成膜装置和成膜方法

文档序号:1516960 发布日期:2020-02-11 浏览:5次 >En<

阅读说明:本技术 成膜装置和成膜方法 (Film forming apparatus and film forming method ) 是由 户岛宏至 岩下浩之 平泽达郎 于 2019-07-22 设计创作,主要内容包括:本发明的课题在于提供一种扩大了加工余量而且难以在放电空间发生与反应气体的反应的使用了反应性溅射的成膜装置和成膜方法。其解决手段一种成膜装置,其包括:处理腔室、释放溅射颗粒的溅射机构、屏蔽释放溅射颗粒的放电空间的溅射颗粒屏蔽部件、设置在处理腔室内的反应室、在反应室内支承基片的基片支承部、使基片移动的移动机构、设置于溅射颗粒屏蔽部件的具有小于基片的面积且使溅射颗粒朝向基片而通过的溅射颗粒通过孔、和向反应室内导入反应气体的反应气体导入部,该成膜装置一边使基片移动,一边使通过了溅射颗粒通过孔的溅射颗粒与导入到反应室的反应气体进行反应,在基片上形成反应性溅射膜。(The invention provides a film forming apparatus and a film forming method using reactive sputtering, which have a large machining allowance and are difficult to react with a reaction gas in a discharge space. The solution is a film forming apparatus comprising: the film forming apparatus includes a processing chamber, a sputtering mechanism for discharging sputtering particles, a sputtering particle shielding member for shielding a discharge space for discharging the sputtering particles, a reaction chamber provided in the processing chamber, a substrate supporting portion for supporting a substrate in the reaction chamber, a moving mechanism for moving the substrate, a sputtering particle passage hole provided in the sputtering particle shielding member and having an area smaller than that of the substrate and through which the sputtering particles pass toward the substrate, and a reaction gas introducing portion for introducing a reaction gas into the reaction chamber.)

成膜装置和成膜方法

技术领域

本发明涉及成膜装置和成膜方法。

背景技术

在半导体器件这样的电子器件的制造中,要进行在基片上形成膜的成膜处理。

作为成膜处理,已知有使从靶材释放的溅射颗粒与氧、氮等的反应性气体发生反应,而在基片上形成氧化膜、氮化膜等化合物薄膜的反应性溅射(例如专利文献1、2)。

现有技术文献

专利文献

专利文献1:日本特开平6-41733号公报

专利文献2:日本特开2005-42200号公报

发明内容

发明所要解决的技术问题

本发明提供一种扩大了加工余量而且难以在放电空间中发生与反应气体的反应的使用了反应性溅射的成膜装置和成膜方法。

用于解决技术问题的技术方案

本发明的一个实施方式所涉及的成膜装置是一种利用反应性溅射形成膜的成膜装置,其包括:

处理腔室,在其中对基片进行成膜处理;

溅射机构,其在上述处理腔室内使溅射颗粒从靶材释放;

溅射颗粒屏蔽部件,其屏蔽由上述溅射机构释放出来的溅射颗粒能够释放到的放电空间;

反应室,其与上述处理腔室内的上述放电空间独立地设置;

基片支承部,其在上述反应室内支承基片;

移动机构,其使被上述基片支承部支承的基片移动;

溅射颗粒通过孔,其被设置于上述溅射颗粒屏蔽部件,具有小于上述基片的面积,使上述溅射颗粒朝向上述反应室的基片的方向通过;和

反应气体导入部,其向上述反应室内导入反应气体,

该成膜装置一边利用上述基片移动机构移动上述基片,一边使由上述溅射机构释放到上述放电空间且通过上述溅射颗粒通过孔而被射出至上述反应室的溅射颗粒与被导入到上述反应室的反应气体发生反应,将由该反应生成的反应性溅射膜形成在上述基片上。

发明效果

根据本发明,能够提供扩大了加工余量而且难以在放电空间发生与反应气体的反应的使用了反应性溅射的成膜装置和成膜方法。

附图说明

图1是表示第一实施方式所涉及的成膜装置的纵剖面图。

图2是表示图1的成膜装置的溅射颗粒通过孔与基片的关系的图。

图3是用于说明利用第一实施方式形成膜的方式的示意图。

图4是表示第二实施方式所涉及的成膜装置的纵剖面图。

图5是表示图4的成膜装置的溅射颗粒通过孔与基片的关系的图。

符号说明

1:成膜装置

10:处理腔室

10a:腔室主体

10b:盖体

12:基片支承部

14,14′:基片移动机构

16:靶材支架

18:电源

20:溅射颗粒屏蔽部件

22:溅射气体导入部

24:反应气体导入部

26:排气机构

28:靶材

36:溅射颗粒屏蔽板

37:溅射颗粒通过孔

38:遮挡部件

S1:放电空间

S2:反应室

S3:反应空间

W:基片

具体实施方式

下面,参照附图对实施方式具体地进行说明。

<第一实施方式>

首先,对第一实施方式进行说明。

图1是表示第一实施方式所涉及的成膜装置的纵剖面图。

本实施方式的成膜装置1是利用反应性溅射在基片W上形成膜的装置。成膜装置1具有处理腔室10、基片支承部12、基片移动机构14、靶材支架16、电源18、溅射颗粒屏蔽部件20、溅射气体导入部22、反应气体导入部24和排气装置26。作为基片W,可以举出例如半导体晶片,但不限于此。

处理腔室10具有上部有开口的腔室主体10a和以盖住腔室主体10a的上部开口的方式设置的盖体10b。盖体10b的剖面形状呈梯形形状。

处理腔室10的底部形成有排气口25,上述排气装置26与该排气口25相连接。排气装置26包括压力控制阀和真空泵,利用排气装置26,能够将处理腔室10内真空排气至规定的真空度。

处理腔室10的侧壁形成有为了向相邻的搬送室(未图示)搬入搬出基片W的搬入搬出口29。搬入搬出口29通过闸阀30进行开合。

基片支承部12设置在处理腔室10的腔室主体10a内,以水平地支承基片W。基片支承部12能够利用基片移动机构14在水平方向上以直线移动。因此,被基片支承部12支承的基片W能够通过基片移动机构14在水平面内直线移动。基片移动机构14具有多关节臂部31和驱动部32,利用驱动部32驱动多关节臂部31,能够使基片支承部12在水平方向移动。

溅射气体导入部22设置在处理腔室10的顶部。从溅射气体导入部22向处理腔室10内导入作为溅射气体的Ar气、Kr气等不活泼气体。

靶材支架16是保持靶材28的部件,由导电性材料形成,经由绝缘性的部件,在处理腔室10的盖体10b的倾斜面,以相对于基片W倾斜的方式安装。靶材28由包含要进行成膜的膜的构成元素的材料构成。例如,要进行成膜的膜为TiN膜时,由Ti构成。

靶材支架16与电源18电连接。在靶材28为导电性材料时,电源18可以是直流电源,靶材28为介电材料时,电源18可以是高频电源。电源18为高频电源时,电源18经由匹配器与靶材支架16相连接。通过对靶材支架16施加电压,在靶材28的周围从溅射气体导入部22导入的作为溅射气体的不活泼气体发生解离。之后,解离的气体中的离子碰撞靶材28,从靶材28作为其构成材料的颗粒的溅射颗粒向斜下方释放。

需要说明的是,靶材支架16、电源18和溅射气体导入部22构成使溅射颗粒从靶材28释放的溅射机构。

反应气体导入部24设置在处理腔室10的底部。反应气体导入部24将例如O2气、N2气等反应气体导入至处理腔室10内。反应气体与从靶材28释放出来的溅射颗粒发生反应,在基片支承部12上使规定的化合物膜形成在基片W的表面。例如,靶材38为Ti、反应气体为N2气时,形成TiN膜。

溅射颗粒屏蔽部件20设置在处理腔室10内,具有屏蔽从靶材28释放出来的溅射颗粒的功能,溅射颗粒屏蔽部件20具有溅射颗粒屏蔽板36、遮挡部件38和溅射颗粒通过孔37。

溅射颗粒屏蔽板36呈大致板状,在基片支承部12的正上方水平地设置,形成有溅射颗粒通过孔37。溅射颗粒通过孔37在板厚方向上贯穿溅射颗粒屏蔽板36。遮挡部件38设置在溅射颗粒屏蔽板36的上方。而且,通过溅射颗粒屏蔽板36和遮挡部件38,形成被屏蔽的空间,该空间成为从靶材28释放溅射颗粒的放电空间S1。溅射颗粒屏蔽板36与遮挡部件38之间形成有1~2mm左右的间隙,成为迷宫式结构。

处理腔室10内的配置基片W且反应气体与溅射颗粒发生反应的区域是不同于放电空间S1的反应室S2。而且,溅射颗粒通过孔37使放电空间S1的溅射颗粒朝向反应室S2的基片W通过。放电空间S1与反应室S2能够通过调整作为溅射气体的不活泼气体和反应气体的流量等来独立地控制压力。

需要说明的是,上述溅射气体导入部22向放电空间S1供给溅射气体,反应气体导入部24向反应室S2供给反应气体。

被屏蔽的放电空间S1中,溅射颗粒从靶材28向斜下方释放,通过溅射颗粒通过孔37,倾斜地照射在存在于反应室S2的基片W。

溅射颗粒通过孔37具有小于基片W的面积,反应气体难以绕到放电空间S1。溅射颗粒通过孔37的面积优选为基片W的面积的90%以下,更优选为10~90%,进一步更优选为10~50%。如本例这样,基片W直线前进时,溅射颗粒通过孔37的形状如图2所示,能够制成具有基片W的直径(宽度)以上的长度的长方形。

另一方面,在反应室S2中,在溅射颗粒通过孔37与基片W之间,从放电空间S1落下溅射颗粒的同时供给反应气体,成为溅射颗粒与反应气体发生反应的反应空间S3。通过在该反应空间S3的反应,生成要成膜的化合物,在基片W上形成含有该化合物的反应性溅射膜。

此时,溅射颗粒屏蔽板36与基片W之间的距离只要设为能够向反应空间S3以充分大的电导供给反应气体的距离即可。由此,能够在反应空间S3中使溅射颗粒与反应气体的反应性良好。从这样的观点出发,溅射颗粒屏蔽板36与基片W之间的距离优选为2mm以上,更优选为4mm以上。

另外,溅射颗粒屏蔽板36的溅射颗粒通过孔37以外的部分具有将反应气体进行整流的整流板的功能,这样能够使反应气体以层流状态稳定地向基片W上供给。

成膜装置1还具有控制部40。控制部40包括电脑,具有控制成膜装置1的各构成部例如电源18、溅射气体的导入、反应气体的导入、排气装置26、驱动机构32等的包含CPU的主控制部。另外,其他还具有键盘、鼠标等的输入装置、输出装置、显示装置、存储装置。控制部40的主控制部通过在存储装置安装储存有处理菜单的存储介质,根据从存储介质读取的处理菜单使成膜装置1实施规定的操作。

接着,对于上述构成的成膜装置的成膜操作进行说明。

首先,打开闸阀30,从与处理腔室10相邻的搬送室(未图示)利用搬送装置(未图示)将基片W搬入到处理腔室10内的反应室S2,载置于基片支承部12。

接着,从溅射气体导入部22向处理腔室10内的放电空间S1导入作为溅射气体的Ar气、Kr气等不活泼气体,并且将处理腔室10内调压至规定压力。

接着,一边利用基片移动机构14使载置于基片支承部12的基片W在水平面内以直线移动,一边从电源18向靶材支架16施加电压,同时,从反应气体导入部24向处理腔室10内的反应室S2导入反应气体。

此时,通过将电压施加到靶材支架16上而形成的电磁场,使从溅射气体导入部22导入的溅射气体解离。之后,解离的气体中的离子碰撞靶材28,靶材28的构成材料的溅射颗粒从靶材28向斜下方释放。如图3所示,从靶材28释放出来的溅射颗粒P通过溅射颗粒通过孔37射出到反应室S2,朝向基片W进行照射。另一方面,从反应气体导入部24导入到处理腔室10内的反应气体G在处理腔室10内扩散,到达溅射颗粒P从溅射颗粒通过孔37向基片10落下的反应空间S3时,与溅射颗粒P发生反应而生成要成膜的化合物,在基片W上形成由该化合物构成的反应性溅射膜F。

现有的反应性溅射装置中,大多情况下是向溅射颗粒被释放的放电空间中供给反应气体。该情况下,放电空间一般被遮挡件所覆盖,遮挡件上形成有反应气体导入用的隙缝。然而,从抑制溅射颗粒的漏出的观点出发,减小该隙缝时,反应气体难以进入放电空间,难以进行控制,因此加工余量有变小的倾向。相反,如果要使反应气体充分进入,则反应气体被过剩地供给,会有连靶材表面都发生反应,使成膜率降低,或者产生废物(颗粒)等的问题(Poisson Mode,泊松模型)。

另外,现有的反应性溅射装置中,在基片周围的遮挡部分(溅射颗粒屏蔽部件20的内部等)也会沉积反应性溅射膜。一般来说,反应性溅射膜中的膜应力较大,容易剥离,在基片周围的遮挡部分也沉积反应性溅射膜时,会有产生废物(颗粒)等的问题,缩短维修周期。

专利文献1、2的技术中,利用压差板、分隔板,抑制反应性气体进入放电空间,反应气体变得难以到达靶材。然而,形成于压差板、分隔板的溅射颗粒通过孔被形成得比基片宽大,并不一定能够有效地抑制反应气体侵入放电空间。

与此相对地,本实施方式中,一边使基片W以直线移动,一边使来自放电空间S1的溅射颗粒通过面积小于基片W的溅射颗粒通过孔37,使得在放电空间S1外的反应空间S3与反应气体进行反应。

由此,不需要将反应气体以小的电导供给至放电空间,而能够将反应气体以充分大的电导供给至基片W,因此,能够扩大加工余量。另外,由于使溅射颗粒通过孔37成为小于基片的面积,并使基片W移动,所以反应气体难以流入放电空间,能够抑制靶材与反应气体的反应。此时,溅射颗粒通过孔37的面积优选为基片W的面积的90%以下,更优选为10~90%,进一步更优选为10~50%。另外,由于对从放电空间S1通过溅射颗粒通过孔37落下到反应空间S3的溅射颗粒供给反应气体,所以能够使反应气体更加难以侵入放电空间,能够更加可靠地防止靶材与反应气体的反应。

而且,通过这样将放电空间与反应空间分开,能够防止溅射颗粒与反应气体在基片周围的遮挡部分(溅射颗粒屏蔽部件20等)发生反应而使反应性溅射膜沉积。因此,抑制了在基片周围的遮挡部分产生废物(颗粒),也不会产生维修周期缩短的问题。

而且,如本实施方式这样,在处理腔室10内另外划分出用溅射颗粒屏蔽部件20屏蔽的放电空间S1时,通过改变该放电空间S1的容积,能够得到以下这样的效果。即,在没有划分出放电空间S1时,由于处理腔室10的形状和容积是固定的,所以有时不能根据膜种类、膜厚等的条件而以最佳的条件释放溅射颗粒。该情况下,难以变更处理腔室10的形状、容积。与此相对地,通过变更处理腔室10内的放电空间S1的容积,能够容易地变更靶材周围压力、溅射气体的气体浓度等。因此,即使不进行处理腔室的形状变更,也能容易地以最佳的条件释放溅射颗粒。

而且,通过使溅射颗粒屏蔽板36与基片W之间的距离成为能够向反应空间S3以充分大的电导供给反应气体的距离,能够在反应空间S3使溅射颗粒与反应气体的反应性变得良好。从这样的观点出发,溅射颗粒屏蔽板36与基片W之间的距离优选为2mm以上,更优选为4mm以上。

而且,溅射颗粒屏蔽板36的溅射颗粒通过孔37以外的部分作为用于将反应气体引导至反应空间S3的整流板发挥功能,因此能够将反应气体以层流状态稳定地向基片W上供给。

而且,本实施方式中,通过使溅射颗粒通过孔37的形状为具有基片W直径(宽度)以上的长度的长方形,一边使基片W以直线移动,一边从靶材28向基片W倾斜地照射溅射颗粒,并使其与反应气体进行反应。因此,通过使溅射颗粒的角度基本固定,能够进行指向性高的斜向成膜。

<第二实施方式>

接着,对于第二实施方式进行说明。

图4是表示第二实施方式所涉及的成膜装置的纵剖面图。

本实施方式的成膜装置1′中,作为基片移动机构14的替代而具有基片移动机构14′,除此以外,与图1所示成膜装置1同样地构成。

基片移动机构14′具有旋转驱动部41和旋转轴42,旋转轴42固定于基片支承部12的中心。因此,基片支承部12利用旋转驱动部41并经由旋转轴42而旋转,伴随于此,在其上的基片W在水平面内旋转。

本实施方式中,一边利用这样的基片移动机构14′使基片W旋转移动,一边与第一实施方式同样地进行反应性溅射。

在本实施方式中,形成于溅射颗粒屏蔽板36的溅射颗粒通过孔37的形状如图5所示,优选具有在基片W的外周部宽而在中心部窄的形状。由此,能够在基片的外周部和中心部更加均匀地供给溅射颗粒。

在本实施方式中,也与第一实施方式同样地,能够扩大加工余量,并且在放电空间不易与反应气体发生反应。另外,也能够同样地发挥第一实施方式的其他效果。

<其他应用>

上面,对于实施方式进行了说明,但此次公开的实施方式在其全部方面仅为例示,并不应该认为是限制性的内容。上述实施方式中,可以在不脱离后面的权利要求的范围和其主旨的范围内,进行各种方式的省略、置换、变更。

例如,上述实施方式的释放溅射颗粒的方法仅为例示,也可以通过其他方法释放溅射颗粒。另外,上述实施方式中,例示了将靶材倾斜配置来进行斜向成膜的例子,但不限于此,也可以将靶材配置在中央。而且,上述实施方式中,以直线前进的移动和旋转为例表示了基片的水平面内的移动,但也可以是揺动等其他移动。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种DLC/CNx/MeN/CNx纳米多层膜及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!