一种梯度自润滑复合涂层及其制备方法

文档序号:1811386 发布日期:2021-11-09 浏览:28次 >En<

阅读说明:本技术 一种梯度自润滑复合涂层及其制备方法 (Gradient self-lubricating composite coating and preparation method thereof ) 是由 苏永要 黄伟九 蔡立昕 于 2021-07-28 设计创作,主要内容包括:一种梯度自润滑复合涂层,涂覆于基体材料表面,自润滑复合涂层总厚度为1~3μm,由内向外依次包括附着在基体材料表面的Mo粘结层、MoN承载层、DLC自修复润滑层和非晶态MoS-(2)减摩层,所述DLC自修复润滑层中共掺杂了Mo和Cu。本发明制备的梯度自润滑复合涂层各涂层界面应力小,结合力高,复合涂层具有优异的承载能力和减磨性能,在560MPa的赫兹应力作用下,干摩擦条件下,滑动摩擦因数平均值低至0.145;尤其在柴油介质中,相同载荷作用下,摩擦因数均值降至0.08,且在极短磨损周次内进入稳定磨损阶段,有效缩短磨合期。有效延长了摩擦偶件的使用寿命,提高了柴油机效率和运行稳定性。(A gradient self-lubricating composite coating is coated on the surface of a base material, the total thickness of the self-lubricating composite coating is 1-3 mu m, and the gradient self-lubricating composite coating sequentially comprises a Mo bonding layer, a MoN bearing layer, a DLC self-repairing lubricating layer and amorphous MoS from inside to outside, wherein the Mo bonding layer, the MoN bearing layer, the DLC self-repairing lubricating layer and the amorphous MoS are attached to the surface of the base material 2 And the DLC self-repairing lubricating layer is doped with Mo and Cu in common. The gradient self-lubricating composite coating prepared by the invention has small interface stress of each coating and high binding force, the composite coating has excellent bearing capacity and antifriction performance, and the average value of the sliding friction factor is as low as 0.145 under the action of 560MPa of Hertz stress and under the condition of dry friction; in particular toUnder the action of the same load in a diesel medium, the mean value of the friction factors is reduced to 0.08, and the friction factors enter a stable abrasion stage within a very short abrasion cycle, so that the running-in period is effectively shortened. Effectively prolongs the service life of the friction coupling part and improves the efficiency and the operation stability of the diesel engine.)

一种梯度自润滑复合涂层及其制备方法

技术领域

本发明涉及润滑涂层制备技术领域,具体涉及一种梯度自润滑复合涂层及其制备方法。

背景技术

内燃机工业是我国重要的基础产业,是工程机械、舰船等领域的主导动力设备。目前我国已成为全球内燃机生产和使用大国,尤其是用于工程机械、船舶机械等领域的柴油机。随着世界各国对环境保护的日益重视,排放标准的日益严格,我国柴油机企业要想在国际竞争中占据优势,就必须应用新技术,制造出能耗低、排放少、科技含量高的柴油机。实践表明:在发动机中摩擦引起的能量损失超过发动机总功率的40%,其中活塞、柱塞偶件等引起的摩擦损失占发动机摩擦损失的70%以上。因此,发动机关键零部件的耐磨和润滑性,直接影响到发动机的功率、排放、油耗与寿命。

摩擦与磨损主要发生在材料的表面,提高材料的表面性能是改善其摩擦学行为的关键。使用润滑剂是改善零部件摩擦磨损性能、从而提高发动机功率、降低排放、油耗的有效方式之一,但是多数润滑剂为原油衍品,不可自行降解,对设备和环境会造成污染。为了克服润液态滑剂的缺点,在零部件表面制备石墨烯、DLC(GLC)、MoS2等固体耐磨润滑涂层,可以降低摩擦损失,提高内燃机零部件的使用寿命和服役稳定性。

MoS2被称为“固体润滑之王”,但是单一的MoS2力学性能较差,在较高载荷下会坍塌,从而失效,针对内燃机零部件高温、高压的工况,要求涂层具有低摩擦因数、高承载能力、膜基结合力高、耐磨性能优异等优点。因此,单一晶态MoS2涂层无法同时满足工况需求,迫切需要设计纳米复合涂层。

发明内容

本发明目的在于提供一种梯度复合自润滑涂层。该复合自润滑涂层具有低摩擦因数、高承载能力,涂层中各层之间具有优异结合力。

本发明另一目的是提供上述梯度复合自润滑涂层的制备方法。该方法制备的涂层具有优异的减磨耐磨性能和承载能力,尤其在柴油机中具有更优异的减磨耐磨性能和稳定性。

本发明目的通过如下技术方案实现:

一种梯度复合自润滑涂层,其特征在于:所述复合自润滑涂层涂覆于基体材料表面,涂层总厚度为1~3μm,由内向外依次包括附着在基体材料表面的Mo粘结层、MoN承载层、DLC自修复润滑层和非晶态MoS2减磨层,所述DLC自修复润滑层中掺杂了Mo和Cu。

进一步,上述 Mo粘结层厚度为50~100nm,MoN承载层厚度为400~1300nm,DLC自修复润滑层厚度为400~1300nm,非晶态MoS2减磨层厚度为150~300nm。

本发明中的自润滑复合涂层从结构上采用柱状晶结构的MoN承载层-非晶体包裹晶粒的Cu、Mo共掺杂的DLC涂层-非晶态结构的MoS2减磨层结构梯度变化,从而形成高承载、高润滑、高减磨性能的复合涂层,从成分上依次采用Mo、MoN、Cu、Mo共掺杂的DLC和MoS2形成Mo成分的梯度变化,减小了各涂层界面的应力,增强各涂层之间的结合力。

上述梯度复合自润滑涂层的制备方法,其特征在于:包括清洗基体材料、在基材表面沉积Mo粘结层,在Ar和N2环境下沉积MoN承载层,然后在Ar和C2H2的混合气体环境下沉积Cu、Mo共掺杂的DLC自修复润滑层,然后在Ar环境下沉积MoS2减磨层。

进一步,上述沉积非晶态MoS2减磨层是在Ar氛围下,调控真空室Ar压强为0.3~0.8Pa,调节直流溅射电源的电流为0.4~0.8A,溅射MoS2靶,直流沉积偏压控制在50~200V,制备金属MoS2减摩层,沉积时间为10~30min。

在沉积MoS2减磨层过程中我们发现,非晶态结构的MoS2较晶态结构的MoS2减磨性能更优异,但是想要形成非晶态MoS2薄膜较困难。

本发明在最外面沉积厚度极薄的MoS2,且非晶态DLC发挥模板效应,对其表面的MoS2产生诱导,两个因素协同使得MoS2生长形成非晶态结构。

在开发过程中我们发现,非晶态的MoS2可有效降低摩擦因数,但是MoS2非晶态结构较晶态结构脆性大,且MoS2减磨层和摩擦副之间在高温高压下、高速摩擦会出现粘合现象,增大润滑阻力,导致MoS2的减磨作用无法有效发挥。

MoS2本身呈负电性, MoS2边缘存在悬挂键。在摩擦过程中,非晶态结构的MoS2磨损后,形成细微的硬质颗粒,由于Cu、Mo的存在、以及非晶结构的DLC表面在摩擦过程中形成相对疏松的薄膜层、 MoS2硬质颗粒更容易、均匀地嵌入DLC薄膜层,促进MoS2硬质颗粒在摩擦过程中与DLC中的Cu结合成键,形成新的自润滑层,Cu作为第二相引入MoS2中,增加了MoS2的塑性,克服了非晶态结构脆性大的缺点,且在磨损过程中,Cu氧化生成Cu2O,降低了MoS2和摩擦副之间的粘合,维持MoS2的持续减磨作用。MoS2硬质颗粒的融入,将表面的滑动摩擦转化成滚动摩擦,减弱了磨粒磨损,从而提高了DLC薄膜的使用寿命,而最终润滑路径依次为MoS2减磨层减磨、由MoS2-Cu、MoS2、C和Cu2O组成润滑薄膜层自润滑、Cu、Mo共掺杂的DLC层润滑的梯度磨损路径。

此外,在DLC中共掺杂Cu和Mo,Cu作为催化剂催化柴油中的C-H键断裂,从而分离出C,形成具有润滑性能的疏松碳膜,也进一步促进了MoS2硬质颗粒的融入,其次,Mo与柴油中的硫反应也生成了具有润滑作用的MoS2,增强了DLC薄膜的润滑能力,且Cu和Mo的共掺杂诱导了DLC中sp3键向sp2键转化,增加了DLC的石墨化程度,从而降低梯度自润滑复合涂层在柴油介质中的摩擦因数。

进一步,上述Cu、Mo共掺杂的DLC自修复润滑层沉积过程中, Ar和C2H2的的气体流量比为1~7:1,真空室压强为1~5Pa,设置Mo和Cu两个靶材,开启射频溅射电源,溅射功率为100~400W,调节沉积脉冲偏压为400~1000V,制备Cu、Mo共掺杂的DLC自修复润滑层,沉积时间为30~60min。

进一步,上述沉积MoN承载层具体是在直流沉积偏压为50~200V下,调节Ar与N2的气流量比为1~4:1,真空室气压维持在0.3~0.8Pa下沉积MoN层,沉积时间为30~60min。

进一步,上述沉积Mo粘结层是调节真空室气体压强为0.3~0.8Pa,调节直流溅射电源为0.4~0.8A,直流沉积偏压为50~200V,制备金属Mo粘结层,沉积时间为10~30min。

进一步,上述清洗基体材料具体是依次采用无水乙醇、丙酮和软化水分别进行超声清洗,清洗完成后烘干,放入镀膜设备的真空室内,采用Ar洗气后进行等离子体刻蚀清洗。

进一步,上述Ar洗气是将真空室的气压调节至5.0×10-4~3.0×10-3Pa,通入Ar进行洗气,然后Ar压强调节至1.0~7.0Pa,施加脉冲偏压800~1300V,持续5~40min,对基体材料进行等离子体刻蚀清洗。

最具体的,一种梯度自润滑复合涂层的制备方法,其特征在于,按如下步骤进行:

(1)基材预处理

依次采用无水乙醇、丙酮和软化水分别对基体材料进行超声清洗,清洗完成后烘干,放入镀膜设备的真空室内,将真空室的气压调节至5.0×10-4~3.0×10-3Pa,通入Ar进行洗气,然后将Ar压强调节至1.0~7.0Pa,施加脉冲偏压800~1300V,持续5~40min,对基体材料进行等离子体刻蚀清洗,之后调节真空室气压压强为0.2~0.8Pa,开启直流射频电源,对Mo、Cu和MoS2靶材进行预溅射清洗,预溅射电流为0.05~0.2A,清洗时间为5~10min;

(2)沉积Mo粘结层

调节真空室气体压强为0.3~0.8Pa,调节直流溅射电源为0.4~0.8A,直流沉积偏压为50~200V,制备金属Mo粘结层,沉积时间为10~30min;

(3)沉积MoN承载层

维持真空室气压不变,调节Ar与N2的气流量比为1~4:1,在直流沉积偏压为50~200V下,沉积MoN层,沉积时间为30~60min;

(4)沉积Cu、Mo共掺杂的DLC自修复润滑层

通入Ar和C2H2的的气体流量比为1~7:1的混合气体,调节真空室压强为1~5Pa,设置Mo和Cu两个靶材,开启射频溅射电源,溅射功率为100~400W,调节沉积偏压为400~1000V,制备Cu、Mo共掺杂的DLC自修复润滑层,沉积时间为30~60min;

(5)沉积非晶态MoS2减磨层

停止通入C2H2,在Ar氛围下,调控真空室Ar压强为0.3~0.8Pa,调节直流溅射电源的电流为0.4~0.8A,溅射MoS2靶,直流沉积偏压控制在50~200V,制备金属MoS2减摩层,沉积时间为10~30min。

本发明具有如下技术效果:

本发明制备的梯度自润滑复合涂层各涂层界面应力小,结合力高,梯度自润滑复合涂层具有优异的承载能力和减磨性能,在560MPa的赫兹应力作用下,干摩擦条件下,滑动摩擦因数平均值低至0.145;尤其在柴油介质中,相同载荷作用下,摩擦因数均值降至0.08,且在极短磨损周次内进入稳定磨损阶段,有效缩短磨合期。有效延长了摩擦偶件的使用寿命,提高了柴油机效率和运行稳定性。

附图说明

图1:本发明制备的梯度自润滑复合涂层的X射线衍射图。

图2:本发明制备的梯度自润滑复合涂层的断面扫描电镜图。

图3:本发明制备的梯度自润滑复合涂层的摩擦因数曲线图。

具体实施方式

下面通过实施例对本发明进行具体的描述,有必要在此指出的是,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。

实施例1

一种梯度自润滑复合涂层的制备方法,其特征在于,按如下步骤进行:

(1)基材预处理

依次采用无水乙醇、丙酮和软化水分别对硅片基材进行超声清洗,清洗完成后烘干,放入镀膜设备的真空室内,将真空室的气压调节至5.0×10-4Pa,通入Ar进行洗气,然后将Ar压强调节至7.0Pa,施加脉冲偏压800V,持续40min,对基体材料进行等离子体刻蚀清洗,之后调节真空室气压压强为0.8Pa,开启直流射频电源,对Mo、Cu和MoS2靶材进行预溅射清洗,预溅射电流为0.2A,清洗时间为5min;

(2)沉积Mo粘结层

调节真空室气体压强为0.3Pa,调节直流溅射电源为0.4A,直流沉积偏压为200V,制备金属Mo粘结层,沉积时间为10min;

(3)沉积MoN承载层

维持真空室气压不变,调节Ar与N2的气流量比为4:1,在直流沉积偏压为50V下,沉积MoN层,沉积时间为50min;

(4)沉积Cu、Mo共掺杂的DLC自修复润滑层

通入Ar和C2H2的气体流量比为7:1的混合气体,调节真空室压强为5Pa,设置Mo和Cu两个靶材,开启射频溅射电源,溅射功率为400W,调节沉积偏压为1000V,制备Cu、Mo共掺杂的DLC自修复润滑层,沉积时间为60min;

(5)沉积非晶态MoS2减磨层

停止通入C2H2,在Ar氛围下,调控真空室Ar压强为0.3Pa,调节直流溅射电源的电流为0.4A,溅射MoS2靶,直流沉积偏压控制在50V,制备金属MoS2减摩层,沉积时间为10min。

从图1实施例1制备的梯度自润滑复合涂层X衍射图可以明确看到,涂层主要相结构包括SiO2、Mo、MoN、Cu,没有MoS2和DLC的对应衍射峰,说明MoS2和DLC均为非晶态结构。从断面扫描电镜图可以清晰地看出在硅片基体(1)表面形成的自润滑复合涂层中,复合涂层总厚度为2.7μm,从硅片基体(1)向上依次为Mo粘结层(2)、MoN承载层(3)、Cu、Mo共掺杂的DLC自修复润滑层(4)和最表面的极薄的非晶态MoS2减磨层(5)。

实施例2

一种梯度自润滑复合涂层的制备方法,其特征在于,按如下步骤进行:

(1)基材预处理

依次采用无水乙醇、丙酮和软化水分别对高速钢基材进行超声清洗,清洗完成后烘干,放入镀膜设备的真空室内,将真空室的气压调节至3.0×10-3Pa,通入Ar进行洗气,然后将Ar压强调节至1.0Pa,施加脉冲偏压1300V,持续5min,对基体材料进行等离子体刻蚀清洗;之后调节真空室气压压强为0.2Pa,开启直流射频电源,对Mo、Cu和MoS2靶材进行预溅射清洗,预溅射电流为0.05A,清洗时间为10min;

(2)沉积Mo粘结层

调节真空室气体压强为0.8Pa,调节直流溅射电源为0.8A,直流沉积偏压为50V,制备金属Mo粘结层,沉积时间为30min;

(3)沉积MoN承载层

维持真空室气压不变,调节Ar与N2的气流量比为1:1,在直流沉积偏压为200V下,沉积MoN层,沉积时间为30min;

(4)沉积Cu、Mo共掺杂的DLC自修复润滑层

通入Ar和C2H2的气体流量比为1~7:1的混合气体,调节真空室压强为1Pa,设置Mo和Cu两个靶材,开启射频溅射电源,溅射功率为100W,调节沉积偏压为400V,制备Cu、Mo共掺杂的DLC自修复润滑层,沉积时间为30min;

(5)沉积非晶态MoS2减磨层

停止通入C2H2,在Ar氛围下,调控真空室Ar压强为0.8Pa,调节直流溅射电源的电流为0.8A,溅射MoS2靶,直流沉积偏压控制在200V,制备金属MoS2减摩层,沉积时间为30min。

实施例3

一种梯度自润滑复合涂层的制备方法,其特征在于,按如下步骤进行:

(1)基材预处理

依次采用无水乙醇、丙酮和软化水分别对高速钢基材进行超声清洗,清洗完成后烘干,放入镀膜设备的真空室内,将真空室的气压调节至1.0×10-3Pa,通入Ar进行洗气,然后将Ar压强调节至5.0Pa,施加脉冲偏压1000V,持续30min,对基体材料进行等离子体刻蚀清洗,之后调节真空室气压压强为0.5Pa,开启直流射频电源,对Mo、Cu和MoS2靶材进行预溅射清洗,预溅射电流为0.1A,清洗时间为8min;

(2)沉积Mo粘结层

调节真空室气体压强为0.5Pa,调节直流溅射电源为0.6A,直流沉积偏压为100V,制备金属Mo粘结层,沉积时间为20min;

(3)沉积MoN承载层

维持真空室气压不变,调节Ar与N2的气流量比为3:1,在直流沉积偏压为150V下,沉积MoN层,沉积时间为60min;

(4)沉积Cu、Mo共掺杂的DLC自修复润滑层

通入Ar和C2H2的气体流量比为5:1的混合气体,调节真空室压强为2Pa,设置Mo和Cu两个靶材,开启射频溅射电源,溅射功率为300W,调节沉积偏压为800V,制备Cu、Mo共掺杂的DLC自修复润滑层,沉积时间为50min;

(5)沉积非晶态MoS2减磨层

停止通入C2H2,在Ar氛围下,调控真空室Ar压强为0.5Pa,调节直流溅射电源的电流为0.6 A,溅射MoS2靶,直流沉积偏压控制在100V,制备金属MoS2减摩层,沉积时间为20min。

本发明方法制备的梯度自润滑涂层涂覆的基体材料可为非金属材料,也可为金属材料,非金属材料包括但不限于硅片、PVC;金属材料包括但不限于高速钢、Ni-Ti合金、铝合金。

采用本实施例制备的梯度自润滑复合涂层进行磨损测试,结果如图3所示,A表示为干摩擦因数曲线,在560MPa的赫兹应力作用下,干摩擦条件下,磨损周次达到8000时,滑动摩擦因数平均值在0.145左右,B为在0号柴油介质中的摩擦因数曲线,在560MPa赫兹应力作用下,其滑动摩擦因数平均值降至0.08,且在极短的时间内摩擦因数趋于稳定,说明本发明制备的自润滑复合涂层具有快速缩短磨合期的优异效果。我们尝试过在依次沉积了Mo、MoN、无掺杂的DLC层和晶态结构的MoS2减磨层的复合涂层,经磨损测试,在相同载荷作用下,其干摩擦因数是本发明的1.6倍,柴油介质中的摩擦因数是本发明的2倍,且其达到摩擦因数最大值(度过磨合期)需要的磨损周次约为本发明2.4倍。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:金属掩膜板

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!