混动汽车用能量管理方法

文档序号:545918 发布日期:2021-06-04 浏览:29次 >En<

阅读说明:本技术 混动汽车用能量管理方法 (Energy management method for hybrid electric vehicle ) 是由 陆鹏程 李振华 戴文豪 张卫鑫 陈劲松 纪丽伟 凌建群 于 2021-03-09 设计创作,主要内容包括:本发明涉及一种混动汽车用能量管理方法,依次包括如下步骤:读取当前环境温度;设定SOC偏移因子,并计算得到SOC偏移修正值;设定标定SOC上限阈值和标定SOC下限阈值,并计算得到修正SOC上限阈值和修正SOC下限阈值;读取当前油门、刹车和车速信息;计算得到扭矩修正因子;建立扭矩修正因子、SOC和扭矩修正值的数学模型;如当前SOC小于等于修正SOC下限阈值时,汽车进入低SOC状态,发动机输出功率;如当前SOC大于等于修正SOC上限阈值时,汽车进入高SOC状态,TM电机输出功率;如当前SOC大于修正SOC下限阈值并小于修正SOC上限阈值时,汽车进入正常SOC状态,发动机、TM电机和ISG电机混联输出功率。本发明能保持电池电量稳定在合理工作区间内,并减少动力模式切换频次。(The invention relates to an energy management method for a hybrid electric vehicle, which sequentially comprises the following steps: reading the current ambient temperature; setting an SOC offset factor, and calculating to obtain an SOC offset correction value; setting a calibration SOC upper limit threshold and a calibration SOC lower limit threshold, and calculating to obtain a correction SOC upper limit threshold and a correction SOC lower limit threshold; reading current information of an accelerator, a brake and a vehicle speed; calculating to obtain a torque correction factor; establishing a mathematical model of a torque correction factor, an SOC and a torque correction value; if the current SOC is less than or equal to the corrected SOC lower limit threshold value, the automobile enters a low SOC state, and the engine outputs power; if the current SOC is more than or equal to the corrected SOC upper limit threshold value, the automobile enters a high SOC state, and the TM motor outputs power; and if the current SOC is larger than the correction SOC lower limit threshold and smaller than the correction SOC upper limit threshold, the automobile enters a normal SOC state, and the engine, the TM motor and the ISG motor output power in a hybrid mode. The invention can keep the battery power stable in a reasonable working interval and reduce the switching frequency of the power mode.)

混动汽车用能量管理方法

技术领域

本发明涉及混合动力汽车能量管理,特别涉及一种适用于双电机双离合混动汽车的能量管理方法。

背景技术

混合动力汽车(简称混动汽车)的动力系统包括发动机驱动系统和电机驱动系统,混动汽车行驶所需功率可由单个驱动系统独立提供或者通过两个驱动系统共同提供。电池是电机驱动系统的重要组成部分,电池可以作为电机驱动系统的能量来源,向外输出电能,也可以用于存储电机处于充电模式时产生的电能,因而在整车系统中对电池的荷电状态(即SOC)是混动汽车能量管理的关键点。

通常,参见图1,混动汽车中,发动机1、第一离合器2、ISG电机3、第二离合器4、TM电机5依次相连,电池6分别通过电机控制器与ISG电机3、TM电机5相连,TM电机5输出端连接传动轴7,传动轴7连接传动桥9,传动桥9端部设置车轮8。尤其是在非插电式混动汽车上,电池电量配置较低,同时不设置外接充电口,电池的充放电都在汽车运行过程中实现,为保证混动汽车能够应对各种复杂工况,一般都要求电池电量需保持在一个合理区间内。

现有技术主要是采用固定数值作为SOC上下阈值用以约束SOC,但由于电池电量随温度变化的波动幅度跟随性较强,无法灵活应对各种环境温度下电池容量发生变化的情况,不利于实现合理有效的混动汽车能量管理。当环境温度降低时,电池容量会随之减少,导致混动汽车的动力模式切换频次较之常规环境温度时会显著增加,从而恶化燃油经济性,同时还会导致电池寿命缩短。另外,如若混动汽车的扭矩需求发生频繁波动,也会造成动力模式频繁切换,严重影响驾驶感受,并导致汽车油耗上升。

发明内容

本发明的目的在于提供一种混动汽车用能量管理方法,基于当前环境温度和SOC对汽车输出扭矩进行修正并对动力输出模式进行优化,在保证混动汽车满足各种情况下的行驶要求的同时,又能将电池电量稳定在合理的工作区间,并有效减少动力模式切换频次。

本发明是这样实现的:

一种混动汽车用能量管理方法,所述混动汽车包括发动机、第一离合器、ISG电机、第二离合器、TM电机、电池;所述能量管理方法包括如下步骤:

步骤一,通过CAN报文读取当前环境温度;设定SOC偏移因子,并计算得到SOC偏移修正值;设定预设标定温度下的标定SOC上限阈值和标定SOC下限阈值,并计算得到当前温度下的修正SOC上限阈值和修正SOC下限阈值;

步骤二,通过CAN报文读取当前油门踏板开度、刹车踏板状态和车速;设定基于油门踏板开度的扭矩修正因子、油门修正权重系数、基于刹车踏板状态的扭矩修正因子、刹车修正权重系数、基于车速的扭矩修正因子、车速修正权重系数,并计算得到扭矩修正因子;建立扭矩修正因子、SOC和扭矩修正值的数学模型,SOC以修正SOC上限阈值和修正SOC下限阈值为上下限值;

步骤三,将当前SOC与修正SOC上限阈值、修正SOC下限阈值进行比较;如当前SOC小于等于修正SOC下限阈值时,汽车进入低SOC状态,发动机输出功率以驱动汽车;如当前SOC大于等于修正SOC上限阈值时,汽车进入高SOC状态,TM电机输出功率以驱动汽车;如当前SOC大于修正SOC下限阈值并小于修正SOC上限阈值时,汽车进入正常SOC状态,发动机、TM电机和ISG电机混联输出功率以驱动汽车。

所述步骤一中,所述SOC偏移修正值的计算公式如下:

式中,ΔSOC为SOC偏移修正值,T0为预设标定温度,f为当前环境温度,是SOC偏移因子;

所述修正SOC上限阈值和修正SOC下限阈值的计算公式如下:

SOC_Hi=SOC_Hidef+ΔSOC

SOC_Lo=SOC_Lodef-ΔSOC

式中,SOC_Hi为修正SOC上限阈值,SOC_Lo为修正SOC下限阈值,SOC_Hidef为标定SOC上限阈值,SOC_Lodef为标定SOC下限阈值。

所述T0=25℃。

所述

所述步骤二中,基于油门踏板开度的扭矩修正因子通过计算单位时间内油门踏板开度超过踏板标定阈值的次数得到,基于刹车踏板状态的扭矩修正因子通过计算单位时间内刹车踏板踩下的次数得到,基于车速的扭矩修正因子通过计算单位时间内平均车速得到,油门修正权重系数、刹车修正权重系数、车速修正权重系数均根据车型确定;

所述扭矩修正因子的计算公式如下:

factrq=facApp×ωApp+facBrk×ωBrk-facVeh×ωVeh

式中,factrq为扭矩修正因子,facApp为基于油门踏板开度的扭矩修正因子,ωApp为油门修正权重系数,facBrk为基于刹车踏板状态的扭矩修正因子,ωBrk为刹车修正权重系数,facVeh为基于车速的扭矩修正因子,ωVeh为车速修正权重系数;

所述扭矩修正因子、SOC和扭矩修正值的数学模型由如下函数得到:

ΔTrq=f(factrq,SOC)

式中,ΔTrq为扭矩修正值,SOC为荷电状态;当factrq为定值时,ΔTrq随SOC增减而增减,当SOC为定值时,ΔTrq随factrq增减而增减。

所述基于油门踏板开度的扭矩修正因子随油门踏板开度超过踏板标定阈值的次数增减而增减,所述基于刹车踏板状态的扭矩修正因子随刹车踏板踩下的次数增减而增减,所述基于车速的扭矩修正因子随车速增减而减增。

所述步骤三中,所述低SOC状态中,设定汽车需求功率标定阈值,如汽车需求功率小于汽车需求功率标定阈值,发动机输出功率的多余部分输出给ISG电机并由ISG电机发电提高SOC,如汽车需求功率大于汽车需求功率标定阈值,发动机按汽车需求功率输出。

所述步骤三中,所述高SOC状态中,如汽车需求功率大于或等于TM电机的峰值功率,ISG电机介入并输出功率。

所述步骤三中,所述正常SOC状态中,根据发动机功率曲线得到发动机最小介入扭矩初始曲线,发动机最小介入扭矩初始曲线基于预设标定温度得到,修正发动机最小介入扭矩曲线的计算公式如下:

TrqMin_Cur=TrqMinDef_Cur+ΔTrq

式中,TrqMin_Cur为修正发动机最小介入扭矩曲线,TrqMinDef_Cur为发动机最小介入扭矩初始曲线,ΔTrq为扭矩修正值;

当汽车需求扭矩小于等于修正发动机最小介入扭矩曲线中对应发动机转速的扭矩时,TM电机单独输出扭矩,TM电机输出扭矩等于汽车需求扭矩;当汽车需求扭矩大于修正发动机最小介入扭矩曲线中对应发动机转速的扭矩时,发动机输出扭矩为发动机效率最优扭矩曲线中对应发动机转速的扭矩,并根据汽车需求扭矩和发动机输出扭矩的差值得到所需电机输出扭矩,如所需电机输出扭矩小于等于TM电机的峰值扭矩,则TM电机单独输出扭矩且TM电机输出扭矩等于所需电机输出扭矩,如所需电机输出扭矩大于TM电机的峰值扭矩,则TM电机输出扭矩为TM电机效率最优扭矩,同时ISG电机输出扭矩为所需电机输出扭矩与TM电机输出扭矩的差值。

本发明混动汽车用能量管理方法,为搭载混动汽车的动力系统提供了一种基于当前环境温度和当前SOC对扭矩进行修正的能量平衡方法,通过SOC平衡算法和扭矩分配方法,使混动汽车能灵活应对环境温度变化带给电池容量的影响,保证混动汽车在各种情况下的良好行驶状态,同时电池电量稳定在一个合理良好的工作区间内。同时,优化的能量管理方式还能有效减少混动汽车动力输出模式来回切换的频次,不仅可延长混动汽车电池使用寿命,而且能有效降低汽车油耗并提升驾驶感受。

本发明与现有技术相比,具有如下有益效果:确保混动汽车能满足各种情况下的行驶要求,并将电池电量保持在合理工作区间,有效减少动力模式切换频次,有助于提高电池使用寿命和减少汽车油耗,有助于实现合理有效的混动汽车能量管理。

附图说明

图1为现有混动汽车的动力系统结构示意图;

图2为本发明混动汽车用能量管理方法的流程示意图;

图3为本发明的基于扭矩修正因子和SOC的扭矩修正值MAP图;

图4为本发明的正常SOC状态的扭矩输出管理的流程示意图。

图中,1发动机,2第一离合器,3ISG电机,4第二离合器,5TM电机,6电池,7传动轴,8车轮,9传动桥。

具体实施方式

下面结合具体实施例对本发明作进一步说明。

参见图1,一种混动汽车用能量管理方法,所述混动汽车包括发动机1、第一离合器2、ISG电机3、第二离合器4、TM电机5、电池6。发动机1、第一离合器2、ISG电机3、第二离合器4、TM电机5依次相连,电池6分别通过电机控制器与ISG电机3、TM电机5相连,TM电机5输出端连接传动轴7,传动轴7连接传动桥9,传动桥9端部设置车轮8。

参见图2,所述能量管理方法,包括如下步骤:

步骤一,通过CAN报文读取当前环境温度;设定SOC偏移因子,并计算得到SOC偏移修正值;设定预设标定温度下的标定SOC上限阈值和标定SOC下限阈值,并计算得到当前温度下的修正SOC上限阈值和修正SOC下限阈值。

具体地,SOC偏移修正值的计算公式如下:

式中,ΔSOC为SOC偏移修正值,T0为预设标定温度,T为当前环境温度,是SOC偏移因子。优选地,T0取值为常温25℃。根据试验标定得到,优选取值为0.4。

在SOC偏移修正值的基础上,修正SOC上限阈值和修正SOC下限阈值的计算公式如下:

SOC_Hi=SOC_Hidef+ΔSOC

SOC_Lo=SOC_Lodef-ΔSOC

式中,SOC_Hi为修正SOC上限阈值,SOC_Lo为修正SOC下限阈值,SOC_Hidef为标定SOC上限阈值,SOC_Lodef为标定SOC下限阈值。

步骤二,通过CAN报文读取当前油门踏板开度、刹车踏板状态和车速;设定基于油门踏板开度的扭矩修正因子、油门修正权重系数、基于刹车踏板状态的扭矩修正因子、刹车修正权重系数、基于车速的扭矩修正因子、车速修正权重系数,并计算得到扭矩修正因子;建立扭矩修正因子、SOC和扭矩修正值的数学模型,SOC以修正SOC上限阈值和修正SOC下限阈值为上下限值。

具体地,基于油门踏板开度的扭矩修正因子通过计算单位时间内油门踏板开度超过踏板标定阈值的次数得到,基于油门踏板开度的扭矩修正因子随油门踏板开度超过踏板标定阈值的次数增减而增减,即次数越频繁,基于油门踏板开度的扭矩修正因子的数值越大,油门修正权重系数根据具体车型确定。基于刹车踏板状态的扭矩修正因子通过计算单位时间内刹车踏板踩下的次数得到,基于刹车踏板状态的扭矩修正因子随刹车踏板踩下的次数增减而增减,即次数越频繁,基于刹车踏板状态的扭矩修正因子的数值越大,刹车修正权重系数根据具体车型确定。基于车速的扭矩修正因子通过计算单位时间内平均车速得到,基于车速的扭矩修正因子随车速增减而减增,即平均车速越低,基于车速的扭矩修正因子的数值越大,车速修正权重系数根据具体车型确定。

所述扭矩修正因子的计算公式如下:

factrq=facApp×ωApp+facBrk×ωBrk-facVeh×ωVeh

式中,factrq为扭矩修正因子,facApp为基于油门踏板开度的扭矩修正因子,ωApp为油门修正权重系数,facBrk为基于刹车踏板状态的扭矩修正因子,ωBrk为刹车修正权重系数,facVeh为基于车速的扭矩修正因子,ωVeh为车速修正权重系数;

在扭矩修正因子,所述扭矩修正因子、SOC和扭矩修正值的数学模型由如下函数得到:

ΔTrq=f(factrq,SOC)

式中,ΔTrq为扭矩修正值,factrq为扭矩修正因子,SOC为荷电状态。

参见图3,扭矩修正值基于扭矩修正因子和SOC的数学模型可通过MAP图表示,MAP图的扭矩分布遵循如下原则:当factrq为定值时,ΔTrq随SOC增减而增减,即当SOC越小(越靠近修正SOC下限阈值SOC_Lo),ΔTrq越小,当SOC越大(越靠近修正SOC上限阈值SOC_Hi),ΔTrq越大;当SOC为定值时,ΔTrq随factrq增减而增减,即当factrq越小,ΔTrq越小,当factrq越大,ΔTrq越大。MAP图中的SOC轴的上限值和下限值分别为修正SOC上限阈值和修正SOC下限阈值,具体数值根据具体车型试验标定得到。

步骤三,将当前SOC与修正SOC上限阈值、修正SOC下限阈值进行比较:

如当前SOC小于等于修正SOC下限阈值时,汽车进入低SOC状态,发动机输出功率以驱动汽车。低SOC状态中,设定汽车需求功率标定阈值,如汽车需求功率小于汽车需求功率标定阈值,发动机输出功率的多余部分输出给ISG电机并由ISG电机发电提高SOC,如汽车需求功率大于汽车需求功率标定阈值,发动机按汽车需求功率输出。

如当前SOC大于等于修正SOC上限阈值时,汽车进入高SOC状态,TM电机输出功率以驱动汽车,且SOC得到降低。如汽车需求功率大于或等于TM电机的峰值功率,ISG电机介入并输出功率,且SOC得到降低。

如当前SOC位于修正SOC下限阈值和修正SOC上限阈值之间(不含端值)时,汽车进入正常SOC状态,发动机、TM电机和ISG电机混联输出功率以驱动汽车。

优选地,正常SOC状态中,参见图4,根据发动机功率曲线得到发动机最小介入扭矩初始曲线,即发动机最优经济区域的下限阈值曲线,该下限阈值曲线基于预设标定温度附近得到,修正发动机最小介入扭矩曲线的计算公式如下:

TrqMin_Cur=TrqMinDef_Cur+ΔTrq

式中,TrqMin_Cur为修正发动机最小介入扭矩曲线,TrqMinDef_Cur为发动机最小介入扭矩初始曲线,ΔTrq为扭矩修正值。

当汽车需求扭矩小于等于修正发动机最小介入扭矩曲线中对应发动机转速的扭矩时,TM电机单独输出扭矩,TM电机输出扭矩等于汽车需求扭矩;当汽车需求扭矩大于修正发动机最小介入扭矩曲线中对应发动机转速的扭矩时,发动机输出扭矩为发动机效率最优扭矩曲线中对应发动机转速的扭矩,并根据汽车需求扭矩和发动机输出扭矩的差值得到所需电机输出扭矩,如所需电机输出扭矩小于等于TM电机的峰值扭矩,则TM电机单独输出扭矩且TM电机输出扭矩等于所需电机输出扭矩,如所需电机输出扭矩大于TM电机的峰值扭矩,则TM电机输出扭矩为TM电机效率最优扭矩,同时ISG电机输出扭矩为所需电机输出扭矩与TM电机输出扭矩的差值。

本发明混动汽车用能量管理方法,通过读取环境温度计算得到SOC偏移修正值并用于实时调整修正SOC上下限阈值,能保证在正常SOC区间内实际电池可用电量不随环境温度高低发生大幅度变化,再通过比对当前SOC和修正SOC上下限阈值来判定三大工作状态(即低SOC状态、高SOC状态和正常SOC状态),并结合油门、刹车、车速信息计算得到扭矩修正因子,从而在扭矩修正因子和SOC的基础上获得扭矩修正值,并用于计算在正常SOC状态下发动机、ISG电机和TM电机的工作状态和输出扭矩。由于扭矩修正值的计算是结合了油门、刹车、车速以及当前SOC多个因素,使得扭矩分配能进行实时修正,保证汽车在正常SOC状态下发动机和电机能够平稳输出扭矩,同时也减少了动力输出模式切换频率,使得混动汽车能量管理更为合理有效。

以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有变道防撞系统的混合动力车辆

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!