一种晶圆表面吸收式ir镀膜工艺

文档序号:1917097 发布日期:2021-12-03 浏览:40次 >En<

阅读说明:本技术 一种晶圆表面吸收式ir镀膜工艺 (Wafer surface absorption type IR coating process ) 是由 李涛 尚海 刘耀菊 王刚 于 2021-09-09 设计创作,主要内容包括:本发明提出了一种晶圆表面吸收式IR镀膜工艺,通过本工艺得到的产品使得可见光区(400nm~700nm)呈高透,近红外区(780nm~1100nm)呈高度截止状态,在不同角度光入射时光透过偏移量小,有助于改进角度偏移难题,解决了传统镀膜制程产品容易出现的图像失真、识别速度慢等问题,比起传统镀膜工艺只能保证光在0°-20°入射时光干扰小的窄角来讲,本工艺路线具有更优越的实用价值;晶圆表面经过电路及光路层结构加工后表面存在高度差,对旋涂要求较高,本发明工艺可较好的去除凹槽中的油墨残留,且光路层表面油墨分布较均匀,膜厚散差控制在0.2μm左右。(The invention provides a wafer surface absorption type IR (infrared) coating process, a product obtained by the process ensures that a visible light area (400 nm-700 nm) is high-transmittance, a near infrared area (780 nm-1100 nm) is in a high-cutoff state, the light transmittance offset is small when light is incident at different angles, the problem of angle offset is improved, the problems of image distortion, low recognition speed and the like easily caused by the traditional coating process product are solved, and compared with the traditional coating process, the process route has more excellent practical value when only ensuring that the light is in a narrow angle with small light interference when the light is incident at 0-20 degrees; the surface of the wafer is processed by the circuit and light path layer structure, the height difference exists on the surface, the requirement on spin coating is higher, the process can better remove the ink residue in the groove, the ink distribution on the surface of the light path layer is more uniform, and the film thickness dispersion difference is controlled to be about 0.2 mu m.)

一种晶圆表面吸收式IR镀膜工艺

技术领域

本发明涉及一种光学识别领域,尤其涉及一种晶圆表面吸收式IR镀膜工艺。

背景技术

原有晶圆表面IR(Infrared reflective)镀膜工艺步骤为:涂胶-光刻-镀膜-显影-脱胶,以此工艺路线进行生产形成的IR-CUT(Infaraed Ray-Cut红外截止)薄膜,简称IRC层,当光线入射角度由0°逐渐增大时,太阳光、灯光、漫反射的环境光等都会成为干扰源,入射角度越大,透过产品膜层的光线偏移越大,入射角超过20度会存在严重的光干扰,这些干扰源的光的所在波段非常宽泛,有些超过了1100nm的非可见光区域,此种高强度的干扰会导致识别速度慢、探测范围窄、准确度不高等问题,影响图像识别质量。

即原有晶圆表面IR镀膜工艺主要存在两个问题:(1)干扰光影响图像识别;(2)入射光透过路线偏移角较大。

发明内容

为解决上述技术问题,本发明设计了一种晶圆表面吸收式IR镀膜工艺。

本发明采用如下技术方案:

一种晶圆表面吸收式IR镀膜工艺,其步骤为:

s1、清洗:将晶圆表面进行清洗,去除晶圆表面微粒和化学残留,并将清洗后晶圆甩干;

s2、旋涂油墨:通过旋涂机的点胶模块首先在晶圆中心滴入2.5ml油墨,此阶段通过特氟龙制针头以3.0ml/min的速度持续注入涓流态的油墨,用800rpm的初始低速旋转晶圆,维持3s,后用785rad/s2角加速度提速,提速时间为0.4s,待转速提至3800rpm时,维持此转速旋转5s,而后以104.67rad/s2角加速度降速,降速时间3.8s,累计旋涂时间共需12.2s,形成一层油墨膜层;

s3、烘烤:根据油墨的特性,在涂布完成后进行145℃,80min的烘烤,高温烘烤时,保持烘箱环境排除氧化氛围;

s4、P型保护胶涂布:在烘烤后晶圆的油墨膜层表面涂覆P型保护胶,沉积1μm厚度的P型保护胶膜层;

s5、MP保护胶涂布:通过在晶圆上方1cm的针头正面涂MP保护胶,涂胶完成后,底座真空吸附晶圆带动起做同心转动,沉积形成10μmMP保护胶膜层;

s6、光刻显影冲洗:安置掩模板在晶圆上方,进行光刻显影,其中曝光能量200mJ/cm2,显影液浸泡300s,之后进行冲洗,清洗残余液体采用冲洗30s和SRD甩干;

s7、干刻去胶:通过干法刻蚀采用产生带电粒子以及具有高度化学活性的中性原子、分子及自由基的电浆,将未有MP保护胶的非阻光部分的P型保护胶和油墨膜层刻蚀剖离晶圆表面,再将产品置入85℃的去胶液中,脱胶1h去除MP保护胶膜层;带电粒子包括离子和电子等。

s8、PR胶层涂胶:通过在晶圆上方1cm的针头正面涂PR胶,涂胶完成后,底座真空吸附晶圆带动起做同心转动,沉积形成10μm PR胶层;

s9、PR胶层光刻显影:通过安置与MP保护胶对应的掩模板在晶圆上方,进行光刻显影,其中曝光能量为400mJ/cm2,显影液浸泡480s,之后进行冲洗,清洗残余液体采用冲洗30s和SRD甩干;

s10、蒸发IR镀膜:采用蒸发镀膜的形式进行IR镀膜,形成5.6μm IRC层;

s11、去胶清洗:蒸发镀膜完成后,产品置入加热到85℃的去胶液中去胶2h,剥去PR层,然后用QDR(快排喷淋冲洗槽)清洗后,通过SRD甩干完成整个工艺。

作为优选,步骤s1中,晶圆的表面清洗经过QDR清洗,QDR注水时间为50s,排水时间为8s,次数为2次,清洗时间总长为2min,然后经过SRD甩干,此过程转速采用1200rpm/4min和1600rpm/6min两个步骤进行甩干,总时长为10min。

作为优选,步骤s3中,高温烘烤时,通过冲入氮气或氩气来保持烘箱环境排除氧化氛围。烘烤是为了使油墨沉积层更加牢固,不易出现膜裂,脱膜等问题。

作为优选,步骤s4中,P型保护胶涂布采用喷涂后旋涂的方式,旋涂转速为3000rpm。P型保护胶有两个作用,其一为保护油墨层防止其脱落破损,为其创造良好的功能使用环境,其二为衔接涂布层和IRC层,IRC镀膜层与P型保护胶的结合牢固度较好,可以避免因油墨与IRC层结合力不强导致的膜层分离,空气进入,掺杂等等问题。油墨层与P型保护胶层均为功能性膜层,MP保护胶层为保护功能性膜层。

作为优选,步骤s10中,蒸发IR镀膜包括清洗步骤、SiO2沉积步骤和TiO2沉积步骤,清洗步骤、SiO2沉积步骤和TiO2沉积步骤的离子源参数分别为:

清洗步骤:离子源电压750V,电流750mA,电子枪电压600V,中和器和离子源的氧气75sccm,离子源的氩气0sccm,中和器的氩气8sccm;

SiO2沉积步骤:离子源电压1250V,电流1250mA,电子枪电压800V,中和器和离子源的氧气40sccm,离子源的氩气0sccm,中和器的氩气8sccm;

TiO2沉积步骤:离子源电压1550V,电流1450mA,电子枪电压850V,中和器和离子源的氧气70sccm,离子源的氩气10sccm,中和器的氩气10sccm。

本发明的有益效果是:(1)、本发明提出了一种晶圆表面吸收式IR镀膜工艺,通过本工艺得到的产品使得可见光区(400nm~700nm)呈高透,近红外区(780nm~1100nm)呈高度截止状态,在不同角度光入射时光透过偏移量小,有助于改进角度偏移难题,解决了传统镀膜制程产品容易出现的图像失真、识别速度慢等问题,比起传统镀膜工艺只能保证光在0°-20°入射时光干扰小的窄角来讲,本工艺路线具有更优越的实用价值;(2)、晶圆表面经过电路及光路层结构加工后表面存在高度差,对旋涂要求较高,本发明工艺可较好的去除凹槽中的油墨残留,且光路层表面油墨分布较均匀,膜厚散差控制在0.2μm左右。

附图说明

图1是本发明的一种工艺流程图;

图2是本发明的一种工艺产品结构形成的流程图;

图3是透过本发明和现有IR镀膜产品的光谱对比图;

具体实施方式

下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体描述:

实施例:如附图1和附图2所示,一种晶圆表面吸收式IR镀膜工艺,其步骤为:

s1、清洗:将晶圆表面进行清洗,去除晶圆表面微粒和化学残留,并将清洗后晶圆甩干;

s2、旋涂油墨:通过旋涂机的点胶模块首先在晶圆中心滴入2.5ml油墨,此阶段通过特氟龙制针头以3.0ml/min的速度持续注入涓流态的油墨,用800rpm的初始低速旋转晶圆,维持3s,后用785rad/s2角加速度提速,提速时间为0.4s,待转速提至3800rpm时,维持此转速旋转5s,而后以104.67rad/s2角加速度降速,降速时间3.8s,累计旋涂时间共需12.2s,形成一层油墨膜层;

s3、烘烤:根据油墨的特性,在涂布完成后进行145℃,80min的烘烤,高温烘烤时,保持烘箱环境排除氧化氛围;

s4、P型保护胶涂布:在烘烤后晶圆的油墨膜层表面涂覆P型保护胶,沉积1μm厚度的P型保护胶膜层;

s5、MP保护胶涂布:通过在晶圆上方1cm的针头正面涂MP保护胶,涂胶完成后,底座真空吸附晶圆带动起做同心转动,沉积形成10μmMP保护胶膜层;

s6、光刻显影冲洗:安置掩模板在晶圆上方,进行光刻显影,其中曝光能量200mJ/cm2,显影液浸泡300s,之后进行冲洗,清洗残余液体采用冲洗30s和SRD甩干;

s7、干刻去胶:通过干法刻蚀采用产生带电粒子以及具有高度化学活性的中性原子、分子及自由基的电浆,将未有MP保护胶的非阻光部分的P型保护胶和油墨膜层刻蚀剖离晶圆表面,再将产品置入85℃的去胶液中,脱胶1h去除MP保护胶膜层;带电粒子包括离子和电子等。

s8、PR胶层涂胶:通过在晶圆上方1cm的针头正面涂PR胶,涂胶完成后,底座真空吸附晶圆带动起做同心转动,沉积形成10μm PR胶层;

s9、PR胶层光刻显影:通过安置与MP保护胶对应的掩模板在晶圆上方,进行光刻显影,其中曝光能量为400mJ/cm2,显影液浸泡480s,之后进行冲洗,清洗残余液体采用冲洗30s和SRD甩干;

s10、蒸发IR镀膜:采用蒸发镀膜的形式进行IR镀膜,形成5.6μm IRC层;

s11、去胶清洗:蒸发镀膜完成后,产品置入加热到85℃的去胶液中去胶2h,剥去PR层,然后用QDR(快排喷淋冲洗槽)清洗后,通过SRD甩干完成整个工艺。

步骤s1中,晶圆的表面清洗经过QDR清洗,QDR注水时间为50s,排水时间为8s,次数为2次,清洗时间总长为2min,然后经过SRD甩干,此过程转速采用1200rpm/4min和1600rpm/6min两个步骤进行甩干,总时长为10min。

步骤s3中,高温烘烤时,通过冲入氮气或氩气来保持烘箱环境排除氧化氛围。烘烤是为了使油墨沉积层更加牢固,不易出现膜裂,脱膜等问题。

步骤s4中,P型保护胶涂布采用喷涂后旋涂的方式,旋涂转速为3000rpm。P型保护胶有两个作用,其一为保护油墨层防止其脱落破损,为其创造良好的功能使用环境,其二为衔接涂布层和IRC层,IRC镀膜层与P型保护胶的结合牢固度较好,可以避免因油墨与IRC层结合力不强导致的膜层分离,空气进入,掺杂等等问题。油墨层与P型保护胶层均为功能性膜层,MP保护胶层为保护功能性膜层。

步骤s10中,蒸发IR镀膜包括清洗步骤、SiO2沉积步骤和TiO2沉积步骤,清洗步骤、SiO2沉积步骤和TiO2沉积步骤的离子源参数分别为:

清洗步骤:离子源电压750V,电流750mA,电子枪电压600V,中和器和离子源的氧气75sccm,离子源的氩气0sccm,中和器的氩气8sccm;

SiO2沉积步骤:离子源电压1250V,电流1250mA,电子枪电压800V,中和器和离子源的氧气40sccm,离子源的氩气0sccm,中和器的氩气8sccm;

TiO2沉积步骤:离子源电压1550V,电流1450mA,电子枪电压850V,中和器和离子源的氧气70sccm,离子源的氩气10sccm,中和器的氩气10sccm。

如附图3所示,为透过本发明和现有IR镀膜产品的光谱对比图,图中纵坐标是透过率,横坐标是波长,1为0度角通过现有普通膜层产生的光谱曲线,2为0度角通过现有本发明镀膜后产品的膜层产生的光谱曲线,3为30度角通过现有普通膜层产生的光谱曲线,4为30度角通过现有本发明镀膜后产品的膜层产生的光谱曲线,可见现有普通镀膜,IR半值(透过率T=50%)时,0度-30度的范围中偏移在30nm左右,本发明膜层IR半值(T=50%)时,0度-30度的范围中偏移在1nm左右,有效的减少大角度视野中光干扰。

以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种OLED蒸镀基板传送装置及其使用方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!