一种结构涂层及其制备方法和应用

文档序号:1948663 发布日期:2021-12-10 浏览:9次 >En<

阅读说明:本技术 一种结构涂层及其制备方法和应用 (Structural coating and preparation method and application thereof ) 是由 王鹏 乔丽 张弘 白小刚 于 2021-06-22 设计创作,主要内容包括:本发明涉及涂层电阻材料技术领域,尤其涉及一种结构涂层及其制备方法和应用。本发明提供的结构涂层,包括在基底表面依次层叠设置的钛过渡层和铂铪复合结构层;所述铂铪复合结构层的层数≥3;所述铂铪复合结构层包括依次层叠设置的铪层和铂层。本发明利用铪较高的熔点和较低的电阻率,通过在钛过渡层和铂层之间设置铪层,作为铂层的复合相,有效的提高了结构涂层在受热过程中的再结晶温度,抑制了高温下钛过渡层向金属电阻层(铂层)的扩散问题;通过设置所述铂铪复合结构层的层数≥3,增加了界面强化效应,最终得到一种具备高热稳定性的结构涂层。(The invention relates to the technical field of coating resistance materials, in particular to a structural coating and a preparation method and application thereof. The structural coating provided by the invention comprises a titanium transition layer and a platinum-hafnium composite structure layer which are sequentially stacked on the surface of a substrate; the number of layers of the platinum-hafnium composite structure layer is more than or equal to 3; the platinum-hafnium composite structure layer comprises a hafnium layer and a platinum layer which are sequentially stacked. According to the invention, by utilizing the higher melting point and the lower resistivity of hafnium, the hafnium layer is arranged between the titanium transition layer and the platinum layer and is used as a composite phase of the platinum layer, so that the recrystallization temperature of the structural coating in the heating process is effectively increased, and the problem of diffusion of the titanium transition layer to a metal resistance layer (platinum layer) at high temperature is inhibited; the number of layers of the platinum-hafnium composite structure layer is not less than 3, so that the interface strengthening effect is increased, and the structural coating with high thermal stability is finally obtained.)

一种结构涂层及其制备方法和应用

技术领域

本发明涉及涂层电阻材料技术领域,尤其涉及一种结构涂层及其制备方法和应用。

背景技术

电热元件作为微型电系统加热源、微型模拟反应釜以及热切割器件等已在多种场合中实现应用。一般为采用金属涂层材料制作的电阻,并通过电阻发热等形式实现。因此,涂层电阻率是影响器件性能的关键参数,与涂层的制备工艺、尺度和材料等有重要关系。特别是当材料结构达到微纳量级,其电阻率不同于常规尺寸材料,因而对于电热元件电阻材料及其涂层特性研究是一项基础内容。

目前常用的涂层电阻材料主要包括铂、钛、铬和镍-铬合金等。基于高温电阻率稳定性好、抗氧化和耐腐蚀的优点,金属铂作为发热源已用于多数涂层电阻。但是,由于铂金属自身惰性,纯铂涂层对半导体和介电衬底的附着力较差,因此,研究者通常会在铂涂层和基体之间插入一层钛涂层作为粘附促进剂。虽然钛的引入能提高涂层结合力,但是由于钛对氧的高度亲和力以及高温下金属再结晶过程中的润湿性,导致铂涂层的隆起小丘状结构的形成,进而引起涂层隆起小丘状结构,从而引起涂层局部不连续,从而使得铂涂层电热元件,如温度传感器或加热器等在500~900℃的温度范围内性能退化,最终导致微器件的功能失效。

发明内容

本发明的目的在于提供一种结构涂层及其制备方法和应用,所述结构涂层的电阻具有较好的高温稳定性。

为了实现上述发明目的,本发明提供以下技术方案:

本发明提供了一种结构涂层,包括在基底表面依次层叠设置的钛过渡层和铂铪复合结构层;所述铂铪复合结构层的层数≥3;

所述铂铪复合结构层包括依次层叠设置的铪层和铂层。

优选的,所述结构涂层的总厚度为900~2000nm。

优选的,所述钛过渡层的厚度为140~300nm。

优选的,所述铂层和铪层的厚度比为(20~22):(7~10)。

本发明还提供了上述技术方案所述的结构涂层的制备方法,包括以下步骤:

在基底表面依次制备钛过渡层和铂铪复合结构层,得到所述结构涂层;

制备所述铂铪复合结构层的过程为在所述钛过渡层表面依次循环重复沉积铪层和铂层,所述循环重复的次数≥3。

优选的,沉积所述钛过渡层的条件为:氩气气体流量为39~41sccm;氩等离子体工作气压为6.0~8.0×10-1Pa;温度为120~160℃;时间为14~16min;Ti靶功率为220~250W。

优选的,沉积所述铪层的条件为:氩气气体流量为39~41sccm;氩等离子体工作气压为(6.0~8.0)×10-1Pa;温度为120~160℃;时间为4.5~5.5min;铪靶功率为180~185W。

优选的,沉积所述铂层的条件为:氩气气体流量为39~41sccm;氩等离子体工作气压为(6.0~8.0)×10-1Pa;温度为120~160℃;时间为7~8min;铂靶功率为180~185W。

本发明还提供了上述技术方案所述的结构涂层或上述技术方案所述的制备方法制备得到的结构涂层在电热元件中的应用。

本发明提供了一种结构涂层,包括在基底表面依次层叠设置的钛过渡层和铂铪复合结构层;所述铂铪复合结构层的层数≥3;所述铂铪复合结构层包括依次层叠设置的铪层和铂层。本发明利用铪较高的熔点和较低的电阻率,通过在钛过渡层和铂层之间设置铪层,作为铂层的复合相,有效的提高了结构涂层在受热过程中的再结晶温度,抑制了高温下钛过渡层向金属电阻层(铂层)的扩散问题;通过设置所述铂铪复合结构层的层数≥3,增加了界面强化效应,降低了不同金属间的扩散速率,增强了铂电阻层的电学稳定特性,最终得到一种具备高热稳定性的结构涂层。

附图说明

图1为实施例1所述结构涂层的截面示意图;

图2为实施例1所述结构涂层的截面SEM图;

图3为实施例1所述结构涂层的在进行加热处理后的卢瑟福背散射谱图;

图4为实施例1和对比例1~3所述结构涂层的在进行加热处理后的电阻率变化曲线;

图5为对比例1所述结构涂层的截面示意图;

图6为对比例1所述结构涂层的截面SEM图;

图7为对比例1所述结构涂层的在进行加热处理后的卢瑟福背散射谱图;

图8为对比例2所述结构涂层的截面示意图;

图9为对比例2所述结构涂层的截面SEM图;

图10为对比例2所述结构涂层的在进行加热处理后的卢瑟福背散射谱图;

图11为对比例3所述结构涂层的截面示意图;

图12为对比例3所述结构涂层的截面SEM图;

图13为对比例3所述结构涂层的在进行加热处理后的卢瑟福背散射谱图。

具体实施方式

本发明提供了一种结构涂层,包括在基底表面依次层叠设置的钛过渡层和铂铪复合结构层;所述铂铪复合结构层的层数≥3;

所述铂铪复合结构层包括依次层叠设置的铪层和铂层。

在本发明中,所述结构涂层的总厚度优选为900~2000nm,更优选为1000~1800nm,最优选为1300~1600nm。

在本发明中,当所述结构涂层的厚度大于2000nm时,由于涂层厚度过大,涂层与基底的粘附性会减弱,进而会使涂层的力学性能降低;当所述结构涂层的厚度小于900nm时,涂层的导电作用减弱,进而降低了以该结构涂层为基础的元器件的实用性,甚至导致电阻元器件的失效。

本发明对所述基底的材料没有任何特殊的限定,采用本领域技术人员熟知的材料即可。在本发明的具体实施例中,所述基底具体为氮化硅基底。

在本发明中,所述结构涂层包括钛过渡层;所述钛过渡层的厚度优选为140~300nm,更优选为180~260nm,最优选为200~230nm。

在本发明中,所述钛过渡层的作用是增加铂电阻层与基材之间的结合力,将所述钛过渡层的厚度控制在上述范围内的作用是在增强涂层与基材结合力的同时,尽量削弱过渡层对电阻层电学特性的影响。

在本发明中,所述铂铪复合结构层的层数≥3,优选为3~6。

在本发明中,所述铂铪复合结构层的层数过多会使单层厚度降低,铪元素热扩散的阻挡效果不明显,进而保留了大量钛过渡层向铂电阻层的扩散,影响结构涂层在电阻元器件中的应用;层数过少,多层界面效应不明显,进而保留了层间不同金属之间的扩散,影响电阻涂层高热稳定性和实际应用性。

在本发明中,所述铂铪复合结构层优选包括依次层叠设置的铪层和铂层。在本发明中,所述铂层和铪层的厚度比优选为(20~22):(7~10),更优选为(20.5~21.5):(8~9)。

在本发明中,当所述铂层和铪层的厚度比过大会使铪层的阻挡层效果不明显,进而保留了大量钛过渡层向铂电阻层的扩散,影响结构涂层在电阻元器件中的应用;当所述铂层和铪层的厚度比过小会使铂层导电层的作用减弱,进而降低了以该结构涂层为基础的元器件的实用性,甚至导致电阻元器件的失效。

本发明还提供了上述技术方案所述的结构涂层的制备方法,包括以下步骤:

在基底表面依次制备钛过渡层和铂铪复合结构层,得到所述结构涂层;

制备所述铂铪复合结构层的过程为在所述钛过渡层表面依次循环重复沉积铪层和铂层,所述循环重复的次数≥3。

在本发明中,若无特殊说明,所有制备原料均为本领域技术人员熟知的市售产品。

本发明对所述基底的材料种类没有任何特殊的限定,采用本领域技术人员熟知的材料种类进行即可。在本发明的具体实施例中,所述基底具体为氮化硅基底。

在本发明中,制备钛过渡层的方式优选为沉积;进行沉积前,本发明还优选包括将所述基底进行预处理;所述预处理优选包括用氩等离子体刻蚀所述基底表面5~15min后,使用偏压-500~-600V去除基底表面自然氧化与杂质污染层。

在本发明中,所述沉积的方式优选为磁控溅射物理气相沉积、电子束蒸发镀膜或化学气相沉积,更优选为磁控溅射物理气相沉积。

当所述沉积的方式为磁控溅射物理气相沉积时,沉积所述钛过渡层采用的钛靶的纯度优选为99.995%,所述钛靶的直径优选为75mm。在本发明中,沉积所述钛过渡层的条件优选为:氩气气体流量优选为39~41sccm,更优选为40sccm;氩等离子体工作气压优选为(6.0~8.0)×10-1Pa,更优选为(6.5~7.5)×10-1Pa,最优选为(6.8~7.3)×10-1Pa;温度优选为120~160℃,更优选为130~150℃,最优选为135~145℃;时间优选为14~16min,更优选为15min,最优选为18~22min;Ti靶功率优选为220~250W,更优选为225~245W,最优选为230~240W。

当所述沉积的方式为磁控溅射物理气相沉积时,沉积所述铪层采用的铪靶的纯度优选为99.99%,所述铪靶的直径优选为75mm。在本发明中,沉积所述铪层的条件优选为:氩气气体流量优选为39~41sccm,更优选为40sccm;氩等离子体工作气压优选为(6.0~8.0)×10-1Pa,更优选为(6.5~7.5)×10-1Pa,最优选为(6.8~7.3)×10-1Pa;温度优选为120~160℃,更优选为130~150℃,最优选为135~145℃;时间优选为4.5~5.5min,更优选为4.8~5.2min;铪靶功率优选为180~185W,更优选为181~184W,最优选为182~183W。

当所述沉积的方式为磁控溅射物理气相沉积时,沉积所述铂层采用的铂靶的纯度优选为99.999%,所述铂靶的直径优选为75mm。在本发明中,沉积所述铂层的条件优选为:氩气气体流量优选为39~41sccm,更优选为40sccm;氩等离子体工作气压优选为(6.0~8.0)×10-1Pa,更优选为(6.5~7.5)×10-1Pa,最优选为(6.8~7.3)×10-1Pa;温度优选为120~160℃,更优选为130~150℃;时间优选为4.5~5.5min,更优选为5min;铂靶功率优选为180~185W,更优选为182~183W。

在本发明中,上述沉积过程优选在商业磁控溅射设备中进行,所述商业测控溅射设备中优选包括3个独立的可控磁控靶溅射源;并将钛靶、铂靶和铪靶分别安装在所述3个独立的可控磁控靶溅射源中。

本发明还提供了上述技术方案所述的结构涂层或上述技术方案所述的制备方法制备得到的结构涂层在电热元件中的应用。本发明对所述应用的方法没有任何特殊的限定,采用本领域技术人员熟知的方法进行即可。

下面结合实施例对本发明提供的结构涂层及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。

实施例1

将纯度为99.995%、直径为75mm的钛靶,纯度为99.99%、直径为75mm的铂靶和纯度为99.99%、直径为75mm的铪靶分别安装在商业磁控溅射设备上的3个独立可控的磁控溅射源上;

对氮化硅基底表面进行预处理:用偏压-500V的氩等离子体刻蚀氮化硅基底15min;

在预处理后的基底表面沉积一层钛过渡层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,钛靶功率为235W,沉积时间为15min,得到钛过渡层(140nm);

在所述钛过渡层表面沉积铪层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,铪靶功率为185W,沉积时间为5min,得到第一铪层(70nm);

在所述铪层表面沉积铂层:氩气流量为40sccm,氩等离子体工作气压为6.5×10- 1Pa,沉积温度为150℃,铂靶功率为185W,沉积时间为7.5min,得到第一铂层(210nm);

按照沉积第一铪层和第一铂层的条件,在所述第一铂层表面依次沉积第二铪层(70nm)、第二铂层(210nm)、第三铪层(70nm)和第三铂层(210nm),得到所述结构涂层(记为Ti/Hf/Pt/Hf/Pt/Hf/Pt,总厚度为980nm);

图1为所述结构涂层的截面示意图,由图1可知,所述结构涂层包括在基底表面依次设置的钛过渡层、第一铪层、第一铂层、第二铪层、第二铂层、第三铪层和第三铂层;

图2为所述结构涂层的截面SEM图,由图2可知,受限于检测手段,所述结构图层中各层界面依稀可见。

利用高真空热退火炉对涂层样品进行加热,分别加热至500、600、700、800、900和1000℃,并在最高加热温度保温30min,利用3MeV能量He4+离子分析加热前后涂层卢瑟福背散射谱(RBS);测试结果如图3所述,加热至500℃时,各层铪层和铂层峰与钛峰变化不明显;加热至800℃,所曾结构消失表明各层铪层和铂层之间的界面发生扩散,但是钛峰依然未见明显变化;加热至1000℃,结构涂层的图谱与800℃的无明显差别,表明所曾结构抑制了钛向铂层扩散;

在RTS-9双电测四探针测试仪上,采用四探针测试法来测试涂层材料的电阻率;电阻率数据为3次试验平均值,测试结果如图4所示,由图4可知从室温升至500℃,电阻率从6μΩ·cm缓慢增大至8μΩ·cm;进一步增加热处理温度,其电阻率在700℃升至最高值约54μΩ·cm,进一步增加热处理温度,其电阻率开始下降至31μΩ·cm。

对比例1

将纯度为99.995%、直径为75mm的钛靶,纯度为99.99%、直径为75mm的铂靶和纯度为99.99%、直径为75mm的铪靶分别安装在商业磁控溅射设备上的3个独立可控的磁控溅射源上;

对氮化硅基底表面进行预处理:用偏压-500V的氩等离子体刻蚀氮化硅基底15min;

在预处理后的基底表面沉积一层钛过渡层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,钛靶功率为235W,沉积时间为30min,得到钛过渡层(280nm);

在所述钛过渡层表面沉积铂层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,铂靶功率为185W,沉积时间为20min,得到铂层(600nm),得到结构涂层(记为Ti/Pt);

图5为所述结构涂层的截面示意图,由图5可知,所述结构涂层包括在基底表面依次设置的钛过渡层和铂层;

图6为所述结构涂层的截面SEM图,由图6可知,所述结构涂层中的各层界面清晰。

利用高真空热退火炉对涂层样品进行加热,分别加热至500、600、700、800、900和1000℃,并在最高加热温度保温30min,利用3MeV能量He4+离子分析加热前后涂层卢瑟福背散射谱(RBS);测试结果如图7所述,加热至700℃以上后,铂与钛的背散射峰发生明显变化,出现钛向铂层的扩散;

在RTS-9双电测四探针测试仪上,采用四探针测试法来测试涂层材料的电阻率;电阻率数据为3次试验平均值,测试结果如图4所示,由图4可知,室温下电阻率为20μΩ·cm,加热至500℃电阻率未见明显增加,加热至700℃其电阻率增加至89μΩ·cm,进一步增加热处理温度至800℃,其电阻率升至143μΩcm,继续升温至900℃,电阻率继续增大。

对比例2

将纯度为99.995%、直径为75mm的钛靶,纯度为99.99%、直径为75mm的铂靶和纯度为99.99%、直径为75mm的铪靶分别安装在商业磁控溅射设备上的3个独立可控的磁控溅射源上;

对氮化硅基底表面进行预处理:用偏压-500V的氩等离子体刻蚀氮化硅基底15min去除基底表面的自然氧化层与杂质污染层;

在预处理后的基底表面沉积一层钛过渡层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,钛靶功率为235W,沉积时间为15min,得到钛过渡层(140nm);

在所述钛过渡层表面沉积铪层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,铪靶功率为155W,沉积时间为20min,得到铪层(200nm);

在所述铪层表面沉积铂层:氩气流量为40sccm,氩等离子体工作气压为6.5×10- 1Pa,沉积温度为150℃,铂靶功率为185W,沉积时间为10min,得到铂层(280nm),进而得到结构涂层(记为Ti/Hf/Pt,总厚度为620nm);

图8为所述结构涂层的截面示意图,由图8可知,所述结构涂层包括在基底表面依次设置的钛过渡层、铪层和铂层;

图9为所述结构涂层的截面SEM图,由图9可知,所述结构涂层中的各层界面清晰。

利用高真空热退火炉对涂层样品进行加热,分别加热至500、600、700、800、900和1000℃,并在最高加热温度保温30min,利用3MeV能量He4+离子分析加热前后涂层卢瑟福背散射谱(RBS);测试结果如图10所述,加热至700℃以上后,铪/铂与钛的背散射峰发生明显变化,出现钛向Hf/Pt层的扩散;

在RTS-9双电测四探针测试仪上,采用四探针测试法来测试涂层材料的电阻率;电阻率数据为3次试验平均值,测试结果如图4所示,由图4可知,从室温升至500℃,电阻率从15μΩ·cm缓慢增大至17μΩ·cm;加热至700℃其电阻率增加至130μΩ·cm,进一步升温,其电阻率下降至90μΩ·cm,并基本保持恒定。

对比例3

将纯度为99.995%、直径为75mm的钛靶,纯度为99.99%、直径为75mm的铂靶和纯度为99.99%、直径为75mm的铪靶分别安装在商业磁控溅射设备上的3个独立可控的磁控溅射源上;

对氮化硅基底表面进行预处理:用偏压-500V的氩等离子体刻蚀氮化硅基底15min;

在预处理后的基底表面沉积一层钛过渡层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,钛靶功率为235W,沉积时间为15min,得到钛过渡层(140nm);

在所述钛过渡层表面沉积铪铂复合层:氩气流量为40sccm,氩等离子体工作气压为6.5×10-1Pa,沉积温度为150℃,沉积时间为15min,铪靶功率为185W,铂靶功率为50W,得到铪铂复合层(650nm)进而得到结构涂层(记为Ti/Hf-Pt,总厚度为790m);

图11为所述结构涂层的截面示意图,由图11可知,所述结构涂层包括在基底表面依次设置的钛过渡层和铪铂复合层;

图12为所述结构涂层的截面SEM图,由图12可知,所述结构涂层中的各层界面清晰。

利用高真空热退火炉对涂层样品进行加热,分别加热至500、600、700、800、900和1000℃,并在最高加热温度保温30min,利用3MeV能量He4+离子分析加热前后涂层卢瑟福背散射谱(RBS);测试结果如图13所述,加热至800℃以上后,铪-铂与钛的背散射峰发生明显变化,出现钛向Hf-Pt层的扩散;

在RTS-9双电测四探针测试仪上,采用四探针测试法来测试涂层材料的电阻率;电阻率数据为3次试验平均值,测试结果如图4所示,由图4可知,从室温升至500℃,电阻率从26μΩ·cm缓慢增大至30μΩ·cm;加热至800℃其电阻率增加至138μΩ·cm,进一步升温,其电阻率下降至84μΩ·cm,并基本保持恒定。

由此可见,本发明所述的结构涂层具有更高的热稳定性。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:反射部件及蒸镀装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!