一种薄膜太阳能电池板及其制造方法

文档序号:1955698 发布日期:2021-12-10 浏览:1次 >En<

阅读说明:本技术 一种薄膜太阳能电池板及其制造方法 (Thin-film solar cell panel and manufacturing method thereof ) 是由 彭寿 马立云 周文彩 王伟 刘晓鹏 齐帅 于浩 曾红杰 于 2021-08-17 设计创作,主要内容包括:本发明涉及一种薄膜太阳能电池板及其制造方法,在本发明的一种薄膜太阳能电池板中,由于在薄膜太阳能电池板背电极层一侧的表面上布设有微孔阵列,微孔阵列中的微孔自背电极层的表面延伸至透明衬底。这样,光线就能够通过微孔阵列和透明衬底穿透照射,这种薄膜太阳能电池板能够使得可见光通过,适宜于工程推广应用。(The invention relates to a thin-film solar cell panel and a manufacturing method thereof. Therefore, light can penetrate through the micropore array and the transparent substrate for irradiation, and the thin-film solar cell panel can enable visible light to pass through and is suitable for engineering popularization and application.)

一种薄膜太阳能电池板及其制造方法

技术领域

本发明涉及一种薄膜太阳能电池板及其制造方法,属于太阳能光伏技术领域。

背景技术

光伏作为绿色清洁能源,开发空间巨大。据报道,世界上约40%的能耗用于建筑物上,并且随着工业化的发展,这一比例还会有所增加。在当今世界推崇的绿色建筑、超低能耗建筑、近零能耗建筑中,仅依靠节约降低能耗是不够的,需配备主动产能的设施,采用分布式发电是其中最直接也是效率较高一种方式。因此,在建筑物中安装能量转换装置已经得到了广泛的研究,例如在建筑物外墙和屋顶上的安装太阳能电池板实现自主发电。然而,随着玻璃摩天大楼的日益普及,用于安装太阳能电池板的外墙和屋顶的面积正在减少;而且在外墙和屋顶上安装不透明太阳能电池板建筑物可能会损害建筑物的原始设计,影响美观。基于此,透明太阳能电池因其可透光性带来的复合能源效益将成为光伏建筑发展的主要方向,而且有望取代普通玻璃成为新一代建筑-光伏一体化材料。除了用于建筑窗户上,透明太阳能电池也可以用于汽车天窗和车窗、玻璃温室大棚及显示设备屏幕等多种领域。

目前透明薄膜太阳能电池的主要通过以下两种途径实现:减少膜层厚度、吸收紫外和近红外波长来发电。但是,由于透明薄膜太阳能器件结构和透明电极的限制,使其透明度以及透光率较低。

发明内容

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种薄膜太阳能电池板及其制造方法,薄膜太阳能电池板能够使得可见光通过,适宜于工程推广应用。

为实现上述目的,本发明提供一种薄膜太阳能电池板,包括依次设置的透明衬底、导电膜层、太阳能电池薄膜层和背电极层,所述薄膜太阳能电池板在背电极层一侧的表面上布设有微孔阵列,所述微孔阵列中的微孔自背电极层的表面延伸至透明衬底。

优选地,所述透明衬底由绝缘材料制成。

优选地,所述透明衬底为玻璃材质或塑料材质。

优选地,所述导电膜层为FTO、ITO或AZO中的任意一种。

优选地,所述太阳能电池薄膜层为非晶硅太阳能电池、CdTe太阳能电池、CIGS太阳能电池、钙钛矿太阳能电池和有机太阳能电池中的任意一种。

优选地,所述背电极层为金属电极、碳材料电极、导电氧化物电极和导电聚合物电极中的任意一种。

优选地,所述微孔阵列中微孔直径为50~200um,相邻两个微孔间距50~200um。

优选地,所述导电膜层、太阳能电池薄膜层和背电极层均进行激光刻线处理而将薄膜太阳能电池板分成多个串联的太阳能电池单元。

优选地,所述薄膜太阳能电池板的可见光透过率为20%~80%。

相应地,本发明还提供一种薄膜太阳能电池板的制造方法,包括如下步骤:

1)在透明衬底表面沉积生成导电膜层;

2)在导电膜层表面沉积生成太阳能电池薄膜层;

3)在太阳能电池薄膜层表面沉积生成背电极层;

4)使用激光从背电极层的表面刻蚀微孔阵列,使得微孔自背电极层的表面延伸至透明衬底。

如上所述,本发明涉及的一种薄膜太阳能电池板及其制造方法,具有以下有益效果:在本发明的一种薄膜太阳能电池板中,由于在薄膜太阳能电池板背电极层一侧的表面上布设有微孔阵列,微孔阵列中的微孔自背电极层的表面延伸至透明衬底。这样,光线就能够通过微孔阵列和透明衬底穿透照射,这种薄膜太阳能电池板能够使得可见光通过,适宜于工程推广应用。

本发明的一种薄膜太阳能电池板的制造方法也具有上述有益效果,此处不再赘述。

附图说明

图1显示为本发明的一种薄膜太阳能电池板的剖视图。

图2显示为图1中断面A的放大视图。

图3显示为本发明的一种薄膜太阳能电池板的俯视图,其中,d表示微孔的直径,s表示相邻两孔之间的距离。

图4a显示为使用光学模拟软件模拟平面光照射到具有微孔的薄膜太阳能电池板表面时在表面处的电场分布,微孔的孔径的大小为d=1μm。

图4b显示为使用光学模拟软件模拟平面光照射到具有微孔的薄膜太阳能电池板表面时在表面处的电场分布,微孔的孔径的大小为d=50μm。

图5显示为人眼对本发明的一种薄膜太阳能电池板上微孔的可分辨关系示意图。

元件标号说明

1 透明衬底

2 导电膜层

3 太阳能电池薄膜层

4 背电极层

5 激光刻蚀线

6 微孔

具体实施方式

以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。

须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。

如图1至图3所示,本发明提供一种薄膜太阳能电池板,包括依次设置的透明衬底1、导电膜层2、太阳能电池薄膜层3和背电极层4,所述薄膜太阳能电池板在背电极层4一侧的表面上布设有微孔6阵列,所述微孔阵列中的微孔6自背电极层4的表面延伸至透明衬底1。

在本发明的一种薄膜太阳能电池板中,由于在薄膜太阳能电池板背电极层4一侧的表面上布设有微孔阵列,微孔阵列中的微孔自背电极层4的表面延伸至透明衬底1。这样,光线就能够通过微孔阵列和透明衬底1穿透照射,这种薄膜太阳能电池板能够使得可见光通过,适宜于工程推广应用。

在本发明的一种薄膜太阳能电池板中,透明衬底1为导电膜层2、太阳能电池薄膜层3和背电极层4提供附着的基础,透明衬底1由绝缘材料制成。优选地,所述透明衬底1为玻璃材质或塑料材质。

为了使得本发明的一种薄膜太阳能电池板具有较好的透明效果,作为一种优选的实施方式,导电膜层2采用透明材料制成,导电膜层2可以为FTO、ITO或AZO中的任意一种。FTO是氟掺杂氧化锡的简称,FTO材料的制成的导电膜层2是透明的,FTO是一种宽禁带半导体材料,原料充足,成本低,易刻蚀,光学性能适宜,电学性能优异,化学稳定性好。ITO是透明氧化铟锡的简称,ITO导电膜采用磁控溅射的方法,在透明有机薄膜材料上溅射透明氧化铟锡导电薄膜镀层并经高温退火处理得到ITO导电膜层2。AZO是铝掺杂的氧化锌(ZnO)透明导电玻璃的简称,ZnO是一种Ⅱ一Ⅵ族具有六角纤锌矿结构的直接带隙宽禁带n型半导体材料。这样,将导电膜层2制作成透明的能够提高薄膜太阳能电池板的透光效果。

在本发明的一种薄膜太阳能电池板中,太阳能电池薄膜层3用于产生电能,太阳能电池薄膜层3可以采用现有技术中的多种太阳能电池技术来实现,作为一种优选的实施方式,所述太阳能电池薄膜层3为非晶硅太阳能电池、CdTe太阳能电池、CIGS太阳能电池、钙钛矿太阳能电池和有机太阳能电池中的任意一种。CdTe太阳能电池是碲化镉薄膜太阳能电池的简称,CIGS太阳能电池是一种成熟的太阳能电池,CIGS组成可表示成Cu(In(1-x),Ga(x))Se2的形式,具有黄铜矿结构,是CulnSer和CuGaSer的混晶半导体。需要说明的是,太阳能电池的种类较多,所述太阳能电池薄膜层3的具体采用的太阳能电池在此不作一一列举。

在本发明的一种薄膜太阳能电池板中,作为一种优选的实施方式,所述背电极层4为金属电极、碳材料电极、导电氧化物电极和导电聚合物电极中的一种。

如图3所示,在本发明的一种薄膜太阳能电池板的背电极层4一侧的表面上分布有微孔阵列,d表示微孔6的直径,s表示相邻两孔之间的距离,单位为微米(um),所述微孔阵列中微孔直径为50~200um,相邻两个微孔间距50~200um。通过对微孔阵列中的微孔直径和微孔间距的设计,使得所述薄膜太阳能电池板的可见光透过率为20%~80%。

在本发明的一种薄膜太阳能电池板中,通过模拟和计算设计所刻蚀的微孔6的孔径的大小d和间距l(l=s-2d),使得可见光可以完全通过微孔阵列而不发生相互作用,同时人眼的视觉分辨率又无法察觉这些微孔的存在,通过微孔大小和孔间距可调节薄膜的透过率。

使用光学模拟软件模拟平面光照射到具有微孔的本发明的一种薄膜太阳能电池板的表面,在表面处的电场分布如图4a和图4b所示,其中颜色的强弱代表场强的强弱(入射光场强为1),箭头代表入射光的方向。如图4a,如果微孔6的孔径的大小d=1μm,入射光在电池板表面除了吸收和反射外,还有衍射作用,表现为圆弧状颜色,且在微孔6里面有增强现象;如图4b所示,如果微孔的孔径的大小d=50μm,入射光在电池板表面发生吸收和反射,表现为平形状颜色,在微孔位置发生透过,场强大小为1。

此外,由于人眼可分辨的微孔之间的大小为1arcmin,即1/60°,如图5所示,如果两孔之间的距离s与人眼的角度小于1arcmin则人眼不可分辨,反之人眼可分辨。因此,两孔之间的间距s需满足下式:

本发明的一种薄膜太阳能电池板考虑实际距离和微孔孔径设定了微孔之间的距离,能够使得可见光可以完全通过微孔阵列而不发生相互作用,同时人眼的视觉分辨率又无法察觉这些微孔的存在。

对于面积较大的薄膜太阳能电池板,一般都通过激光刻蚀将面积较大的薄膜太阳能电池板加工成多个串联的太阳能电池单元,在本发明的一种薄膜太阳能电池板中,所述导电膜层2、太阳能电池薄膜层3和背电极层4均进行激光刻线处理加工出激光刻蚀线5而将薄膜太阳能电池板分成多个串联的太阳能电池单元。太阳能电池的激光刻蚀技术是成熟的现有技术,此处不作详述。

与本发明的一种薄膜太阳能电池板相应地,本发明还提供一种薄膜太阳能电池板的制造方法,包括如下步骤:

1)在透明衬底1表面沉积生成导电膜层2;

2)在导电膜层2表面沉积生成太阳能电池薄膜层3;

3)在太阳能电池薄膜层3表面沉积生成背电极层4;

4)使用激光从背电极层4的表面刻蚀微孔阵列,使得微孔自背电极层4的表面延伸至透明衬底1。

在薄膜太阳能电池板上利用激光刻蚀微孔时,从背电极层4的表面向透明衬底1进行刻蚀,微孔自背电极层4的表面延伸至透明衬底1,微孔的深度应该使得微孔的底部至少延伸至透明衬底1的表面而使得光线能够通过微孔透射到透明衬底1中。

以下通过两个应用的实施例对本发明的技术方案进行说明。

实施例一

本实施例中,透明衬底采用玻璃材质,导电膜层为FTO,太阳能电池薄膜层是CdTe太阳能电池。其制备步骤如下:

a)在玻璃材质的透明衬底上沉积FTO;

b)在所述FTO透明导电玻璃的上表面通过近空间升华法沉积依次沉积CdS和CdTe薄膜;

c)在所述CdTe薄膜上表面沉积钼电极层而生成背电极层;

d)使用激光刻蚀的方法在上述所有膜层刻蚀出微孔阵列,其中微孔的直径d是100um,微孔之间的距离s是132um,所得到的薄膜太阳能电池板的可见光透过率是50%。

可见光照射到该电池表面,光线从微孔阵列透过,其余部分发生反射,不存在光的干涉现象。

实施例二

本实施例中的薄膜太阳能电池是非晶硅太阳能电池。其制备步骤如下:

a)在玻璃材质的透明衬底上沉积ITO;

b)在所述ITO透明导电玻璃的上表面通过化学气相沉积法依次沉积p,i,n层非晶硅薄膜;

c)在所述n型非晶硅薄膜上表面沉积氧化锌铝作为背电极层;

d)使用激光刻蚀的方法在上述所有膜层刻蚀出微孔阵列,其中微孔的直径d是105um,微孔之间的距离s是111um,所得到的薄膜太阳能电池的可见光透过率是80%。

基于上述实施例的技术方案,本发明所提供的一种薄膜太阳能电池板及其制造方法,通过在薄膜太阳能电池板上刻蚀的微孔阵列使可见光透过,且不发生衍射,同时人眼的视觉分辨率又无法察觉这些微孔的存在,薄膜太阳能电池板的光线透过率可通过微孔大小和孔间距调节。这种薄膜太阳能电池板制备方法简单,适于推广应用。

综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:叉指背接触薄膜太阳能电池、电池组件和光伏系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类