负载金银纳米膜的复合结构阵列及其制备方法和应用

文档序号:1885073 发布日期:2021-11-26 浏览:16次 >En<

阅读说明:本技术 负载金银纳米膜的复合结构阵列及其制备方法和应用 (Composite structure array loaded with gold and silver nano-film and preparation method and application thereof ) 是由 张洪文 魏懿 崔锡荣 蔡伟平 于 2021-08-25 设计创作,主要内容包括:本发明涉及纳米材料技术领域,尤其是一种负载金银纳米膜的复合结构阵列及其制备方法和应用。负载金银纳米膜的复合结构阵列由位于硅基底上有序排列的复合结构单元组成,复合结构单元由纳米硅几何体和从里到外依次包覆在纳米硅几何体上的银膜、金膜组成。硅基底在提供高度粗糙的表面的同时作内标信号的来源,可以有效避免复杂背景的干扰;银起到增强复合衬底SERS活性的作用,覆盖在银膜上的金膜可以有效防止银层在空气中氧化,起到保护银层的作用。本发明通过设计负载金银纳米膜的Si内标纳米结构阵列作为SERS基底来进行定量SERS分析,不仅活性高,结构稳定,而且以硅信号作为内标,具有定量检测的效果。(The invention relates to the technical field of nano materials, in particular to a composite structure array loaded with a gold and silver nano film, and a preparation method and application thereof. The composite structure array loaded with the gold and silver nano-films consists of composite structure units which are orderly arranged on a silicon substrate, wherein the composite structure units consist of a nano-silicon geometric body, and a silver film and a gold film which are sequentially coated on the nano-silicon geometric body from inside to outside. The silicon substrate provides a highly rough surface and is used as a source of an internal standard signal, so that the interference of a complex background can be effectively avoided; the silver plays a role in enhancing the SERS activity of the composite substrate, and the gold film covered on the silver film can effectively prevent the silver layer from being oxidized in the air, so that the silver layer is protected. The Si internal standard nano structure array loaded with the gold and silver nano film is designed to be used as the SERS substrate for quantitative SERS analysis, so that the method is high in activity and stable in structure, and has the effect of quantitative detection by taking a silicon signal as an internal standard.)

负载金银纳米膜的复合结构阵列及其制备方法和应用

技术领域

本发明涉及纳米材料技术领域,尤其是一种负载金银纳米膜的复合结构阵列及其制备方法和应用。

背景技术

表面增强拉曼光谱(SERS)技术可以高倍放大表面吸附分子的拉曼信号,可用于识别目标分子并进行定量检测,具有快速、灵敏、无损、痕量检测的优点,在化学分析、生物科学、环境监测等领域具有重要的应用。在基于贵金属固态衬底的SERS检测应用中,由于衬底结构差异、分子吸附不稳定、激光能量波动及聚焦等设备或操作问题,使得SERS信号的重复性和再现性很差。目前,基于SERS技术的可靠定量分析一直是学术界公认的难题。目前,主要有两种方法用来提高SERS的定量分析能力。一是通过构筑高度有序的阵列基底,如二维有序拉曼活性金属(如金、银、铜等)的纳米锥、纳米柱、纳米立方等结构阵列,与无序的纳米颗粒薄膜相比,其结构的均匀一致性使得其SERS信号强度的均匀性得到极大的提高。然而,在现场测试过程中,仍然难以避免不同人员使用拉曼光谱仪时因操作差异导致的信号强度波动。另一种方法是引入内标对采集到的SERS特征峰强度进行校准,以尽可能减小衬底结构、仪器参数、测试条件等的差异带来的影响。常用的内标法,通常是将具有高拉曼活性的有机分子嵌入到贵金属纳米颗粒的内核或壳层界面上,由于内标分子和待分析物处于相似的微环境中,当测量参数有差异时,二者的拉曼信号强度会同步变化。以内标分子的拉曼信号为基础对目标物质的拉曼特征峰强度进行归一化,可以有效提高信号的重现性。然而,在现实操作中,内标分子和待分析物在贵金属衬底上很难实现分布的一一对应,同时内标分子通常具有多个特征峰,形成复杂的背景信号,使得目标分子的识别难度增加,从而降低了检测的灵敏度。

发明内容

本发明要解决的技术问题为克服现有技术中存在的SERS信号的重复性和再现性很差、内标方法的有机分子会产生复杂背景干扰峰等不足之处,提供一种负载金银纳米膜的复合结构阵列及其制备方法和应用。

为了解决本发明的技术问题,所采取的技术方案为,一种负载金银纳米膜的复合结构阵列,由位于硅基底上有序排列的复合结构单元组成,所述复合结构单元由纳米硅几何体和从内到外依次包覆在纳米硅几何体上的银膜、金膜组成,所述银膜的厚度为30-50nm,所述金膜的厚度为2-5nm,所述银膜和所述金膜的总厚度为35-55nm,相邻所述复合结构单元之间的间距为100-500nm。

作为负载金银纳米膜的复合结构阵列进一步的改进:

优选的,所述纳米硅几何体为纳米锥、纳米柱和纳米球中的一种。

优选的,所述纳米锥的高度为80-400nm,根部直径为100-500nm,锥体尖端直径为20-200nm,顶部锥角为10-50度,所述纳米锥的中轴线与所述硅基底垂直。

为解决本发明的技术问题,所采取的另一个技术方案为,一种负载金银纳米膜的复合结构阵列的制备方法,包括如下步骤:

S1、在硅基底上制备出有序排列的纳米硅几何体阵列;

S2、利用沉积镀膜技术在纳米硅几何体阵列和纳米硅几何体阵列所在的硅基底表面沉积一层30-50nm的银膜;

S3、利用沉积镀膜技术在银膜上沉积一层3-5nm的金膜,即制得负载金银纳米膜的复合结构阵列。

作为负载金银纳米膜的复合结构阵列的制备方法进一步改进:

优选的,步骤S1中所述的纳米硅几何体阵列由掩模板辅助反应离子刻蚀法制得。

优选的,所述沉积镀膜技术为磁控溅射、热蒸发、电子束蒸发中的一种。

为解决本发明的技术问题,所采取的另一个技术方案为,一种负载金银纳米膜的复合结构阵列作为表面增强拉曼散射的活性基底的用途。

作为负载金银纳米膜的复合结构阵列作为表面增强拉曼散射的活性基底的用途进一步的改进:

优选的,在使用所述负载金银纳米膜的复合结构阵列作为表面增强拉曼散射的活性基底测量其上附着的目标分子的拉曼光谱时,激光拉曼光谱仪的激发光的波长为532、633或785nm、功率为0.1-10mW、积分时间为1-30s。

本发明相比现有技术的有益效果在于:

1)硅基底具有两方面的作用:一是提供高度粗糙的表面,以获得更多的SERS热点;二是作为内标信号的来源,硅(Si)的特征拉曼峰比较单一(位于520cm-1),且位于许多有机分析物的拉曼窗口之外(通常在500cm-1以上),如果将硅用作内标物质,其拉曼信号不会与分析物的拉曼信号重叠,可以有效避免复杂背景的干扰。

2)银的作用:银的SERS增强效果比金要强很多,因此中间的银层较厚,约30-50nm,使复合衬底具有高的SERS活性。

3)金的作用:银虽然具有较高的活性,但极易在空气中氧化使其活性降低,因此在其表面覆盖2-5nm薄层的金,防止银层在空气中氧化,起到保护银层的作用。

4)本发明通过设计负载金银纳米膜的Si内标纳米结构阵列作为SERS基底来进行定量SERS分析,不仅活性高,结构稳定,而且以硅信号作为内标,具有定量检测的效果。

附图说明

图1中图1a为等离子金属包覆的硅纳米结构阵列,右上方是阵列中单元的剖视图;图1b图示说明结合基底均匀化和内标策略实现高可靠的定量SERS分析;

图2是SERS基底浸泡在不同浓度的4-ATP溶液后获得的信号;

图3是归一化的信号强度与不同分析物浓度之前的线性拟合,其中R代表线性相关系数。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

一种负载金银纳米膜的复合结构阵列的制备方法,包括如下步骤:

S1、通过空气-水界面自组装方法在单面抛光的硅片上制备均匀的聚苯乙烯胶体球单层掩模板:首先将0.5mL粒径尺寸为150-500nm的聚苯乙烯胶体球悬浮液分散到0.5mL的乙醇中得到1mL的混合胶体球悬浮液;然后用移液枪取5-20μL的聚苯乙烯胶体球悬浮液从去离子水膜覆盖的0.5-4英寸的硅片的边缘缓慢滴加,形成紧密堆积的单层膜,用滤纸从边缘除去水分并自然干燥后,在硅片上制备有序的聚苯乙烯胶体球单层模板;

S2、然后将制备的聚苯乙烯胶体球单层模板覆盖的硅片在70℃下加热20分钟,确保聚苯乙烯胶体球牢固地固定在硅片上,并在反应离子刻蚀机中用SF6气体蚀刻,刻蚀功率为100W,气体流速为30sccm,蚀刻时间为200秒。刻蚀结束后,制备出高度有序的硅纳米硅几何体结构阵列,其中硅纳米硅几何体结构包括硅纳米锥、纳米柱、纳米球等结构。随后,蚀刻后的样品用乙醇冲洗并在600℃下退火2小时以去除残留的聚苯乙烯胶体球;

S3、利用磁控溅射、热蒸发、电子束蒸发等沉积镀膜技术以0.5-2nm/s的沉积速率在硅纳米结构阵列表面溅射沉积30-50nm的银膜,随后再沉积一层2-5nm的薄金层。将获得的金/银覆盖的硅纳米锥阵列剪裁成5mm*5mm的尺寸,从而得到SERS基底。

将制备好的SERS基底浸泡在待测目标分子溶液中,浸泡一段时间后取出SERS基底,其表面会均匀的吸附待测目标分子,并且目标分子与底部的硅具有一一对应分布的关系,如图1a所示;然后进行拉曼测试,测试得到的谱图会同时包含目标分析物的信号和硅内标信号,如图1b所示。

由图1a和1b可知,这种SERS基底由于其有序的结构不仅可以保证热点和吸附的分析物在表面的均匀分布,而且由于结构一致,可以实现分析物和Si物质的一对一分布。在这种情况下,Si信号强度(I1)和吸附分析物信号强度(I2)可以随着测量参数的波动而同步变化(图1a和图1b的插图)。如果使用Si信号强度对吸附分析物信号强度进行归一化,或将I2/I1比值作为拉曼测量值,我们可以有效地消除测量参数波动带来的干扰,并实现高度可重复的测量,从而实现可靠的定量SERS检测。

实施例2

一种负载金银纳米膜的复合结构阵列的制备方法,包括如下步骤:

S1、通过空气-水界面自组装方法在单面抛光的硅片上制备了均匀的聚苯乙烯胶体球单层掩模板。首先将0.5mL粒径尺寸为500nm的聚苯乙烯胶体球悬浮液分散到0.5mL的乙醇中得到1mL的混合胶体球悬浮液;然后用移液枪取5μL的聚苯乙烯胶体球悬浮液从去离子水膜覆盖的0.5英寸的硅片的边缘缓慢滴加。聚苯乙烯胶体球在空气-水界面上自组装,形成紧密堆积的单层膜。用滤纸从边缘除去水分并自然干燥后,在硅片上制备有序的聚苯乙烯胶体球单层模板。

S2、然后将制备的聚苯乙烯胶体球单层模板覆盖的硅片在70℃下加热20分钟,确保聚苯乙烯胶体球牢固地固定在硅片上,并在反应离子刻蚀机中用SF6气体蚀刻。刻蚀功率为200W,气体流速为60sccm,蚀刻时间200秒。刻蚀结束后,制备出高度有序的硅纳米锥阵列。随后,蚀刻后的样品用乙醇冲洗并在600℃下退火2小时以去除残留的聚苯乙烯胶体球。最后,利用磁控溅射、热蒸发、电子束蒸发等沉积镀膜技术以0.5nm/s的沉积速率在硅纳米锥阵列表面溅射沉积30nm的银膜,随后再沉积一层2nm的薄金层。将获得的金/银覆盖的硅纳米锥阵列剪裁成3mm*3mm的尺寸,从而得到SERS基底。

用实施例2制得的SERS基底浸泡在50mL不同浓度的对氨基苯硫酚(4-ATP)溶液中6小时后,获得的光谱数据如图2所示。然后利用硅的520cm-1处的峰强去归一化4-ATP在1075、1140、1390和1435cm-1处的拉曼峰强后,得到了浓度随归一化强度变化的很好线性关系,如图3所示。由图2和图3可知,将分析物的特征峰强度利用硅信号强度进行归一化,即可实现高可靠的定量SERS分析不同浓度的分析物。

本领域的技术人员应理解,以上所述仅为本发明的若干个具体实施方式,而不是全部实施例。应当指出,对于本领域的普通技术人员来说,还可以做出许多变形和改进,所有未超出权利要求所述的变形或改进均应视为本发明的保护范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:可用于800℃及以上的准光学微腔基选择性吸收涂层

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!