金属粉末的颗粒的表面处理方法及由此获得的金属粉末颗粒

文档序号:1409307 发布日期:2020-03-06 浏览:40次 >En<

阅读说明:本技术 金属粉末的颗粒的表面处理方法及由此获得的金属粉末颗粒 (Method for surface treatment of particles of metal powder and metal powder particles obtained thereby ) 是由 C·米科 J-L·贝津 于 2018-06-21 设计创作,主要内容包括:本发明涉及一种对金属粉末材料进行表面处理的方法,所述方法包括以下步骤:提供由多个待处理金属材料的颗粒形成的粉末,并通过将由例如电子回旋共振(ECR)型的单电荷或多电荷离子源产生的单电荷或多电荷离子束(14)引向所述颗粒的外表面对所述金属粉末进行离子注入过程,其中所述颗粒具有半径为R的总体球形。本发明还涉及由多个具有陶瓷外层(26)和金属核(24)的颗粒构成的粉末材料,所述颗粒具有半径为R的总体球形。(The invention relates to a method for surface treatment of a metal powder material, comprising the steps of: powder formed of a plurality of particles of a metallic material to be treated is provided and subjected to an ion implantation process by directing a single or multiple charged ion beam (14) generated by a single or multiple charged ion source, for example of the Electron Cyclotron Resonance (ECR) type, towards the outer surface of the particles, wherein the particles have a generally spherical shape with a radius R. The invention also relates to a powder material consisting of a plurality of particles having a ceramic outer layer (26) and a metal core (24), said particles having an overall spherical shape with a radius R.)

金属粉末的颗粒的表面处理方法及由此获得的金属粉末颗粒

发明技术领域

本发明涉及一种对粉末状态的金属材料颗粒进行表面处理的方法,还涉及通过实施这种方法获得的金属粉末颗粒。通过根据本发明的方法获得的金属粉末颗粒旨在用于使用粉末冶金方法制造固体部件,例如注射成型法(更好地称为金属注射成型或MIM),压制或增材制造如三维激光打印。本发明进一步涉及具有陶瓷表面和金属核的金属粉末颗粒。

发明技术背景

离子注入方法包括轰击待处理物体的表面,例如使用电子回旋共振类型的单电荷或多电荷离子源。这种装置称为电子回旋共振或ECR。

ECR离子源使用电子回旋共振产生等离子体。一定体积的低压气体通过以对应于电子回旋共振的频率注入的微波而电离,该电子回旋共振由施加到位于要电离的气体内部的区域的磁场所定义。微波加热存在于待电离气体中的自由电子。在热搅拌的作用下,这些自由电子与气体的原子或分子碰撞并引起其电离。产生的离子对应于所用气体的类型。该气体可以是纯净气体或化合物。它也可以是从固体或液体材料获得的蒸气。ECR离子源能够产生单电荷离子(即电离度等于1的离子)或多电荷离子(即电离度大于1的离子)。

伴随着本专利申请的图1示意性地示出了ECR电子回旋共振类型的多电荷离子源。整体上由通用附图标记1表示的ECR多电荷离子源包括注入阶段2,其中注入待电离的气体4和微波6,磁约束阶段8,其中产生等离子体10,以及提取阶段12,其允许使用阳极12a和阴极12b在其间施加高电压来提取和加速等离子体10的离子。在ECR多电荷离子源1的输出处产生的多电荷离子束14撞击待处理部件18的表面16,并在待处理部件18的体积内相对较深地穿透。

通过轰击待处理物体的表面进行的离子注入具有多种效果,包括改变制成待处理物体的材料的微观结构,改善耐腐蚀性,增强摩擦学性能以及更普遍地改善机械性能。因此,一些工作强调了通过氮离子注入提高铜和青铜的硬度。还已经证明,向铜中注入氮或氖会增加其疲劳强度。同样,工作表明,即使在低剂量(1.1015和2.1015离子.cm-2)下进行氮注入,也足以显著改变铜的剪切模量。

因此可以理解,从科学,技术和工业的角度看,通过轰击待处理物体的表面进行离子注入是非常有利的。

尽管如此,迄今为止进行的研究仅涉及待处理的固体。然而,这种固体物体受到使用常规机加工技术(钻孔,铣削,镗孔)可以赋予其的形状和几何结构的限制。

因此,在现有技术中,需要这样一种物体,其机械性能得到显著改善,同时关于这种物体可以采取的形状几乎零限制。

本发明的目的是通过提出一种用于金属材料的表面处理的方法来进一步满足上述需求,该方法允许生产实际上具有不受限制的几何形状的物体,同时具有改进和改善的物理和化学性质。

为此,本发明涉及一种用于金属材料的表面处理的方法,所述方法包括以下步骤:获得由多个金属材料颗粒形成的粉末,并将单电荷或多电荷离子束引向所述颗粒的表面,所述离子束由单电荷或多电荷离子源产生,其中颗粒具有总体球形。

根据本发明的优选实施方案:

-单电荷或多电荷离子源为ECR电子回旋共振类型;

-在离子注入过程的整个期间搅拌金属粉末的颗粒;

-所使用的金属粉末的颗粒的晶粒尺寸使得基本上所有所述颗粒的50%具有在1-2微米范围内的直径,其中所使用的金属粉末的颗粒的直径不超过50微米

-金属材料是选自包括金和铂的组的贵金属;

-金属材料是选自包括镁,钛和铝的组的非贵金属;

-待电离的材料选自包括碳,氮,氧和氩的组;

-单电荷或多电荷离子在15,000至35,000伏的电压下被加速;

-注入的离子剂量在1.1015至1.1017离子.cm-2范围内;

-离子的最大注入深度为150至200nm。

本发明还涉及具有陶瓷表面和金属核的金属粉末颗粒,并且更特别地具有对应于制成金属粉末颗粒的金属的碳化物或氮化物的表面。

由于这些特性,本发明提供了一种处理粉末状态的金属材料的方法,其中形成所述粉末的颗粒在深处保持其原始的金属结构,而从表面直至给定深度,轰击金属粉末颗粒的单电荷或多电荷离子填充金属晶体结构的晶格中的缺陷,然后与金属材料的原子结合形成陶瓷,即一种在环境温度下呈固态,既不是有机的也不是金属的。

应该注意的是,在离子注入处理之后,金属粉末颗粒准备好用于粉末冶金方法,例如注射成型,压制或增材制造,例如三维激光打印。此外,由于金属粉末颗粒的表面转变成陶瓷,特别是转变成构成所述颗粒的金属的碳化物和/或氮化物,因此所述金属粉末颗粒的机械和物理性能,特别是硬度,耐腐蚀性或摩擦学性能得到改善。当所述金属粉末用于生产固体部件时,保留了金属粉末颗粒的机械和物理性能的改善。

优选地,在离子注入过程的整个期间搅动形成金属粉末的颗粒,使得所述颗粒在其整个基本球形的表面上以均匀的方式暴露于注入束的离子。

应当指出,在现有技术中,通常用于获得陶瓷-金属类型材料的一种方法,称为“金属陶瓷”,包括以尽可能均匀的方式混合金属和陶瓷粉末,产生涂覆在金属层中的陶瓷颗粒。然而,该方法提出了如何精确地控制金属层的厚度以及金属层与陶瓷核之间的界面的质量的问题。

附图说明

参考附图,通过阅读以下对根据本发明的方法的一个示例性实施方式的详细描述,本发明的其他特征和优点将更加清楚地显现,所述示例仅出于说明性目的而提供,并不旨在限制本发明的范围,其中:

-图1,如上所述,是ECR电子回旋共振类型的多电荷离子源的示意图。

-图2是半径为约1微米且被C+碳离子束轰击的金颗粒Au的截面图。

图3是在本发明范围内使用的ECR电子回旋共振型多电荷离子源的示意图。

-图4A示出了C+碳离子在半径为约1微米的铂颗粒Pt中的注入分布;

-图4B是在半径为约1微米的大致球形的铂颗粒Pt的平面中的放大图,其示出了C+碳离子在颗粒中的穿透轨迹;

-图5A示出了N+氮离子在半径为约1微米的铂颗粒Pt中的注入分布;

-图5B是在半径为约1微米的铂颗粒Pt的平面中的放大图,其示出了N+氮离子在颗粒中的穿透轨迹。

-图6A示出了C+碳离子在半径为约1微米的金颗粒Au中的注入分布;

-图6B是在半径为约1微米的大致球形的金颗粒Au的平面中的放大图,其示出了C+碳离子在颗粒中的穿透轨迹;

-图7A示出了N+氮离子在半径为约1微米的金颗粒Au中的注入分布;和

-图7B是在半径为约1微米的金颗粒Au的平面中的放大图,其示出了N+氮离子在颗粒中的穿透轨迹。

本发明的一个实施方案的详细描述

本发明是从总的发明思想得出的,该思想包括使金属粉末的颗粒经受将离子注入到所述颗粒的表面中的处理过程。通过用单电荷或多电荷的离子轰击金属粉末的颗粒,这些离子在约15,000至35,000伏的电压下经历了明显的加速,可以看到所述离子开始填充金属晶体结构的晶格中的缺陷,然后看到与金属材料的原子结合形成陶瓷。在距金属粉末颗粒的表面一定深度处,它们被转变成陶瓷,例如转变成由其制成颗粒的金属的碳化物或氮化物。有利地,改善了具有陶瓷表面层的所述金属粉末颗粒的机械和物理性能,特别是硬度,耐腐蚀性或摩擦学性能。当所述金属粉末用于通过粉末冶金技术例如注射成型,压制,增材制造或其他技术来生产固体部件时,保留了具有陶瓷表面层的金属粉末颗粒的机械和物理性能的改善。术语“增材制造技术”在本文中应理解为由通过添加材料制造固体部件组成。在增材制造技术的情况下,通过逐渐添加基础原材料来创建固体部件,而在传统制造技术中,原材料被用作基础,并通过逐渐去除材料来获得所需的最终部件。

图2是金颗粒Au的截面图。整体上由通用附图标记20表示,该金颗粒具有半径R为约1微米的基本球形。所述金颗粒20已经用由附图标记22表示的C+碳离子束轰击。如图2所示,金颗粒20具有由纯金制成的核24和主要由碳化金构成的外层或壳26。

所述外层26的厚度e为约金颗粒20的半径R的十分之一,即为约100纳米。该外层26主要由作为陶瓷材料的碳化金构成。根据本发明,陶瓷材料的浓度从金颗粒20的外表面28到所述金颗粒20的半径R的约5%,即约50纳米增加,然后到金颗粒20的半径R的十分之一减小,在此处其基本上为零。

由于根据本发明的方法,获得了例如由金或铂制成的颗粒,其核由原始金属构成,而完全包围所述颗粒的核的外层由陶瓷材料构成。例如碳化物或氮化物,其是由金属原子与轰击颗粒的离子结合而成。

根据本发明,该方法使用由待处理的金属材料的多个颗粒形成的粉末。该金属材料可以是但不限于选自包括金和铂的组的贵金属。它也可以是选自包括镁,钛和铝的组的非贵金属。

选择了适合需要的金属后,通过将单电荷或多电荷离子束14引向所述颗粒的外表面,对金属粉末颗粒30进行离子注入过程,其中所述离子束通过ECR电子回旋共振类型的单电荷或多电荷离子源产生(见图3)。

优选地,然而,以非限制性方式,待电离的材料选自包括碳,氮,氧和氩的组,并且单电荷或多电荷离子在15,000至35,000伏的电压下被加速。注入的离子的剂量在1.1015至1.1017离子.cm-2的范围内。

金属粉末颗粒30具有半径为R的总体球形,并且其晶粒尺寸使得所有所述颗粒的约50%具有在1-2微米范围内的直径,由此金属粉末颗粒30的直径不超过50微米。优选地,在离子注入过程的整个期间搅拌金属粉末颗粒30,以确保所述颗粒以均匀的方式在其整个外表面上暴露于离子束14。

图4A示出了半径为约1微米的铂颗粒Pt中的C+碳离子的注入分布。横坐标沿铂颗粒Pt的半径R延伸,其中所述横坐标的原点对应于铂颗粒的外表面,和其中

Figure BDA0002357606520000061

的值对应于铂颗粒Pt的半径R长度的约20%。纵坐标显示在给定深度处注入铂颗粒Pt中的C+碳离子的数量。可以看出,注入铂颗粒Pt中的C+碳离子的数量从铂颗粒的外表面非常迅速地增加,在基本上对应于

Figure BDA0002357606520000062

的深度(即,铂颗粒半径R的约5%)达到超过14x104原子.cm-2的最大值。然后,C+碳离子的数量减少,并在约

Figure BDA0002357606520000063

的深度处接近零,即为铂颗粒Pt的半径R的约10%。

图4B是在大致球形的铂颗粒Pt的平面中的放大图,其半径为约1微米,并且示出了当各个C+,C++碳离子等穿透铂颗粒Pt时的平均自由轨迹。该图4B是针对约14×104原子·cm-2的密度绘制的。图4B中的横坐标显示了铂颗粒Pt在表面之间的深度。图4B中的纵坐标示出了C+碳离子束的直径。C+碳离子束的中心位于纵坐标高度的中间,介于

Figure BDA0002357606520000067

值之间。因此,在图4B中可以看出,C+碳离子束的近似直径为约150纳米,并且铂颗粒Pt中C+碳离子的穿透深度几乎不超过100纳米。

图5A示出了半径R为约1微米的铂颗粒Pt中的N+氮离子的注入分布。横坐标沿铂颗粒Pt的半径R延伸,其中所述横坐标的原点对应于铂颗粒Pt的外表面,和其中

Figure BDA0002357606520000068

的值对应于铂颗粒Pt的半径R的长度的约20%。纵坐标示出在给定深度处注入铂颗粒Pt中的N+氮离子的数量。可以看出,注入铂颗粒Pt中的N+氮离子的数量从铂颗粒Pt的外表面非常迅速地增加,在基本上对应于

Figure BDA0002357606520000069

的深度处(即,铂颗粒Pt的半径R的约5%)达到超过16x104原子.cm-2的最大值。然后,在距铂颗粒Pt的外表面约

Figure BDA0002357606520000071

的深度处,即所述铂颗粒Pt的半径R的约10%处,N+氮离子的数量减少并接近零。

通过比较图4A和5A,可以看出N+氮离子以比C+碳离子小的程度穿透铂颗粒Pt的晶格。

图5B是在大致球形的铂颗粒Pt的平面中的放大图,其半径为约1微米,并且示出了当单个N+,N++氮离子等穿透铂颗粒Pt时的平均自由轨迹。该图5B是针对约16×104原子.cm-2的密度绘制的。图4B中的横坐标显示了铂颗粒Pt在表面

Figure BDA0002357606520000072

Figure BDA0002357606520000073

之间的深度。图4B中的纵坐标示出了N+氮离子束的直径。N+离子束的中心位于纵坐标高度的中间,介于

Figure BDA0002357606520000074

Figure BDA0002357606520000075

的值之间。因此,在图5B中可以看出,N+离子束的近似直径为约150纳米,并且N+离子在铂颗粒Pt中的穿透深度略小于100纳米。因此清楚的是,N+离子以比C+离子小的程度穿透铂颗粒。

图6A示出了C+碳离子在金颗粒Au中的注入分布,其半径R为约1微米。横坐标沿金颗粒Au的半径R延伸,其中所述横坐标的原点对应于金颗粒Au的外表面,和其中

Figure BDA0002357606520000076

的值对应于金颗粒的半径R的约20%。纵坐标表示在给定深度下金颗粒Au中注入的C+碳离子的数量。可以看出,金颗粒Au中注入的C+碳离子的数量从金颗粒Au的外表面迅速增加,在

Figure BDA0002357606520000077

的深度处(即,金颗粒Au的半径R的约5%)达到超过12x104原子.cm-2的最大值。然后,离子的数量减少并且在金颗粒Au的外表面下方约1,000nm处接近零,即,该颗粒的半径R的长度的约10%处。

图6B是在大致球形的金颗粒Au的平面中的放大图,其半径为约1微米,并且示出了当单个C+,C++碳离子等穿透金颗粒Au时的平均自由轨迹。该图6B是针对约12×104原子.cm-2的离子密度绘制的。图6B中的横坐标显示了金颗粒Au在表面

Figure BDA0002357606520000078

Figure BDA0002357606520000079

之间的深度。图6B中的纵坐标示出了C+碳离子束的直径。C+离子束的中心位于纵坐标高度的中间,介于

Figure BDA00023576065200000710

的值之间。因此,在图6B中可以看出,C+离子束的近似直径为约150纳米,并且C+离子在金颗粒Au中的穿透深度略微超过100纳米。

图7A示出了半径为约1微米的金颗粒Au中的N+氮离子的注入分布。横坐标沿金颗粒Au的半径R延伸,其中所述横坐标的原点对应于金颗粒Au的外表面,和其中

Figure BDA0002357606520000081

的值对应于金颗粒的半径R的约20%。纵坐标显示在给定深度下金颗粒Au中注入的N+氮离子的数量。可以看出,金颗粒Au中注入的N+氮离子的数量从金颗粒Au的外表面非常迅速地增加,在

Figure BDA0002357606520000082

的深度达到超过14x104原子.cm-2的最大值,即金颗粒Au的半径R的长度的约5%处。然后,N+氮离子的数量减少并且在金颗粒Au的外表面以下约1,000nm处接近零,即,该颗粒的半径R的长度的约10%。

图7B是在大致球形的金颗粒Au的平面中的放大图,其半径为约1微米,并且示出了当单个N+,N++氮离子等穿透金颗粒Au时的平均自由轨迹。该图7B是针对约14x104原子·cm-2的离子密度绘制的。图7B中的横坐标显示了金颗粒Au在表面

Figure BDA0002357606520000084

之间的深度。图7B中的纵坐标示出了N+偶氮离子束的直径。N+氮离子束的中心位于纵坐标高度的中间,介于

Figure BDA0002357606520000085

Figure BDA0002357606520000086

的值之间。因此,在图7B中可以看出,N+氮离子束的近似直径为约150纳米,并且N+离子在铂颗粒Pt中的穿透深度为约100纳米。因此清楚的是,N+氮离子比C+离子穿透金颗粒Au的程度要小。

显然,本发明不限于上述实施方案,并且本领域的普通技术人员可以考虑各种简单的替代方案和修改,而不脱离由所附权利要求限定的本发明的范围。特别地,应理解,ECR电子回旋共振类型的离子注入方法以优选实例的形式规定,但绝不限制本发明的范围,并且可以考虑其他热等离子体产生方法,例如通过感应或使用微波发生器产生的强磁场。还应注意,通过透射电子显微镜对用氮注入的平均直径为2.0微米的蓝宝石颗粒进行的其他测量证实,在离子注入后,蓝宝石颗粒具有厚度为约150至200纳米的陶瓷壳。还应注意,被照射的颗粒的体积与颗粒的总体积之比等于约14%。从申请人的角度来看,通过根据本发明的离子注入方法获得的粉末不是真正的复合材料。更具体地说,就其广泛接受的意义而言,复合材料是两种不同材料,即基质和增强材料的组合的结果。在这种情况下,本描述仅涉及一种离子轰击导致表面化学结构改变的单一材料。因此,这可以优选地称为异质材料。最后,应注意,根据本发明,ECR离子源能够产生单电荷离子,即电离度等于1的离子,或多电荷离子,即电离度大于1的离子。还应该注意,离子束可以包含全部具有相同电离度的离子,或者可以由具有不同电离度的离子的混合物产生。

命名法

1.ECR多电荷离子源

2.注射阶段

4.被电离的气体量

6.微波

8.磁约束阶段

10.等离子

12.提取阶段

12a.阳极

12b.阴极

14.多电荷离子束

16.表面

18.待处理部件

20.金颗粒金

R.半径

22.C+碳离子束

24.核

26.外层或壳

e.厚度

28.外表面

30.金属粉末颗粒

具体实施方式

参考附图,通过阅读以下对根据本发明的方法的一个示例性实施方式的详细描述,本发明的其他特征和优点将更加清楚地显现,所述示例仅出于说明性目的而提供,并不旨在限制本发明的范围,其中:

-图1,如上所述,是ECR电子回旋共振类型的多电荷离子源的示意图。

-图2是半径为约1微米且被C+碳离子束轰击的金颗粒Au的截面图。

图3是在本发明范围内使用的ECR电子回旋共振型多电荷离子源的示意图。

-图4A示出了C+碳离子在半径为约1微米的铂颗粒Pt中的注入分布;

-图4B是在半径为约1微米的大致球形的铂颗粒Pt的平面中的放大图,其示出了C+碳离子在颗粒中的穿透轨迹;

-图5A示出了N+氮离子在半径为约1微米的铂颗粒Pt中的注入分布;

-图5B是在半径为约1微米的铂颗粒Pt的平面中的放大图,其示出了N+氮离子在颗粒中的穿透轨迹。

-图6A示出了C+碳离子在半径为约1微米的金颗粒Au中的注入分布;

-图6B是在半径为约1微米的大致球形的金颗粒Au的平面中的放大图,其示出了C+碳离子在颗粒中的穿透轨迹;

-图7A示出了N+氮离子在半径为约1微米的金颗粒Au中的注入分布;和

-图7B是在半径为约1微米的金颗粒Au的平面中的放大图,其示出了N+氮离子在颗粒中的穿透轨迹。

本发明的一个实施方案的详细描述

本发明是从总的发明思想得出的,该思想包括使金属粉末的颗粒经受将离子注入到所述颗粒的表面中的处理过程。通过用单电荷或多电荷的离子轰击金属粉末的颗粒,这些离子在约15,000至35,000伏的电压下经历了明显的加速,可以看到所述离子开始填充金属晶体结构的晶格中的缺陷,然后看到与金属材料的原子结合形成陶瓷。在距金属粉末颗粒的表面一定深度处,它们被转变成陶瓷,例如转变成由其制成颗粒的金属的碳化物或氮化物。有利地,改善了具有陶瓷表面层的所述金属粉末颗粒的机械和物理性能,特别是硬度,耐腐蚀性或摩擦学性能。当所述金属粉末用于通过粉末冶金技术例如注射成型,压制,增材制造或其他技术来生产固体部件时,保留了具有陶瓷表面层的金属粉末颗粒的机械和物理性能的改善。术语“增材制造技术”在本文中应理解为由通过添加材料制造固体部件组成。在增材制造技术的情况下,通过逐渐添加基础原材料来创建固体部件,而在传统制造技术中,原材料被用作基础,并通过逐渐去除材料来获得所需的最终部件。

图2是金颗粒Au的截面图。整体上由通用附图标记20表示,该金颗粒具有半径R为约1微米的基本球形。所述金颗粒20已经用由附图标记22表示的C+碳离子束轰击。如图2所示,金颗粒20具有由纯金制成的核24和主要由碳化金构成的外层或壳26。

所述外层26的厚度e为约金颗粒20的半径R的十分之一,即为约100纳米。该外层26主要由作为陶瓷材料的碳化金构成。根据本发明,陶瓷材料的浓度从金颗粒20的外表面28到所述金颗粒20的半径R的约5%,即约50纳米增加,然后到金颗粒20的半径R的十分之一减小,在此处其基本上为零。

由于根据本发明的方法,获得了例如由金或铂制成的颗粒,其核由原始金属构成,而完全包围所述颗粒的核的外层由陶瓷材料构成。例如碳化物或氮化物,其是由金属原子与轰击颗粒的离子结合而成。

根据本发明,该方法使用由待处理的金属材料的多个颗粒形成的粉末。该金属材料可以是但不限于选自包括金和铂的组的贵金属。它也可以是选自包括镁,钛和铝的组的非贵金属。

选择了适合需要的金属后,通过将单电荷或多电荷离子束14引向所述颗粒的外表面,对金属粉末颗粒30进行离子注入过程,其中所述离子束通过ECR电子回旋共振类型的单电荷或多电荷离子源产生(见图3)。

优选地,然而,以非限制性方式,待电离的材料选自包括碳,氮,氧和氩的组,并且单电荷或多电荷离子在15,000至35,000伏的电压下被加速。注入的离子的剂量在1.1015至1.1017离子.cm-2的范围内。

金属粉末颗粒30具有半径为R的总体球形,并且其晶粒尺寸使得所有所述颗粒的约50%具有在1-2微米范围内的直径,由此金属粉末颗粒30的直径不超过50微米。优选地,在离子注入过程的整个期间搅拌金属粉末颗粒30,以确保所述颗粒以均匀的方式在其整个外表面上暴露于离子束14。

图4A示出了半径为约1微米的铂颗粒Pt中的C+碳离子的注入分布。横坐标沿铂颗粒Pt的半径R延伸,其中所述横坐标的原点对应于铂颗粒的外表面,和其中

Figure BDA0002357606520000061

的值对应于铂颗粒Pt的半径R长度的约20%。纵坐标显示在给定深度处注入铂颗粒Pt中的C+碳离子的数量。可以看出,注入铂颗粒Pt中的C+碳离子的数量从铂颗粒的外表面非常迅速地增加,在基本上对应于

Figure BDA0002357606520000062

的深度(即,铂颗粒半径R的约5%)达到超过14x104原子.cm-2的最大值。然后,C+碳离子的数量减少,并在约

Figure BDA0002357606520000063

的深度处接近零,即为铂颗粒Pt的半径R的约10%。

图4B是在大致球形的铂颗粒Pt的平面中的放大图,其半径为约1微米,并且示出了当各个C+,C++碳离子等穿透铂颗粒Pt时的平均自由轨迹。该图4B是针对约14×104原子·cm-2的密度绘制的。图4B中的横坐标显示了铂颗粒Pt在表面之间的深度。图4B中的纵坐标示出了C+碳离子束的直径。C+碳离子束的中心位于纵坐标高度的中间,介于

Figure BDA0002357606520000067

值之间。因此,在图4B中可以看出,C+碳离子束的近似直径为约150纳米,并且铂颗粒Pt中C+碳离子的穿透深度几乎不超过100纳米。

图5A示出了半径R为约1微米的铂颗粒Pt中的N+氮离子的注入分布。横坐标沿铂颗粒Pt的半径R延伸,其中所述横坐标的原点对应于铂颗粒Pt的外表面,和其中

Figure BDA0002357606520000068

的值对应于铂颗粒Pt的半径R的长度的约20%。纵坐标示出在给定深度处注入铂颗粒Pt中的N+氮离子的数量。可以看出,注入铂颗粒Pt中的N+氮离子的数量从铂颗粒Pt的外表面非常迅速地增加,在基本上对应于

Figure BDA0002357606520000069

的深度处(即,铂颗粒Pt的半径R的约5%)达到超过16x104原子.cm-2的最大值。然后,在距铂颗粒Pt的外表面约

Figure BDA0002357606520000071

的深度处,即所述铂颗粒Pt的半径R的约10%处,N+氮离子的数量减少并接近零。

通过比较图4A和5A,可以看出N+氮离子以比C+碳离子小的程度穿透铂颗粒Pt的晶格。

图5B是在大致球形的铂颗粒Pt的平面中的放大图,其半径为约1微米,并且示出了当单个N+,N++氮离子等穿透铂颗粒Pt时的平均自由轨迹。该图5B是针对约16×104原子.cm-2的密度绘制的。图4B中的横坐标显示了铂颗粒Pt在表面

Figure BDA0002357606520000072

Figure BDA0002357606520000073

之间的深度。图4B中的纵坐标示出了N+氮离子束的直径。N+离子束的中心位于纵坐标高度的中间,介于

Figure BDA0002357606520000074

Figure BDA0002357606520000075

的值之间。因此,在图5B中可以看出,N+离子束的近似直径为约150纳米,并且N+离子在铂颗粒Pt中的穿透深度略小于100纳米。因此清楚的是,N+离子以比C+离子小的程度穿透铂颗粒。

图6A示出了C+碳离子在金颗粒Au中的注入分布,其半径R为约1微米。横坐标沿金颗粒Au的半径R延伸,其中所述横坐标的原点对应于金颗粒Au的外表面,和其中

Figure BDA0002357606520000076

的值对应于金颗粒的半径R的约20%。纵坐标表示在给定深度下金颗粒Au中注入的C+碳离子的数量。可以看出,金颗粒Au中注入的C+碳离子的数量从金颗粒Au的外表面迅速增加,在

Figure BDA0002357606520000077

的深度处(即,金颗粒Au的半径R的约5%)达到超过12x104原子.cm-2的最大值。然后,离子的数量减少并且在金颗粒Au的外表面下方约1,000nm处接近零,即,该颗粒的半径R的长度的约10%处。

图6B是在大致球形的金颗粒Au的平面中的放大图,其半径为约1微米,并且示出了当单个C+,C++碳离子等穿透金颗粒Au时的平均自由轨迹。该图6B是针对约12×104原子.cm-2的离子密度绘制的。图6B中的横坐标显示了金颗粒Au在表面

Figure BDA0002357606520000078

Figure BDA0002357606520000079

之间的深度。图6B中的纵坐标示出了C+碳离子束的直径。C+离子束的中心位于纵坐标高度的中间,介于

Figure BDA00023576065200000710

的值之间。因此,在图6B中可以看出,C+离子束的近似直径为约150纳米,并且C+离子在金颗粒Au中的穿透深度略微超过100纳米。

图7A示出了半径为约1微米的金颗粒Au中的N+氮离子的注入分布。横坐标沿金颗粒Au的半径R延伸,其中所述横坐标的原点对应于金颗粒Au的外表面,和其中

Figure BDA0002357606520000081

的值对应于金颗粒的半径R的约20%。纵坐标显示在给定深度下金颗粒Au中注入的N+氮离子的数量。可以看出,金颗粒Au中注入的N+氮离子的数量从金颗粒Au的外表面非常迅速地增加,在

Figure BDA0002357606520000082

的深度达到超过14x104原子.cm-2的最大值,即金颗粒Au的半径R的长度的约5%处。然后,N+氮离子的数量减少并且在金颗粒Au的外表面以下约1,000nm处接近零,即,该颗粒的半径R的长度的约10%。

图7B是在大致球形的金颗粒Au的平面中的放大图,其半径为约1微米,并且示出了当单个N+,N++氮离子等穿透金颗粒Au时的平均自由轨迹。该图7B是针对约14x104原子·cm-2的离子密度绘制的。图7B中的横坐标显示了金颗粒Au在表面

Figure BDA0002357606520000084

之间的深度。图7B中的纵坐标示出了N+偶氮离子束的直径。N+氮离子束的中心位于纵坐标高度的中间,介于

Figure BDA0002357606520000085

Figure BDA0002357606520000086

的值之间。因此,在图7B中可以看出,N+氮离子束的近似直径为约150纳米,并且N+离子在铂颗粒Pt中的穿透深度为约100纳米。因此清楚的是,N+氮离子比C+离子穿透金颗粒Au的程度要小。

显然,本发明不限于上述实施方案,并且本领域的普通技术人员可以考虑各种简单的替代方案和修改,而不脱离由所附权利要求限定的本发明的范围。特别地,应理解,ECR电子回旋共振类型的离子注入方法以优选实例的形式规定,但绝不限制本发明的范围,并且可以考虑其他热等离子体产生方法,例如通过感应或使用微波发生器产生的强磁场。还应注意,通过透射电子显微镜对用氮注入的平均直径为2.0微米的蓝宝石颗粒进行的其他测量证实,在离子注入后,蓝宝石颗粒具有厚度为约150至200纳米的陶瓷壳。还应注意,被照射的颗粒的体积与颗粒的总体积之比等于约14%。从申请人的角度来看,通过根据本发明的离子注入方法获得的粉末不是真正的复合材料。更具体地说,就其广泛接受的意义而言,复合材料是两种不同材料,即基质和增强材料的组合的结果。在这种情况下,本描述仅涉及一种离子轰击导致表面化学结构改变的单一材料。因此,这可以优选地称为异质材料。最后,应注意,根据本发明,ECR离子源能够产生单电荷离子,即电离度等于1的离子,或多电荷离子,即电离度大于1的离子。还应该注意,离子束可以包含全部具有相同电离度的离子,或者可以由具有不同电离度的离子的混合物产生。

命名法

1.ECR多电荷离子源

2.注射阶段

4.被电离的气体量

6.微波

8.磁约束阶段

10.等离子

12.提取阶段

12a.阳极

12b.阴极

14.多电荷离子束

16.表面

18.待处理部件

20.金颗粒金

R.半径

22.C+碳离子束

24.核

26.外层或壳

e.厚度

28.外表面

30.金属粉末颗粒

19页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:泵送线布置中的改进或与其相关的改进

相关技术

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类