一种与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层及其制备方法

文档序号:1609640 发布日期:2020-01-10 浏览:24次 >En<

阅读说明:本技术 一种与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层及其制备方法 ([db:专利名称-en]) 是由 鲜广 赵海波 鲜丽君 于 2019-10-14 设计创作,主要内容包括:本发明公布的与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层复合涂层是由CoNiCrAlY高熵合金粘结层、α-Cr&lt;Sub&gt;2&lt;/Sub&gt;O&lt;Sub&gt;3&lt;/Sub&gt;氧化物模板层、α-Al&lt;Sub&gt;2&lt;/Sub&gt;O&lt;Sub&gt;3&lt;/Sub&gt;氧化物支撑层、ZrAlN氮化物耐磨层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1~2.5μm。其制备方法为:对金属陶瓷基底进行加热和离子刻蚀后,先利用电弧蒸发镀工艺在基底上沉积CoNiCrAlY层;然后使用磁控溅射工艺,再继续依次沉积α-Cr&lt;Sub&gt;2&lt;/Sub&gt;O&lt;Sub&gt;3&lt;/Sub&gt;层、α-Al&lt;Sub&gt;2&lt;/Sub&gt;O&lt;Sub&gt;3&lt;/Sub&gt;层和ZrAlN层。高熵合金层的使用和不同功能子层的结合使涂层各子层之间以及涂层与金属陶瓷基底之间结合牢固,同时涂层具有良好的综合性能,且工艺简单,易于掌握控制。([db:摘要-en])

一种与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层及 其制备方法

技术领域

本发明属于切削刀具表面涂层技术领域,具体涉及一种与金属陶瓷结合牢固的氮氧化物复合涂层及其制备方法。

背景技术

金属陶瓷硬度高,耐磨性为普通硬质合金的数倍,而且金属陶瓷的高温性能好;另一方面,金属陶瓷比重轻,约为硬质合金的1/3,金属陶瓷被用作切削刀具具有非常高的性价比。事实证明,金属陶瓷刀具与被加工金属的化学亲和性小,摩擦系数低,抗粘结和抗扩散能力强,切削时不易产生积屑瘤,加工表面质量好。金属陶瓷刀具除适合于加工普通铸件与钢材外,也可加工淬硬钢、高强度钢、冷硬铸铁和镍基高温合金等难加工材料,并能以车、铣代磨,提高生产效率。尽管金属陶瓷刀具的硬度高,但由于金属陶瓷成分与织组中仍然含有大量的金属粘结相(软相),金属陶瓷刀具的硬度和耐磨性仍不及陶瓷刀具,而陶瓷刀具的韧性又太低,应用有限。

在金属陶瓷刀具表面沉积陶瓷涂层,可兼顾硬度、耐磨性与韧性,涂层金属陶瓷刀具的切削性能由此进一步大幅提高。然而,随着切削加工技术的快速发展以及新的难加工材料层出不穷,单一结构的氮化物陶瓷涂层或氧化物陶瓷涂层已经很难满足切削加工要求,特别是高温度条件下的切削加工,不仅要求涂层具有良好的高温力学性能,而且对涂层的化学稳定性、抗氧化性提出了高的要求。因此,新的具有复杂化学成分与结构的多重复合涂层呼之欲出。此外,金属陶瓷与涂层的结合强度较硬质合金与涂层的结合强度低,该问题也亟需解决。

发明内容

本发明的目的是克服现有技术存在的问题,提供一种与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层复合涂层。

本发明的另一目的是提供一种上述与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层复合涂层的制备方法。

本发明提供的与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物支撑层、氮化物耐磨层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1~2.5μm。

其中,上述涂层中,所述高熵合金粘结层为CoaNibCrcAldYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为100~200nm。

其中,上述涂层中,所述氧化物模板层为α-Cr2O3,厚度为100~300nm;所述氧化物支撑层为α-Al2O3,厚度为500~1000nm;所述氮化物耐磨层为ZrAlN,厚度为300~1000nm。

本发明提供的上述与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层复合涂层的制备方法,包括以下步骤:

A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热;

B、对基底表面进行离子刻蚀;

C、利用电弧蒸镀工艺制备高熵合金粘结层;

D、利用磁控溅射工艺制备氧化物模板层;

E、利用磁控溅射工艺制备氧化物支撑层;

F、利用磁控溅射工艺制备氮化物耐磨层。

其中,上述方法步骤A中,所述抽真空并加热是先将背底真空抽至0.05Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃。

其中,上述方法步骤B中,所述离子刻蚀是向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min。

其中,上述方法步骤C中,所述电弧蒸镀工艺制备高熵合金粘结的工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为190~220A,蒸镀坩埚内放置的材料为CoaNibCrcAldYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为7~10min。

其中,上述方法步骤D中,所述磁控溅射工艺制备氧化物模板层的工作气体为Ar+O2,工作压强为0.2~0.45Pa,工作靶材为Cr溅射靶,靶电流为3~7A,基底施加的偏压为-50~-110V,沉积时间10~30min。

其中,上述方法步骤E中,所述磁控溅射工艺制备氧化物支撑层的工作气体为Ar+O2,工作压强为0.2~0.45Pa,工作靶材为Al溅射靶,靶电流为3~7A,基底施加的偏压为-50~-110V,沉积时间60~120min。

其中,上述方法步骤F中,所述磁控溅射工艺制备氮化物耐磨层的工作气体为Ar+N2,工作压强为0.2~0.45Pa,工作靶材为ZrAl合金溅射靶,靶电流为3~7A,基底施加的偏压为-50~-110V,沉积时间30~90min。

本发明与现有技术相比,具有如下优点:

1)本发明提供的与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层复合涂层由功能与成分均不同的四个子层构成,首先,高熵合金粘结层相比于传统的Cr、Ti纯金属粘结层及TiAl合金粘结层而言,具有更高的强韧性,能在刀具基底材料与表面涂层材料之间起到很好的粘结作用,使涂层与基底结合牢固,解决了金属陶瓷与涂层结合强度较低的问题;其次,使用的α-Cr2O3氧化物模板层有利于Al2O3按照α-Cr2O3的晶体结构结构外延生长,解决了物理气相沉积法由于温度低制备α-Al2O3困难的问题;再次,α-Al2O3氧化物支撑层与ZrAlN氮化物耐磨层相结合,避免了单纯氧化物涂层硬度低、耐磨性不足的问题和单纯氮化物涂层热稳定性差、抗氧化性能不足的问题。

2)本发明提供的与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层复合涂层的制备方法是一种以磁控溅射沉积为主、蒸发镀工艺制备粘结层为辅的组合式离子镀工艺。镀膜前通过加热使基底材料中吸附的杂质释放,同时采用离化的Ar+对基底表面进行轰击刻蚀,增强了涂层与基底的结合;采用电弧蒸镀工艺蒸发高熵合金材料,在基底上沉积高熵合金粘结层,进一步地增强涂层与基底的结合能力且保持良好的韧性,电弧蒸发镀制备粘结层的优势是,沉积速率快,蒸发原料的尺寸、形状几乎不受限制,称重后装入蒸发坩埚内即可,而采用磁控溅射沉积粘结层,则需要将蒸发原料制成具有一定形状和尺寸的靶材,且溅射沉积的涂层结合性能差;但采用磁控溅射工艺制备中间层和表层可使涂层整体获得高的表面质量。在沉积涂层过程中,通过切换不同的靶工作,很容易多层复合涂层的制备,操作工艺简单且易于掌握和控制。

具体实施方式

下面通过具体实施例对本发明作进一步的说明,但本发明保护的内容不局限于以下实施例。

实施例1

将清洁的金属陶瓷基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.20Pa,然后对基底施加-100V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀70min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.15Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为190A,蒸发原料为Co0.15Ni0.15Cr0.4Al0.15Y0.15块,蒸发沉积10min;关闭主弧电源,开启Cr溅射靶,靶电流设为7A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为0.3Pa,对基底施加偏压-110V,沉积30min;开启Al电弧靶,靶电流设为6A,然后关闭纯Cr电弧靶电源,调节气体流量,控制压强为0.2Pa,基底偏压保持不变继续沉积120min;开启ZrAl合金电弧靶,靶电流设为5A,然后关闭Al电弧靶电源,通入氮气,关闭氧气,调节气体流量使压强保持0.25Pa,靶电流调节为3A,基底偏压设置为-50V,沉积90min后结束。制备的与金属陶瓷结合牢固的氮氧化物复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层和ZrAlN氮化物耐磨层共四个子层组成,各个子层之间以及涂层与基底结合牢固,具有良好的综合性能。

实施例2

将清洁的金属陶瓷基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.15Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.2Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为220A,蒸发原料为Co0.2Ni0.2Cr0.2Al0.2Y0.2块,蒸发沉积7min;关闭主弧电源,开启Cr电弧靶,靶电流设为3A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为0.45Pa,对基底施加偏压-90V,沉积10min;开启Al电弧靶,靶电流设为3A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为0.45Pa,基底偏压调节为-110V,沉积60min;开启ZrAl合金电弧靶,靶电流设为3A,然后关闭纯Al电弧靶电源,通入氮气,关闭氧气,调节气体流量使压强为0.2Pa,靶电流调节为7A,基底偏压调节为-50V,沉积30min后结束。制备的与金属陶瓷结合牢固的氮氧化物复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层和ZrAlN氮化物耐磨层共四个子层组成,各个子层之间以及涂层与基底结合牢固,具有良好的综合性能。

实施例3

将清洁的金属陶瓷基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.15Pa,然后对基底施加-100V的直流偏压和-200V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀90min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.2Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为205A,蒸发原料为Co0.2Ni0.2Cr0.2Al0.2Y0.2块,蒸发沉积9min;关闭主弧电源,开启Cr电弧靶,靶电流设为5A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为0.2Pa,对基底施加偏压-70V,沉积15min;开启Al电弧靶,靶电流设为4A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为0.45Pa,基底偏压调节为-100V,沉积90min;开启ZrAl合金电弧靶,靶电流设为5A,然后关闭纯Al电弧靶电源,通入氮气,关闭氧气,调节气体流量使压强为0.35Pa,靶电流调节为5.5A,基底偏压调节为-50V,沉积50min后结束。制备的与金属陶瓷结合牢固的氮氧化物复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层和ZrAlN氮化物耐磨层共四个子层组成,各个子层之间以及涂层与基底结合牢固,具有良好的综合性能。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于真空镀膜机的高温加热辊装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!