一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法

文档序号:1842118 发布日期:2021-11-16 浏览:34次 >En<

阅读说明:本技术 一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法 (TiAl coating capable of improving high-temperature oxidation resistance of titanium alloy and preparation method thereof ) 是由 欧阳佩旋 张淑婷 孙伟 杨谨赫 董志超 李航 吴艳 于 2021-08-17 设计创作,主要内容包括:本发明公开了一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法,所述TiAl涂层中包括α-AlF-(3)纳米颗粒,α-AlF-(3)纳米颗粒含量为TiAl涂层的5~30vol.%。所述TiAl涂层的制备方法为以TiAl合金靶材和α-AlF-(3)靶材为原料,在基材表面进行磁控溅射沉积制备涂层;所述磁控溅射为双靶共溅射,溅射时的基材温度为150℃,其中TiAl合金靶材采用直流溅射,功率为0.5~2kW,α-AlF-(3)靶材采用射频溅射,功率为0.07~0.2kW。双靶共溅射得到涂层后再将所得涂层在600~800℃的温度下热处理5~20h,得到最终的涂层。(The invention discloses a TiAl coating capable of improving high-temperature oxidation resistance of titanium alloy and a preparation method thereof, wherein the TiAl coating comprises alpha-AlF 3 Nanoparticles, alpha-AlF 3 The content of the nano particles is 5-30 vol.% of TiAl coating. The preparation method of the TiAl coating comprises the steps of using a TiAl alloy target material and alpha-AlF 3 The target material is used as a raw material, and magnetron sputtering deposition is carried out on the surface of the substrate to prepare a coating; the magnetron sputtering is double-target co-sputtering, the substrate temperature during sputtering is 150 ℃, wherein the TiAl alloy target material adopts direct-current sputtering, the power is 0.5-2 kW, and the alpha-AlF 3 The target material is subjected to radio frequency sputtering, and the power is 0.07-0.2 kW. After the coating is obtained by double-target co-sputteringAnd carrying out heat treatment on the obtained coating at the temperature of 600-800 ℃ for 5-20 h to obtain the final coating.)

一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备 方法

技术领域

本发明属于钛合金高温防护技术领域,具体涉及一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法。

背景技术

高温抗氧化是钛合金部件在航空发动机中保持长期稳定服役所面临的重要挑战,目前600℃仍为固溶强化型钛合金的极限使用温度。TiAl涂层因具有与钛合金相似的成分和较小的热膨胀系数差异而在钛合金表面抗氧化防护中具有重要应用前景。然而,随着新一代航空发动机动力系统指标趋于极致化,TiAl涂层的高温抗氧化性能亟待进一步提高。

增加Al含量是提高TiAl涂层抗氧化性能的传统方法之一,但对TiAl二元涂层而言,氧化形成具有保护性α-Al2O3膜所需的临界Al含量高达60~70at.%,此时涂层以脆性TiAl2和TiAl3相为主,涂层中易形成贯穿性裂纹,进而加速涂层剥落,降低涂层使用寿命。因此,研究者们通过在低Al含量TiAl涂层中引入第三组元如Cr、Nb、Si等金属元素和Cl、P、F等非金属元素来提高Al活性,进而提高TiAl涂层的抗氧化性能并保障其力学性能。其中,F改性TiAl涂层受到国内外学者们的高度关注,该涂层是在钛合金表面通过扩散渗Al或磁控溅射制得TiAl二元涂层,继而利用等离子体浸没离子注入或液相喷涂含氟有机物等方法渗入F原子而获得。相比其他元素改性的TiAl涂层,F改性TiAl涂层具有以下优点:低密度,且高温下(>600℃)涂层中固溶态F原子通过与Al原子结合形成气相AlF,代替传统固相Al原子作为铝源载体,显著提高Al的扩散速率和活性,使涂层维持保护性氧化膜生长所需的临界Al含量降低至40at.%。但该涂层的不足在于:升温过程中(400~600℃)固溶态F原子易与Ti原子结合形成挥发性TiF4,造成剩余F含量显著降低(最大F含量由28at.%降低至2at.%),从而制约了F对Al最大活化效应的发挥,影响抗氧化性能的提高。因此,寻找一种减少F损失的,可大幅提高钛合金的抗氧化性能的TiAl涂层制备技术具有重大意义。

发明内容

本发明的目的是针对F改性TiAl涂层中因固溶F原子易与Ti结合而使Al活化受限的问题,提供一种不同的TiAl涂层及其制备方法,具体包括一种α-AlF3纳米颗粒改性TiAl涂层及其双靶磁控溅射沉积技术,以α-AlF3纳米颗粒代替固溶F原子作为氟源,所获涂层使钛合金基体在670℃下仍具备优异的抗氧化性。

本发明的技术方案之一,一种能够提高钛合金抗高温氧化性能的TiAl涂层,涂层中包括α-AlF3纳米颗粒,α-AlF3纳米颗粒含量为TiAl涂层的5~30vol.%。

进一步地,所述TiAl涂层的厚度为2~15μm。

本发明的能够提高钛合金抗高温氧化性能的TiAl涂层在670℃下进行500h恒温氧化测试时涂层氧化增重不超过0.1mg/cm2

本发明的技术方案之二,一种上述的能够提高钛合金抗高温氧化性能的TiAl涂层的制备方法,包括以下步骤:以TiAl合金靶材和α-AlF3靶材为原料,在基材表面进行磁控溅射沉积制备涂层。

进一步地,所述TiAl合金靶材的制备方法为:以Ti粉和Al粉为原料,混合均匀后热等静压,得到TiAl合金靶材;所述α-AlF3靶材的制备方法为:将α-AlF3陶瓷粉末热等静压,得到α-AlF3靶材。

进一步地,所述Ti粉和Al粉的粒度为1~50μm,所述Al粉的用量为Ti粉和Al粉总量的35~45at.%,所述α-AlF3陶瓷粉末的纯度大于99.99%。

进一步地,所述Ti粉的粒度优选为44μm,所述Al粉的粒度优选为37μm。

进一步地,所述混合的具体操作为将Ti粉和Al粉以80~150r/min的转速混合4~10h;Ti粉和Al粉混合物料热等静压的保压温度为1100~1300℃,等静压力为130~190MPa,保温保压时间为2~6h。

进一步地,所述α-AlF3陶瓷粉末热等静压的保压温度为1700~1800℃,等静压力为130~190MPa,保温保压时间为1~5h。

进一步地,所述钛合金基材为表面预处理后的Ti60钛合金基体,所述表面预处理具体的操作为:用800#、1500#砂纸依次打磨,随后依次用丙酮、酒精超声清洗后烘干。

进一步地,所述磁控溅射为双靶共溅射,溅射时的基材温度为150℃,TiAl合金靶材采用直流溅射,功率为0.5~2kW,α-AlF3靶材采用射频溅射,功率为0.07~0.2kW。

进一步地,所述双靶共溅射的溅射时间为8~20h,双靶共溅射在Ar气气压为0.5~3Pa环境下进行。

进一步地,通过双靶共溅射制得涂层后还包括涂层后处理,具体步骤包括将通过双靶共溅射制得的涂层进行热处理,所述热处理的温度为600~800℃,时间为5~20h。

进一步地,所述热处理前进行抽真空操作,抽真空至气压为0.05Pa。

进一步地,所述能够提高钛合金抗高温氧化性能的TiAl涂层的制备工艺流程如图1所示。

与现有技术相比,本发明具有以下有益效果:

(1)本发明通过双靶磁控共溅射技术在钛合金表面获得纳米α-AlF3颗粒改性的新型TiAl涂层,涂层中F元素以α-AlF3纳米颗粒的形式存在,解决了现有技术因较活泼固溶F原子易与Ti反应而制约F对Al最大活化效应的发挥的问题;本发明在双靶磁控共溅射沉积后进行了高温热处理操作,消除了涂层制备过程中产生的热应力,并使Al、Ti元素在涂层-基体界面互相扩散形成冶金结合,提高了界面结合力。本发明制备的涂层在670℃下进行500h恒温氧化测试时涂层的氧化增重不超过0.1mg/cm2,耐氧化性能好,该涂层附着在钛合金基体表面使钛合金基体在670℃下仍具备优异的抗氧化性能,可用于航空发动机钛合金部件的高温防护。本发明的制备方法可一步实现TiAl涂层和氟源的同时构筑,方法简便高效。

(2)本发明在对钛合金基体进行磁控溅射前对基体表面进行了用800#、1500#砂纸依次打磨,随后依次用丙酮、酒精超声清洗后烘干的预处理,去除了基体表面的杂质,使基体表面光洁平整,与沉积涂层有良好的粘附性,提高了涂层的结合强度。

(3)本发明中采用双靶共溅射法进行涂层的溅射,TiAl合金靶材采用直流溅射,α-AlF3靶材采用射频溅射,直流溅射适合金属和合金等导体靶材,其沉积速率较快;而射频溅射适用于金属导体、半导体和绝缘体,但其沉积速率较慢;TiAl合金为导体,α-AlF3为绝缘体,且涂层中α-AlF3的含量相对较少,因此TiAl靶采用直流溅射,AlF3采用射频溅射。两者功率的大小影响各自的沉积速率,进而影响复合涂层中α-AlF3的含量。而复合涂层中α-AlF3纳米颗粒的含量又影响着涂层的性能,若纳米颗粒含量过少,则难以与TiAl反应生成足够的气相AlF以进一步氧化形成氧化铝,涂层的抗氧化性能无法得到有效提高;而纳米颗粒含量过高,则易快速形成大量气相AlF,导致涂层失稳,且纳米颗粒含量过高会恶化涂层的力学性能。本发明通过控制靶材磁控溅射的类型和功率,获得了α-AlF3纳米颗粒的较佳含量范围,得到了性能优异的涂层。

(4)在本发明的制备过程中,Ti、Al粉的粒度、α-AlF3陶瓷粉末的纯度、热等静压的参数等条件也会对涂层的性能造成一定的影响。Ti、Al粉的粒度会影响制得TiAl靶的致密度和晶粒大小,进而影响涂层的沉积质量(有无缺陷)和晶粒大小;α-AlF3陶瓷粉末的纯度会影响涂层的沉积质量,若杂质较多,不易沉积均匀,且得到的涂层致密性不好;热等静压参数直接影响靶材的致密度和晶粒大小,进而影响涂层的沉积质量和微观结构。本发明中通过多次试验得到了Ti、Al粉末粒度、α-AlF3陶瓷粉末纯度、热等静压工艺的最佳参数范围,并与基材预处理、磁控溅射过程、高温热处理相结合,通过协同调整上述所有过程的参数得到了抗氧化性能优异的涂层。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为提高钛合金抗高温氧化的TiAl涂层的制备方法工艺流程图;

图2为AlF3与涂层中Al原子的标准吉布斯反应自由能曲线;

图3为AlF3与涂层中Ti原子的标准吉布斯反应自由能曲线;

图4为实施例1制备的涂层的扫描透射电镜分析图。

具体实施方式

现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。

应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。

除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。

在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。

关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。

实施例1

(1)靶材制备:

合金元素按照如下成分配料:Al:40at.%;Ti:余量(粒度均为44μm),将上述粉末在球磨罐中以110r/min转速混合6h后采用热等静压机压制成φ20×3mm3的TiAl靶材,保压温度为1250℃,等静压力为160MPa,保温保压3h。将高纯α-AlF3陶瓷粉末(粒度为37μm)烘干后经热等静压机压制成φ20×3mm3的α-AlF3靶材,保压温度为1750℃,热等压力为160MPa,保温保压2h。

(2)涂层制备:

将制得的TiAl靶和α-AlF3靶安装在磁控镀膜仪上,安装表面预处理(用800#、1500#砂纸依次打磨,随后依次用丙酮、酒精超声清洗后烘干)后的Ti60钛合金基体,调整靶-基距为12cm;采用机械泵和扩散泵将本底真空度抽至1×10-4Pa;加热基体至150℃;打开流量计,通入氩气,使工作气压达到0.7Pa;同时打开分别对应TiAl靶和α-AlF3靶的直流电源和射频电源,功率分别为1.0kW和0.12kW,溅射10h;保持真空室内真空状态直至冷却到室温,取出样品。

(3)涂层后处理:

将样品放入高温真空炉中,抽真空至气压为0.05Pa,升温至650℃,保温15h,再随炉冷却至室温,得到新型TiAl涂层。

经测量涂层厚度为12.3μm。

计算涂层中AlF3与Al原子和Ti原子的标准吉布斯反应自由能并绘制曲线,具体方法如下:

首先分别确定AlF3与Al原子和Ti原子的化学反应方程式,为AlF3(s)+2Al(s)=3AlF(g)和4AlF3(s)+3Ti(s)=3TiF4(g)+4Al(s),随后在《实用无机物热力学数据手册》中查找各反应物和产物随温度变化的比热容、相转变热容以及在298K下的生成焓和熵,继而根据化学反应方程式计算在298K下的反应焓和反应熵以及考虑相变的比热容与温度的函数关系,最后根据吉布斯自由能与比热容、温度以及298K下的反应焓和反应熵的关系式求得随温度变化的吉布斯自由能。

得到的AlF3与涂层中Al原子的标准吉布斯反应自由能曲线如图2所示,AlF3与涂层中Ti原子的标准吉布斯反应自由能曲线如图3所示。

热力学计算结果表明,α-AlF3加热至454℃以上温度会转变为β-AlF3,后者能与Al原子结合生成气相AlF铝源载体,显著提高Al的活性(见图2);且α-AlF3和β-AlF3均不与Ti发生反应(见图3),使F能够对Al发挥最大活化效应,进而显著提高涂层的抗氧化性能。由此可见,利用较稳定的α-AlF3纳米颗粒代替固溶F原子作为氟源,是克服F改性TiAl涂层中Al活化程度受限、提高抗氧化性能的有效措施。

采用扫描-透射电镜分析涂层中AlF3的分布如图4所示。图4中所标记位置的EDS分析结果如表1所示:

表1

从上表可见,F主要以AlF3化合物的形式存在(Al和F的原子比约为1:3),分布在TiAl晶界处。涂层中基体相Al含量约为38.6at.%。根据图像处理技术统计得AlF3纳米颗粒含量约为18.0vol.%(通过换算可得涂层中F原子含量为8.3at.%,换算公式为:x为AlF3颗粒的体积含量)。将试样除涂层以外的表面涂覆上抗高温氧化涂料,干燥后称重,再置于高温管式炉中,在670℃下保温500h后空冷至室温,观察试样表面完整无剥落,称重得到涂层单位面积氧化增重为0.08mg/cm2

实施例2

同实施例1,区别在于,α-AlF3靶的电源功率为0.18kW。

经测量涂层厚度为12.4μm,涂层中基体相Al含量约为38.7at.%,AlF3纳米颗粒含量约为25.4vol.%(换算得F原子含量为12.1at.%)。将试样除涂层以外的表面涂覆上抗高温氧化涂料,干燥后称重,再置于高温管式炉中,在670℃下保温500h后空冷至室温,观察试样,涂层无剥落,称重得到涂层单位面积氧化增重为0.05mg/cm2

实施例3

同实施例1,区别在于,TiAl靶的电源功率为0.6kW。

经测量涂层厚度为7.3μm,涂层中基体相Al含量约为38.4at.%,AlF3纳米颗粒含量约为28.4vol.%。将试样除涂层以外的表面涂覆上抗高温氧化涂料,干燥后称重,再置于高温管式炉中,在670℃下保温500h后空冷至室温,观察试样,涂层无剥落,称重得到涂层单位面积氧化增重为0.09mg/cm2

实施例4

同实施例1,区别在于,TiAl靶的配料为Al:43at.%,Ti:余量。

经测量涂层厚度为12.3μm,涂层中基体相Al含量约为41.2at.%,AlF3纳米颗粒含量约为18.1vol.%。将试样除涂层以外的表面涂覆上抗高温氧化涂料,干燥后称重,再置于高温管式炉中,在670℃下保温500h后空冷至室温,观察试样,涂层无剥落,称重得到涂层单位面积氧化增重为0.06mg/cm2

对比例1

同实施例3,区别在于,TiAl靶和α-AlF3靶都使用射频电源。

经测量涂层厚度为1.2μm,涂层中基体相Al含量约为38.3at.%,AlF3纳米颗粒含量约为47.5vol.%。将试样除涂层以外的表面涂覆上抗高温氧化涂料,干燥后称重,再置于高温管式炉中,在670℃下保温500h后空冷至室温,观察试样,涂层内部存在局部开裂现象,称重得到涂层单位面积氧化增重为3.1mg/cm2

对比例2

同实施例1,区别在于,TiAl靶的配料为Al:28at.%,Ti:余量。

经测量涂层厚度为12.3μm,涂层中基体相Al含量约为27.0at.%,AlF3纳米颗粒含量约为18.2vol.%。将试样除涂层以外的表面涂覆上抗高温氧化涂料,干燥后称重,再置于高温管式炉中,在670℃下保温500h后空冷至室温,观察试样,涂层表面氧化皮存在明显剥落,称重得到涂层单位面积氧化增重为2.1mg/cm2

对比例3

首先在Ti60钛合金基体上沉积TiAl涂层,沉积工艺同实施例1,区别在于,只对单一TiAl靶进行溅射,而没有溅射AlF3靶。随后,采用等离子浸没式等离子注入设备注入F原子,等离子体电源功率为500W,偏压为10kV,所用气体为Ar/CH2F2,工作压强为0.5Pa,脉宽为10μs,持续注入5min。

经测量涂层厚度为12.3μm,涂层中基体相Al含量约为38.7at.%,F原子含量约为8at.%(基本与实施例1中F原子含量相当)。将试样除涂层以外的表面涂覆上抗高温氧化涂料,干燥后称重,再置于高温管式炉中,在670℃下保温500h后空冷至室温,观察试样,涂层表面氧化皮存在明显剥落,称重得到涂层单位面积氧化增重为1.7mg/cm2

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种旋转镀膜设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!