝向未图示的基板升华。蒸镀源12的升华方式例如是电阻加热式、感应加热式、电子束加热式等。成膜材料是有机材料、金属材料、金属氧化物及金属氮化物等金属化合物材料。基板是半导体基板、石英基板、玻璃基板、树脂膜等。成膜材料在基板和检测装置14中同样地沉积。

膜厚测定装置具备检测装置14及控制装置20。控制装置20具备控制部21、存储部22、测定部23及异常检测部24。控制装置20除了控制检测装置14的功能之外,还兼具控制成膜装置的功能。

检测装置14具备晶体振荡器。晶体振荡器具有预定的串联谐振频率作为固有振动数。构成晶体振荡器的材料例如是AT切型晶体振荡器或是SC切型晶体振荡器。晶体振荡器的串联谐振频率例如为3MHz以上且6MHz以下。检测装置14用于测定沉积于基板的沉积物的膜厚及沉积速度。上述膜厚及沉积速度等测定值及计算值作为由成膜装置进行的处理的反馈量而使用于成膜装置。检测装置14在真空槽11中与蒸镀源12相对而配置。检测装置14将检测出的结果输出至控制装置20。

晶体振荡器的表面与蒸镀源12相对而配置。在晶体振荡器的表面,以任意时间间隔从蒸镀源12沉积成膜材料。沉积于晶体振荡器的表面的成膜材料作为以任意时间间隔新附加的质量,而使晶体振荡器的振动频率变化。此外,在晶体振荡器的表面的沉积物的质量与沉积物的密度相关。也就是说,若对晶体振荡器的振动频率的变化进行测定,则能够求出沉积于晶体振荡器的表面的成膜材料的膜厚、即长度。然后,膜厚测定装置进行晶体振荡器的励振,而从作为励振结果的振动波形间接测定膜厚。

膜厚测定装置使用频率信号即交流信号作为励振源。励振后的晶体振荡器作为包含附着于表面的沉积物的系统进行响应。膜厚测定装置将包含机械性振动现象在内的晶体振荡器的响应作为经由晶体振荡器的压电效应的电气式振动波形检测出。膜厚测定装置存储作为检测结果的波形,进行所存储的波形的解析。膜厚测定装置提取波形解析结果所包含的膜厚并输出。

图2是利用等效电路示出对励振进行响应的系统。另外,图2示出的等效电路也称为测定系统。

如图2所示,晶体振荡器作为由动态电容C1、动态电感L1、等效串联电阻R1构成的串联谐振电路和分流电容C0并联的并联电路而示出。串联谐振电路是包括晶体振荡器的机械振动元件的等效电路。分流电容C0例如是包括用于保持晶体振荡器的封装体等所具有的寄生电容在内的夹着晶体振荡器的电极间的电容。等效串联电阻R1表示晶体振荡器振动时的内部摩擦、机械损耗、声损耗等振动的损耗分量。等效串联电阻R1越高,晶体振荡器越难以振动。

返回图1,控制装置20的测定部23具备第一测定部23A及第二测定部23B。但是,测定部23只需要具备第一测定部23A及第二测定部23B的至少一方即可。即,测定部23也可以是省略第一测定部23A的结构,也可以是省略第二测定部23B的结构。控制装置20主要控制成膜装置进行的处理,控制部21主要控制膜厚测定装置进行的处理。

控制装置20使电源13供给电力,并使成膜材料从蒸镀源12朝向基板升华。控制装置20例如采用从控制部21获得的沉积速度,对电源13的输出电力进行反馈控制,以使沉积速度成为目标值。当使用蒸镀源12的成膜开始时,控制部21将存储于存储部22的测定程序及测定异常检测程序等读出,并执行所读出的程序,由此执行膜厚测定方法及测定异常检测方法。

控制部21使测定部23向检测装置14输入交流信号。在具备第一测定部23A的构成中,控制部21例如使第一测定部23A测定串联谐振频率Fs。在具备第二测定部23B的构成中,控制部21通过在晶体振荡器的串联谐振频率Fs附近扫描交流信号的频率,而使第二测定部23B测定串联谐振频率Fs、半值频率F1、F2及半值频宽。

控制部21使存储部22存储检测装置14响应的振动波形。控制部21使存储部22存储测定部23和异常检测部24处理的各种值。控制部21进行振动波形的解析,或者是使测定部23进行振动波形的解析。控制部21使测定部23对预先指定的时间间隔的膜厚、即沉积速度进行计算。然后,控制部21使异常检测部24处理从测定部23输入的各种值。

控制部21当从控制装置20收到成膜已结束的消息时,使测定程序的执行结束。

控制部21例如通过CPU(中央处理单元)、RAM(随机存取存储体)、ROM(唯读存储体)等用于计算机的硬件及软件而构成。控制部不限定于将各种处理全都用软件来处理。例如,控制部也可具备作为执行各种处理中的至少一部分处理的专用硬件、即面向判断用途的集成电路(ASIC)。控制部也可以构成为包括作为ASIC等1个以上专用的硬件电路、按照作为计算机程序的软件而运作的1个以上的作为处理器的微型计算机、或者它们的组合的电路。

存储部22存储目标值、指标、检测指标空间、样本、电压振动波形、励振频率范围、励振信号波形等各种值、膜厚测定程序、测定异常检测程序及数据。控制部21读取存储部22存储的各种值、膜厚测定程序及数据,通过执行膜厚测定程序,而使测定部23执行各种处理。控制部21执行各种处理。读取存储部22存储的各种值、测定异常检测程序及数据,通过执行测定异常检测程序而使异常检测部24执行包含测定异常的判断的各种处理。

第一测定部23A构成为:通过与存储部22及控制部21协作,从而能够对作为谐振特性值的一例的晶体振荡器的串联谐振频率Fs等进行测定。第一测定部23A例如具备振荡电路和测定电路。振荡电路将交流信号作为励振信号,对检测装置14所具备的晶体振荡器输入未沉积时的晶体振荡器的串联谐振频率Fs或者其附近的频率等特定的频率,使晶体振荡器振动。测定电路例如测定作为使励振停止后的衰减响应、即电压振动波形,并将其结果记录于存储部22。控制部21对所记录的电压振动波形使用预先准备的公知的解析方法计算需要的谐振特性值。作为解析方法的例子,是利用指数函数性的衰减的手法(以下,也记载为Ring-down analysis)。Ring-down analysis是利用如下的解析方法:附加于晶体振荡器的表面的变动质量能够作为衰减响应时的动能释放变动而被观察。

第二测定部23B作为所谓的网路解析仪执行功能。第二测定部23B构成为:不与存储部22及控制部21协作就能够对串联谐振频率Fs和半值频率F1、F2等进行测定。第二测定部23B构成为:具备信号供给电路和测定电路,将向晶体振荡器供给的励振信号从作为励振信号叠加的响应的电压振动波形除去,仅将响应信号分离。例如,信号供给电路对检测装置14具备的晶体振荡器输入交流信号作为励振信号。励振信号例如使用在晶体振荡器的串联谐振频率Fs附近的正弦波扫描信号。测定电路例如根据响应信号求出串联谐振频率Fs、半值频率F1、F2及半值半宽Fw。上述串联谐振频率Fs、半值频率F1、F2及半值半宽Fw是谐振特性值的一例。

这样,当测定部23为具备第一测定部23A或第二测定部23B的结构时,能够得到用于导出膜厚的函数、即式(1)或式(2)中的变量的输入值。控制部21也可以是根据测定结果而选择第一测定部23A和第二测定部23B中的任一方的结构。此外,测定部23也可以是根据需要对记载于式(1)至式(6)的变量以外的变量进行计算的结构。

如图3所示,半值频率F1、F2是赋予串联谐振频率Fs中的电导(conductance)的最大值的1/2的频率。半值频宽是半值半宽Fw的两倍,且是一方半值频率F1和另一方半值频率F2的差分值。换言之,半值半宽Fw是半值频宽的1/2。

然而,作为晶体振荡器中的振荡频率的精度及稳定性的指标的Q值及D值由下述式(3)、(4)来表示。当等效串联电容C1不变化而能够作为常数处理时,动态电感L1利用串联谐振频率Fs而由下述式(5)来表示,等效串联电阻R1由下述式(6)来表示。这些式保存于存储部22中。控制部21利用上述式计算各种值。例如,控制部21每当在测定部23中得到半值频率F1、F2及串联谐振频率Fs时,按时间序列进行基于上述式的计算。控制部21进行的计算也可以由异常检测部24进行。按时间序列进行的计算结果即计算值,在按照时间序列赋予时间指数值后,被保存于存储部22中。使用在测定部23中在同一机会得到的半值频率F1、F2及串联谐振频率Fs进行计算而得到的结果中被赋予同一时间指数值。时间指数值的赋予由测定部23、控制部21、异常检测部24中的任何一个进行。

Q=Fs/(2×Fw)…式(3)

D=1/Q…式(4)

L1=1/((2π×Fs)2×C1)…式(5)

R1=4π×L1×Fw…式(6)

测定部23每隔规定时间反复执行包含上述谐振特性值的测定、解析的处理,并将测定值及计算值传送至存储部22。测定的时间间隔从精度方面考虑,可以在能处理的范围内固定为最短时间,但是也可以包括控制装置20或控制部21的暂时中断在内,设为可变。由于上述时间变动在存储部22中作为时间指数值的相对关系而记录,因此也能够利用于如每个指定时间的沉积速度的计算处理那样的、之后的数值处理。

返回图1,异常检测部24构成为:能够利用测定部23在测定、解析中使用的信号及存储部22存储的测定值、计算值。作为存储部22存储的测定值、计算值的示例,可以是励振、响应的时间响应波形即电压振动波形、半值频率F1、F2、串联谐振频率Fs、谐振频率中的电导值、等效串联电阻R1、膜厚等。另外,用于确定检测指标空间的指标值是用于判断有无测定异常的预先实验性地确定的值,例如经由控制装置20而手动输入至存储部22。

异常检测部24构成为,将赋予同一时间指数值的2个以上值的组合作为样本来进行处理。也就是说,多个样本成为具有时间指数值的电子数据表(Spread Sheet)状的数据。另外,处理样本时,测定部和控制部21也可以制作多个样本即样本组,将样本组保存于存储部22后,供异常检测部24利用样本组。

以下,对异常检测部24执行的测定异常的检测概要进行说明。在以下说明中,异常检测部24具备确定部25和检测部26。

首先,异常检测部24在准备工序中,根据存储部22存储的指标值设定检测指标空间。指标值是特定用于设定检测指标空间的量纲中的正常范围的值。检测指标空间是表示在测定中的正常范围的空间,是具有二维以上区域的空间。另外,在本实施方式中,设定检测指标空间的各量纲对应于各个物理量。量纲与物理量具有一对一的对应关系,量纲也可以替换成与其对应的物理量。其次,异常检测部24在准备工序中,关于测定部23测定的测定值或者存储部22存储的测定值、计算值,以成为与设定检测指标空间的量纲对应的值的方式选择各物理量。

异常检测部24按照来自控制部21的处理命令,在作业工序中取得选择的物理量即选择物理量的值。选择物理量的值的取得是与测定部23的处理同步的依次处理,或者是在选择物理量的值中赋予时间指数值时,也可以是与测定部23的处理不同步的处理。另外,以下,对依次处理的情况进行说明。将被异常检测部24取得的选择物理量的值作为样本来处理。样本利用时间指数值作为索引。通过利用索引,从而能够算出例如任意样本间的单位时间变化量。另外,在上述中,示出了异常检测部24取得的值是选择出的物理量的示例,但如后述那样,异常检测部24取得的值也可以是无量纲等的各种值。

异常检测部24构成为,在与检测指标空间同一的空间中将样本作为点显示。另外,在本实施方式中,异常检测部24构成为,将检测指标空间与样本显示在同一二维平面。异常检测部24例如使确定部25执行上述作业。确定部25在二维平面中特定样本显示的点,然后,对样本是否在检测指标空间外进行判断。例如,关于二维平面中的样本的各坐标值,通过进行对与确定正常范围的各指标值之间的大小关系进行判断等的逻辑运算,从而来判断是否为检测指标空间显示的正常范围内。在本实施方式中,确定部25将检测指标空间作为封闭的二维平面确定,在正常范围中存在样本的坐标的情况下,判断为正常,在正常范围中不存在样本的坐标的情况下,判断为测定异常。

确定部25在判断为测定异常时,例如向存储部22输入检测出产生测定异常。当检测部26从存储部22或确定部25收到产生测定异常的消息时,实施必要的处理,然后,进行表示检测出产生测定异常的意旨的输出。当控制部21或者控制装置20接收到表示产生测定异常的意旨的输出时,例如开始进行更换晶体振荡器的作业或者开始用于使成膜装置停止的作业。另外,检测部26进行的必要的处理是关于时间区域的处理,例如是代表降低噪声方法的信号处理。作为例子,可以举出在经过多次异常判断后检测为测定异常的处理。但是,尤其,若不需要关于时间区域的处理,则即时输出确定部25所判断的结果即可。在上述结构中,也可以将检测部26省略。

控制部21在由异常检测部24判断为测定正常时,在预先设定的时间间隔后,再次命令执行,取得选择物理量的值而使异常检测部24进行判断的处理。通常,反复进行该处理直至成膜装置的控制装置20结束成膜。

另外,样本所具有的值,典型地是成为构成式(1)至(6)的各项的物理量,但是,也可以改变式(1)至(6),而将各项作为无量纲量。此时,设定检测指标空间的量纲值,也就是说,存储部22存储的指标值也是无量纲量。即使在使用上述无量纲量的结构中,通过判断检测指标空间内是否存在样本,也能获得同样的结果。此外,构成样本的量纲的数量也可以是构成检测指标空间的量纲以上。在本实施方式中,如图4、图5所示,将串联谐振频率Fs(MHz)与等效串联电阻R1(Ω)的组、膜厚(μm)与等效串联电阻R1(Ω)的组作为二维的样本利用。此外,若在2个物理量之间存在相关关系,则也可以利用上述式(1)至(6)中不存在的物理量。例如,也可以将在图2所示的整个等效电路流动的电流及在分流电容C0流动的电流等包含于构成样本的量纲。

由于多个样本具有时间指数值,所以异常检测部24可指定从现在起的特定时间范围的样本,并可抽出指定范围的样本组。也就是说,异常检测部24可对各样本进行判断,统计其判断结果,计算最近的每小时的异常发生率、即量纲单位的异常率。这表示各量纲可以设定时间区域的异常检测灵敏度。换言之,异常检测部24进行如下处理:按照各物理量设定成为正常范围的指标,进行异常判断,进一步,按照各物理量重复判断每单位时间的异常率是否超过了预定值,然后,进行测定异常的检测。作为其他的类似方法,例如也可以替代为模仿一次滞后的数值运算方法,也能够实现同样的功能。

参照图4,对使用2个量纲的测定异常的检测示例进行说明。另外,在图4及图5中,显示了通过预先实施的实验,事先对正常例与膜质异常例进行过判断的样本。

所谓膜厚的测定,是在晶体振荡器上沉积成膜材料时的时间序列的测定。因此,随着在晶体振荡器上的成膜材料的沉积进行,根据所附加的质量,串联谐振频率Fs降低,状态朝向频率轴的左端迁移。也就是说,图4的频率轴的右端表示,成膜材料没有沉积于晶体振荡器的状态且膜厚为零的情况。然后,示出膜厚为零时的晶体振荡器以5MHz串联谐振。

<第一实施例>

在图4所示的示例中,包含沉积物为金的第一实施例。异常检测部24将5MHz以下4.2MHz以上作为对应于作为1个量纲的串联谐振频率Fs的第一检测指标设定。此外,异常检测部24将20Ω以上50Ω以下作为对应于作为其他量纲的等效串联电阻R1的第二检测指标设定。上述2个指标是4组坐标点,对划定出矩形状平面的检测指标空间进行限定。另外,第一检测指标也可以是4.2MHz以上,该结构适用于以使用经过检查的晶体振荡器等的方式,对第一检测指标的上限不需要进行异常判断的情况等。

在此,在专利文献3那样的现有技术中,例如在串联谐振频率Fs低于4.2MHz时,设定为因沉积而使得晶体振荡器的可使用期间结束,即判断为晶体振荡器达到使用寿命。也就是说,在由解析振动波形获得的串联谐振频率Fs低于4.2MHz的情况下,判断为发生个体异常。个体异常的检测仅选择串联谐振频率Fs这1个量纲,将选择的1个量纲下的检测指标设定为5MHz以下4.2MHz以上,将在该设定的范围的直线状范围、指标值内判断为正常,将在该范围外判断为个体异常。换言之,个体异常的检测可以说是仅利用串联谐振频率Fs的样本和指标值的大小关系的检测。此时,也适用于指标值为多阶,或者是专利文献3中记载那样,利用了样本组的每小时的异常率的噪声降低方法。

对此,在第一实施例中,将第一检测指标和第二检测指标的两种指标用于判断。即,将被矩形状包围的二维的检测指标空间用于判断。确定部25通过逻辑运算,对各样本是否位于成为检测指标空间的平面内进行判断,并将表示判断结果的正常或异常的状态赋予各样本。

另外,状态的赋予处理为按照样本的时间序列取得的依次处理。检测指标空间所示的空间形状不限于矩形状,可以根据选择出的检测指标或者指标值而设定为三角形状或不规则形状。例如,作为与等效串联电阻R1对应的第二检测指标,在5MHz中设为20Ω以上、50Ω以下,在4.2MHz中设为30Ω以上、80Ω以下,形成为与等效串联电阻R1随着沉积而向一个方向定比地变动的倾向对应的类似梯形的检测指标空间。这样,即使任何沉积状态都能够保持最佳的检测灵敏度。在本实施例中,由确定部25判断的结果经由检测部26依次输出。

如上所述,若是使用二维以上的检测指标空间的结构,则能够对多个量纲进行测定异常的检测。如现有例那样,在设定只有串联谐振频率Fs的一维的检测指标空间的结构中,无法将图4所示的只有等效串联电阻R1变动的结果、即膜质异常的样本检测为测定异常。即使针对串联谐振频率利用每小时的异常率,也不能将图4所示的显示于4.4MHz与4.5MHz之间的膜质异常检测为测定异常,甚至会视为正常测定而进行测定。这是由于等效串联电阻R1的变动并未与串联谐振频率Fs的时间区域中的变动关联。对此,若是使用除了串联频率区域之外还使用了等效串联电阻R1的区域的二维检测指标空间的结构,则能够将图4所示的膜质异常的样本检测为测定异常。另外,用于判断测定异常的指标的物理量,能够根据作为测定异常而判断到的灵敏度等的要求,例如膜质异常等那样、根据所产生的测定异常而适当进行选择。

<第二实施例>

在图4所示的例中,包含沉积物为铝的第二实施例。在第二实施例中,除了取代第一实施例说明的检测指标空间,而设定具有模仿曲线的多边形状边界的二维检测指标空间,或者具有曲线状边界的二维检测指标空间以外,进行与第一实施例相同的检测。以下,对与第一实施例不同的检测指标空间进行说明。

在第一实施例中,第一检测指标和第二检测指标设定为最大4组的坐标点,而在设定模仿曲线的多边形状边界或曲线状边界的第二实施例中,作为第一检测指标设定3个以上的值,将超过4组的坐标点作为检测指标空间指定。以下,将设定模仿曲线的多边形状边界或者曲线状边界的第一检测指标也称为曲线状指标。

以下,对曲线状指标的计算方法进行说明。

例如,使用铝的物理参数即储存弹性模量G’为26GPa、以及铝的损耗弹性模量G”为0.2GPa,预先导出作为等效串联电阻R1=f(串联谐振频率)而表示的指标函数。在导出指标函数时,使用上述式等。控制装置20使用上述指标函数,在第一检测指标的范围即5MHz以下、4.2MHz以上的范围,进行扫描,计算各频率中的等效串联电阻值。图4所示的虚线表示在第一检测指标的范围扫描时的坐标轨迹。

由于图4所示的虚线是基于物理参数的计算值,因此,在控制装置20中,例如设定变动的容许范围为计算值的±10%。也就是说,设定图4的虚线表示的值的1.1倍是表示第一检测指标的上限的曲线状指标,图4的虚线表示的值的0.9倍是表示第一检测指标的下限的曲线状指标。

另外,在第二实施例中,以针对等效串联电阻的量纲的纯量(Scalar)值的倍数来限定检测指标,但是允许变动的虚线的摄动方向包含串联谐振频率侧的量纲即可。也就是说,也可以以向量值来限定摄动量。这样,即使在变动的倾向横跨2个量纲时,也可以更精确进行测定异常的检测。此外,由于不需要各种实验来设定检测指标空间,因此,可以简化用于设定检测指标空间的作业。此外,若将预先实施的实验结果和上述计算值组合,则摄动量变得明确,能够进一步提高测定异常的判断的精度。

此外,即使通过对具有曲线状指标所示的边界的检测指标空间进行设定的检测,也能够检测出图4所示的膜质异常的样本例为测定异常。例如,如现有例那样,在以下结构中,即在设定只有等效串联电阻R1的一维的检测指标空间,且一维的检测指标空间为20Ω以上700Ω以下的结构中,不能将图4所示的膜质异常的样本检测为测定异常。即使在将等效串联电阻R1为50Ω以下的范围设定为检测指标空间的情况下,虽然能够将等效串联电阻R1为100Ω的膜质异常的样本检测为测定异常,但是也会将串联谐振频率Fs为4.6MHz以下的正常样本检测为测定异常。其结果是,会使晶体振荡器的寿命、即可使用的期间大幅缩短。对此,在使用了具有由曲线状指标表示的边界的检测指标空间,换言之,使用了具有曲线状边界的检测指标空间的结构中,即使沉积物是铝膜,也能够清楚地区别图4中的正常样本和异常样本。

<第三实施例>

在第三实施例中,对以下区域为第一检测指标的范围的情况进行说明,也就是,能够忽略损耗弹性模量G”的区域、即即使成膜材料沉积于晶体振荡器,复数弹性模量G、储存弹性模量G’、损耗弹性模量G”相对于晶体振荡器的固有值几乎不变动的区域。在第三实施例中,将沉积物的密度ρf作为成膜材料即有机物的值,导出表示为等效串联电阻R1=f(串联谐振频率)的指标函数。

控制装置20使用上述指标函数在第一检测指标的范围进行扫描,对各频率的等效串联电阻的值进行计算。图5所示的直线表示在第一检测指标范围进行扫描时的坐标轨迹。控制装置20使图5所示的直线与第二实施例中同样地摄动,并通过与第一检测指标组合,来设定矩形状的检测指标空间。然后,控制装置20使用如此设定的检测指标空间来进行测定异常的检测。

另外,在根据沉积物的密度ρf来设定检测指标空间的结构中,也能够将沉积物的密度ρf变更为金或铝。也就是说,也能够变更成由沉积物的密度ρf来选择二维的检测指标空间。即,换言之,检测指标空间的选择也能够是,根据利用沉积物的密度ρf、等效串联电阻R1及串联谐振频率Fs的3个指标的三维检测指标空间,来选择与沉积物种类对应的二维的检测指标空间。这样,检测指标空间不限于二维,也可以适当用于三维以上的空间。

<第四实施例>

在第四实施例中,将作为第二实施例的检测指标空间而使用的量纲由串联谐振频率Fs变更为膜厚。然后,第四实施例使用具有模仿与第二实施例相同的曲线的多边形状边界的二维检测指标空间或者具有曲线状的边界的二维检测指标空间,进行测定异常的检测。

首先,导出作为等效串联电阻=f(膜厚)而表示的指标函数。在指标函数的导出中,使用与第二实施例相同的条件。也就是说,将铝的沉积量的变化与等效串联电阻R1的变化对应的函数作为指标函数导出。控制装置20使用上述指标函数,在第一检测指标的范围即膜厚的范围中进行扫描,对各膜厚中的等效串联电阻的值进行计算。图6所示的虚线表示使用指标函数扫描时的坐标轨迹。接着,控制装置20设定第一检测指标。第一检测指标可以由预先实施的实验来计算,但是,在与第二实施例相同的条件的情况下,第一检测指标为0μm以上、60μm以下。上述膜厚的范围是与第二实施例的第一检测指标的5MHz以下、4.2MHz以上对应的值。接着,控制装置20设定使图6的虚线摄动的检测指标空间。之后,检测测定异常的步骤与第二实施例相同。

也就是说,第四实施例与第二实施例相比,第一检测指标和第二检测指标实质上相同,第四实施例与第二实施例的不同为,构成检测指标空间的量纲是一维。具体而言,构成第二实施例的检测指标空间的串联谐振频率Fs在第四实施例中被替代成膜厚。然后,由于第四实施例中的检测指标空间为利用铝作为物理参数的情况,因此,能够利用于沉积物为铝的情况。

在此,如图6的虚线所示,在将膜厚和等效串联电阻作为量纲的空间中,示出了将铝作为沉积物的正常样本以及膜质异常的样本,除此之外,还示出了将银及三(8-羟基喹啉)铝(Alq3)作为沉积物的正常样本。在本例中,将正常样本视作:在第一检测指标中为0μm以上、20μm以下,在第二检测指标中存在于与第一实施例相同的范围。然后,视为膜质异常的样本的坐标值与第二检测指标相差很远。

这样,关于第四实施例中的摄动,只要满足上述的方式进行即可,尽管将利用铝的检测指标空间作为物理参数,只要是使用上述检测指标空间的判断即可,对于金、银、作为有机物的三(8-羟基喹啉)铝(Alq3),也能够进行测定异常的检测。此外,由于关于具有彼此不同的密度的沉积物能够进行测定异常的检测,因此,不增加控制装置20的计算步骤数,也能够判断测定异常。

以上,采用上述实施方式时,能获得以下的效果。

(1)由于进行使用二维以上的检测指标空间的异常判断,因此,能够检测一维检测指标无法检测的测定异常。

(2)在构成检测指标空间的量纲中包含膜厚的结构中,无论在沉积物为相对坚硬的膜的情况下,还是在沉积物为相对柔软的膜的情况下,都能够判断测定异常。

(3)由于等效串联电阻R1和串联谐振频率Fs是分别与沉积于晶体振荡器的沉积物的质量变化强烈响应的量纲,因此,在包含串联谐振频率Fs与等效串联电阻R1的至少1个的检测指标空间的情况下,也可以视作,适合对取决于质量变化的测定异常进行检测。

(4)无论是在内部摩擦与复数弹性模量有助于等效串联电阻R1的相对柔软的膜为测定对象的情况下,还是在内部摩擦与复数弹性模量无助于等效串联电阻R1的相对坚硬的膜的情况下,密度ρf都是与沉积于晶体振荡器的沉积物的质量变化直接响应的量纲。因此,在使用包含密度ρf的三维检测指标的结构的情况下,也可以视作,特别适合对是否产生取决于质量变化的测定异常进行检测。

(5)在构成检测指标空间的量纲中包含膜的密度的结构的情况下,无论是在沉积物为相对坚硬的膜的情况下,还是在沉积物为相对柔软的膜的情况下,都能够适用于上述共同的检测指标空间。

(6)在作为用于获得样本组的谐振特性值为使用串联谐振频率Fs和半值频率F1、F2的结构的情况下,由于能够利用上述式2,因此,与仅利用上述式1的情况相比,也能够扩大用于表现检测指标的量纲的范围。

<其他实施例>

构成检测指标空间的量纲也可以是串联谐振频率Fs和等效串联电阻R1,或者是由串联谐振频率Fs和半值频宽获得的D值、D值和等效串联电阻R1。此外,用于表现检测指标的量纲也可以是从串联谐振频率Fs、等效串联电阻R1、Q值、半值半宽、膜厚、流入晶体振荡器的电流值的构成组中选择两种以上的值。例如,第一检测指标值也可以是由串联谐振频率Fs、等效串联电阻R1、Q值、半值半宽、膜厚、流入晶体振荡器的电流值构成的组中的1种值,第二检测指标值是同组中的第一检测指标值以外的1种值。此时,从提高测定异常的检测精度的观点而言,较为理想的是,选择第二检测指标值相对第一检测指标值大幅改变的变量的组。

另外,例如作为噪声对策,检测部26附加时间延迟要素而进行测定异常的检测。附加时间延迟要素的示例为,在判断以时间序列依次处理的状态时,赋予所谓一次延迟要素进行判断。具体而言,检测部26在每个任意时间收到赋予显示样本异常的状态的规定数的样本时,检测部26判断为发生了测定异常。另外,关于选择到的指标,在希望提高时间性的检测灵敏度时,关于该指标的量纲方向也可以不附加上述一次延迟要素等而进行作为即时判断的检测处理。也就是说,本发明的技术思想也可以在各个量纲作为适当的噪声对策而进行。

符号说明

C1:动态电容

Fs:串联谐振频率

F1,F2:半值频率

Fw:半值频率宽

L1:动态电感

R1:等效串联电阻

11:真空槽

12:蒸镀源

13:电源

14:检测装置

20:控制装置

21:控制部

22:存储部

23:测定部

23A:第一测定部

23B:第二测定部

24:异常检测部

25:确定部

26:检测部。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于形成图案化材料层的方法和装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!