半导体装置以及半导体装置的制造方法

文档序号:1343690 发布日期:2020-07-17 浏览:34次 >En<

阅读说明:本技术 半导体装置以及半导体装置的制造方法 (Semiconductor device and method for manufacturing semiconductor device ) 是由 小川翔平 藤野纯司 石川悟 重本拓巳 石山祐介 于 2018-11-29 设计创作,主要内容包括:具备:绝缘基板(1),陶瓷基材(1b)和冷却用翼片(1a)成为一体;板状的布线部件(5);以及半导体元件(3a),一面经由芯片下焊料(4)接合到绝缘基板(1)的陶瓷基材(1b)侧,另一面以使多个板状的布线部件(5)分别对应的方式经由芯片上焊料(6)接合到多个板状的布线部件(5),芯片下焊料(4)以及芯片上焊料(6)都包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分,不会损害散热性而实现小型化。(The disclosed device is provided with: an insulating substrate (1) in which a ceramic base (1b) and a cooling fin (1a) are integrated; a plate-like wiring member (5); and a semiconductor element (3a) having one surface bonded to the ceramic base material (1b) side of the insulating substrate (1) via an under-chip solder (4) and the other surface bonded to the plurality of plate-like wiring members (5) via an on-chip solder (6) so that the plurality of plate-like wiring members (5) correspond to each other, wherein the under-chip solder (4) and the on-chip solder (6) each contain 0.3 wt% to 3 wt% Ag and 0.5 wt% to 1 wt% Cu, and contain Sn as a main component, thereby achieving miniaturization without impairing heat dissipation.)

半导体装置以及半导体装置的制造方法

技术领域

本申请涉及在芯片上焊接板状的布线部件的构造的半导体装置以及半导体装置的制造方法。

背景技术

在电力用半导体装置中,通过向与冷却用的翼片成为一体的绝缘基板直接焊接芯片,降低热阻。另外,通过设为对芯片上的布线并非线键合而是焊接引线的构造,实现模块的小型化。

在专利文献1中,公开了如下的模块:通过在与冷却用的翼片成为一体的绝缘基板搭载芯片,相比于使基板和翼片隔着润滑脂接触,能够降低热阻,能够实现小型化。另外,在专利文献1以及专利文献2中,公开了如下的模块:通过将芯片上的布线设为焊接板状的布线部件的构造,相比于线键合的情况,能够提高电流密度,能够实现小型化。另外,在专利文献2以及专利文献3中,公开了如下的模块:在芯片和基板、芯片和引线的接合中使用Sn-Ag-Cu系焊料。

现有技术文献

专利文献

专利文献1:日本特许第6065973号公报(段落0012~0015、图1)

专利文献2:日本特开2007-157863号公报(段落0012~0013、图1)

专利文献3:日本特许2005-183568号公报(段落0008、图1)

发明内容

在使用上述专利文献1至专利文献3的构造的情况下,在将芯片焊接到绝缘基板时,由于有冷却用的翼片而热容量变大,由于有翼片而与冷却板的接触面积变小,所以相比于平板的情况,冷却速度降低,有时在芯片和与冷却用的翼片成为一体的绝缘基板之间的焊料中产生如缩孔那样的空隙,在存在空隙时,存在散热性受到损害这样的问题。

本申请是为了解决如上述那样的课题而完成的,其目的在于得到不会损害散热性而能够实现小型化的半导体装置以及半导体装置的制造方法。

本申请公开的半导体装置的特征在于,具备:基板,绝缘部件和冷却用翼片成为一体;板状布线部件;以及半导体元件,背面侧经由第一焊料接合到所述基板的绝缘部件的布线图案侧,表面侧以与所述板状布线部件对应的方式经由第二焊料接合到所述板状布线部件,所述第一焊料包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分。

本申请公开的半导体装置的制造方法的特征在于,包括:经由第一焊料通过第一回流焊接合半导体元件的背面侧与绝缘部件和冷却用翼片成为一体的基板的所述绝缘部件的布线图案侧的工序;以及以使板状布线部件与所述半导体元件对应的方式,经由第二焊料通过第二回流焊接合所述半导体元件的表面侧和所述板状布线部件的工序,所述第一焊料包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分。

另外,本申请公开的半导体装置的制造方法的特征在于,包括:经由第一焊料通过第一回流焊接合形成于半导体元件的背面侧的金属膜与设置于绝缘部件和冷却用翼片成为一体的基板的所述绝缘部件的布线图案侧的金属膜的工序;以及以使所述板状布线部件与所述半导体元件对应的方式,经由第二焊料通过第二回流焊接合形成于所述半导体元件的表面侧的金属膜和板状布线部件的工序,在经由所述第一焊料接合的工序中,作为所述第一焊料,使用包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料,通过将形成于所述半导体元件的背面侧的金属膜和在所述基板的绝缘部件的布线图案侧设置的电极图案表面侧的金属膜的至少任一方设为Ag制,通过第一回流焊将所述第一焊料设为包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料。

另外,本申请公开的半导体装置的制造方法的特征在于,包括:经由第一焊料通过第一回流焊接合形成于半导体元件的背面侧的金属膜与在绝缘部件和冷却用翼片成为一体的基板的绝缘部件的布线图案侧设置的电极图案表面侧的金属膜的工序;以及以使所述板状布线部件与所述半导体元件对应的方式,经由第二焊料通过第二回流焊接合形成于所述半导体元件的表面侧的金属膜和板状布线部件的工序,在经由所述第一焊料接合的工序中,作为所述第一焊料,使用包含0.3wt%以上且3wt%以下Ag、以Sn为主成分的焊料,通过将形成于所述半导体元件的背面侧的金属膜和在所述基板的绝缘部件的布线图案侧设置的电极图案表面侧的金属膜的至少任一方设为Cu制,通过第一回流焊将所述第一焊料设为包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料。

根据本申请,通过在半导体元件的接合中使用包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料,能够抑制缩孔,能够不损害散热性而实现小型化。

附图说明

图1是示出实施方式1所涉及的半导体装置的主要部分的结构的俯视示意图。

图2是示出实施方式1所涉及的半导体装置的主要部分的结构的剖面示意图。

图3是示出实施方式1所涉及的半导体装置中的芯片的结构的剖面示意图。

图4是示出以往的半导体装置中的焊料中的缩孔的状态的俯视示意图。

图5是用于说明在实施方式1所涉及的半导体装置中使用的焊料的组成的根据的图。

图6是示出使用在实施方式1所涉及的半导体装置中使用的焊料的组成以外的焊料组成时的状态的流程图。

图7是示出使用在实施方式1所涉及的半导体装置中使用的焊料的组成以外的焊料组成时的状态的流程图。

图8是示出使用在实施方式1所涉及的半导体装置中使用的焊料的组成以外的焊料组成时的状态的流程图。

图9是示出使用在实施方式1所涉及的半导体装置中使用的焊料的组成以外的焊料组成时的状态的流程图。

图10是示出用于说明使用在实施方式1所涉及的半导体装置中使用的焊料的组成以外的焊料组成的情况的状态的Cu浓度和合金层的厚度的关系的图。

图11是用于说明在实施方式1所涉及的半导体装置中使用的焊料的组成的Sn-Cu焊料的二元状态图。

图12是示出用于说明在实施方式1所涉及的半导体装置中使用的焊料的组成的镀Ni的维氏硬度和温度的关系的图。

图13是用于说明在实施方式1所涉及的半导体装置中使用的焊料的组成的Sn-Ag-Cu焊料的三元状态图。

图14是用于说明实施方式1所涉及的半导体装置中的焊料中的基于Ag的浓度的缩孔的状态的图。

图15是用于说明实施方式1所涉及的半导体装置中的金属膜中的基于Ag的浓度的主形变的状态的图。

图16是示出实施方式1所涉及的半导体装置的制造工序的剖面示意图。

图17是示出实施方式1所涉及的半导体装置的主要部分的其他结构的俯视示意图以及剖面示意图。

图18是示出实施方式1所涉及的半导体装置的主要部分的其他结构的俯视示意图以及剖面示意图。

图19是示出实施方式3所涉及的半导体装置的主要部分的结构的俯视示意图。

图20是示出实施方式3所涉及的半导体装置的主要部分的结构的剖面示意图。

(符号说明)

1:绝缘基板;1a:冷却用翼片;1b:陶瓷基材;1c:电极图案;1d:金属膜;2:隔件;3:芯片;3a:半导体元件;3b、3c、3d:金属膜;4:芯片下焊料;5:布线部件;6:芯片上焊料;10:抗蚀剂;101、102、103:半导体装置。

具体实施方式

实施方式1.

以下,参照附图,说明实施方式1所涉及的半导体装置的结构。此外,在各图中,对同一或者同样的结构部分附加相同的符号。在各图之间的图示中,对应的各结构部的尺寸以及比例尺分别独立,例如在将结构的一部分变更的剖面图之间未变更的同一结构部分的图示中,同一结构部分的尺寸以及比例尺也有时不同。另外,半导体装置的结构实际上还具备多个部件,但为了简化说明,仅记载说明所需的部分,省略其他部分(例如外部端子等)。进而,实际的结构有并联地连接同一部件的情况或者串联连接开关元件和二极管等整流元件的情况,但这些也为了简化而省略。

图1是从上部观察本实施方式1所涉及的半导体装置101时的俯视图。图2是图1的AA向视剖面图。如图1以及图2所示,半导体装置101包括与冷却用翼片1a成为一体的绝缘基板1、芯片3、将芯片3与外部电连接的板状的布线部件(第一布线部件和第二布线部件)5和线8、在壳体7内覆盖芯片3的连接部的密封树脂部9。

绝缘基板1包括作为绝缘部件的AlN制的陶瓷基材1b(大小:纵100mm×横100mm×厚0.6mm)和在陶瓷基材1b的背面成为一体地形成的Al制的冷却用翼片1a,在表面设置有作为布线图案的Al制的电极图案1c。陶瓷基材1b和冷却用翼片1a通过铸造一体成型。在电极图案1c,为了使利用作为第一焊料的芯片下焊料4的接合良好,在表面形成有5μm的包含Ni的金属膜1d。

图3示出芯片3的剖面图。芯片3在半导体元件3a的表面作为电极有Al制的金属膜3c,为了使利用作为第二焊料的芯片上焊料6的与板状的布线部件5的接合良好,在金属膜3c之上形成有Ni制的金属膜3d。另外,为了使利用芯片下焊料4的与绝缘基板1的接合良好,还在背面作为电极形成有Ni制的金属膜3b。

作为半导体元件3a,使用Si制的IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管;大小:纵15mm×横15mm×厚100μm)。在绝缘基板1的电极图案1c的配置芯片3的位置的四角,搭载基于Al制的线的隔件2(φ100μm),在其之上通过芯片下焊料4(Sn-0.3~2wt%Ag-0.5~1wt%Cu)芯片焊接(die-bonded)有多个芯片3。

布线部件5包括板状的Cu制电极板(厚度1mm),通过芯片上焊料6(Sn-0.3~2wt%Ag-0.5~1wt%Cu),焊接到作为各芯片3的表面的电极的金属膜3d。板状的布线部件5的未与芯片3连接的一侧成为外部电极。在本实施方式中,根据小型化的观点,将芯片3之上的布线设为板状的布线部件5,但还能够将芯片3上的布线设为线布线。

壳体7是PPS(Poly Phenylene Sulfide,聚苯硫醚)树脂制,框状地形成。关于壳体7,使用粘接材料等将底部粘接固定到绝缘基板1。在壳体7设置有与外部端子连接的包含Cu的端子,与芯片3通过Al制的线8(φ200μm)电连接。在壳体7内填充有密封树脂(环氧树脂)。

密封树脂部9通过在壳体7内填充环氧树脂而形成,对绝缘基板1的表面、芯片3、布线部件5、线8以及芯片下焊料4和芯片上焊料6进行绝缘密封。

在将绝缘基板1设为陶瓷基材1b和冷却用翼片1a成为一体的结构的情况下,相比于使基板和翼片隔着润滑脂接触,能够降低热阻,所以能够实现模块的小型化。也相比于如日本特开2007-157863号公报的图3那样将陶瓷基板和冷却用翼片焊接的情况,在与绝缘材料一起铸造的情况或者使绝缘基板和冷却翼片预先通过钎焊等而成为一体的情况下,能够降低热阻,能够实现模块的小型化。进而,在焊接的情况下,有时在其焊料层产生空洞以及缩孔,在这些产生时热阻进一步降低,所以需要考虑这些而使模块大型化。另外,通过将芯片3上的布线设为焊接板状的布线部件5的构造,相比于线键合的情况,能够提高电流密度,能够实现模块的小型化。

但是,在使用陶瓷基材1b和冷却用翼片1a成为一体的绝缘基板时,热传导变得良好,但相比于无翼片而背面平坦的情况,在对芯片3进行芯片焊接时,与在回流焊后的冷却中使用的冷却板的接触面积变小,所以冷却速度降低。在冷却速度慢的情况下,易于成为焊料凝固时的体积收缩所引起的缩孔。虽然还能够通过并用对翼片的喷氮等和接触冷却来提高冷却速度,但得不到在无翼片的模块中使底面整体接触到冷却板的情况的程度的冷却速度。

图4示出在芯片下焊料4中产生缩孔时的状态。在芯片下焊料4中有缩孔11时,散热性有可能降低,所以最好没有。因此,在本实施方式1中,发现通过将芯片下焊料4的组成设为Sn-0.3~2wt%Ag-0.5~1wt%Cu,能够抑制缩孔。进而,由于在芯片下焊料4中有基于线的隔件2,能够确保最低焊料厚,能够防止在焊料厚中产生失衡而产生厚的部分而在该区域中散热性受到损害。即,存在焊料厚的部分中易于产生缩孔的倾向,所以通过将焊料的组成设为“焊料4(Sn-0.3~2wt%Ag-0.5~1wt%Cu)”,进而设置隔件,能够控制厚度,能够防止形成由于厚度偏差产生的厚的部分,进一步抑制缩孔的产生。

图5示出将在该实施方式1所涉及的半导体装置101中使用的芯片下焊料4的组成设为Sn-0.3~2wt%Ag-0.5~1wt%Cu的根据。图6至图9是示出使用在实施方式1所涉及的半导体装置中使用的焊料4的组成以外的焊料组成时的状态的流程图。

在相对作为焊料4的组成的Sn-0.3~2wt%Ag-0.5~1wt%Cu的区域S,Cu的浓度小于0.5wt%的情况下(图5的区域A),如图6的流程图那样,为了使绝缘基板1的电极图案1c以及芯片3的接合良好而实施的Ni制的金属膜1d、3b有可能在温度循环时在芯片下焊料4的熔融中扩散(状态S61)而消失(状态S62)。图10示出基于Cu浓度的合金层产生的厚度,但在Cu的浓度小于0.5wt%的情况下,随着Cu的浓度变少,合金层的厚度增加。其意味着,Ni向合金层扩散而消失。在Ni消失时,有时会剥离(状态S63)。因此,Cu的浓度最好为0.5wt%以上,如果考虑焊料的制造时的组成的偏差,则更优选为0.6wt%以上。

在搭载有多个芯片3的半导体装置101中,板状的布线部件5需要多个。在使用通过将多个板状的布线部件预先用树脂制的连接部件5a串联地连接而一体化的部件时,能够汇集对各自所需要的定位销,能够相应地小型化。连接部件5a例如通过嵌件模塑形成。但是,在Cu的浓度超过1wt%的情况下(图5的区域B),如图7的流程图那样,根据Sn-Cu焊料的二元状态图(参照图11),芯片下焊料4以及芯片上焊料6的熔点超过280℃(状态S71),超过PPS制的连接部件5a的熔点,所以s在焊接时连接板状的布线部件的树脂制的连接部件5a有可能熔化。另外,需要提高回流焊温度(状态S72),加热/冷却所需的时间变长,回流焊工序的处理时间变长而生产性降低(生产节拍的恶化:状态S73)。因此,Cu的浓度最好为1wt%以下。在半导体装置101的热容量大的情况下,需要在焊料可靠地到达熔融温度并且树脂制的连接部件5a不熔化的温度下进行回流焊,所以更优选成为0.8wt%以下的Cu。进而,已知如图12所示为了焊接而对芯片实施的镀Ni由于300℃以上的退火而维氏硬度增加。其原因为,通过结晶化而硬度增加。另一方面,在硬度高时变脆而易于破裂,可靠性有可能降低。因此,即使是在无树脂制的连接部件的状态下完成焊接的构造,也不优选焊料的熔点提高。

在Ag的浓度是0.3wt%以上且3wt%以下时,根据图13所示的三元状态图,认为Sn的初晶结晶之后,按照Cu6Sn5、Ag3Sn的顺序结晶,在流动性低的状态下凝固逐渐发展,所以认为不易成为缩孔。在Ag的浓度小于0.3wt%(图5的区域C)时,Cu6Sn5结晶,以及在Ag的浓度超过3wt%时,Ag3Sn与Sn同时结晶,如图8的流程图那样,认为流动性低的状态的时间短(状态S81),易于成为缩孔(状态S82)。实际上将芯片3以芯片的冷却速度成为0.5K/sec的温度分布而芯片焊接到绝缘基板1的作者的实验的结果,如图14那样,在Ag的浓度小于0.3wt%时,缩孔多发,在0.3wt%以上且3wt%以下的范围能够抑制缩孔的产生。因此,在Ag的浓度小于0.3wt%的情况下,缩孔变多,所以Ag的浓度最好为0.3wt%以上。在与600A以上等大电流对应的电力用半导体装置中,设想为了确保绝缘距离,模块变大,与其相伴地,热容量变大,所以冷却速度进一步变慢。在该情况下,更优选包含0.5wt%以上的Ag。

在芯片3的与芯片上焊料6接合的面,在Si制的半导体元件3a与Ni制的金属膜3d之间有Al制的金属膜3c。在改变包含于芯片下焊料4和芯片上焊料6的Ag的浓度时,计算在Al制的金属膜3c产生的主形变,将其结果在图15中示出。将Al制的金属膜3c、Ni制的金属膜3b以及3d分别设为5μm,将焊料的0.2%耐力根据实测值计算为20MPa~35MPa。在Ag的浓度超过2wt%时(图5的区域D),焊料变硬(状态S91),芯片下焊料4以及芯片上焊料6的0.2%耐力超过Al的0.2%耐力,所以示出形变急剧变大(参照图15的P点)。在产生热应力时(状态S92),相比于焊料,先在Al制的金属膜3c产生裂纹,芯片3有可能被破坏(状态S93)。因此,在Ag的浓度大于2wt%的情况下,在作为芯片3的表面的金属膜3c使用Al时,存在在Al制的金属膜3c产生裂纹的可能性,所以Ag的浓度最好为2wt%以下。如果考虑焊料的0.2%耐力的偏差,则Ag的浓度更优选为1.2wt%以下,能够稳定地提供可靠性更优良的半导体装置。此外,在作为芯片3的表面的金属膜3c未使用Al的情况或者未使用0.2%耐力比焊料小的部件的情况下,将Ag设为能够抑制缩孔的3wt%以下的范围即可。

由此,芯片下焊料4以及芯片上焊料6都设为Sn-0.3~2wt%Ag-0.5~1wt%Cu,从而不仅能够抑制缩孔,而且也能够抑制在温度循环时由于Ni消失引起的剥离,能够抑制向Al制的金属膜3c的形变,所以可靠性优良,热阻小,因此能够提供小型化的模块。另外,通过将芯片下焊料4以及芯片上焊料6设为相同的组成,管理变得容易。另外,熔点相同,所以能够以相同的装置的相同的温度分布接合芯片下和芯片上。

接下来,说明实施方式1所涉及的半导体装置101的制造方法。

图16是用于说明半导体装置101的制造工序的剖面图。

首先,如图16(a)所示,准备与冷却用翼片1a成为一体的绝缘基板1,在绝缘基板1的电极图案1c的配置芯片3的位置的四角,搭载基于Al制的线的隔件2,在其之上配置芯片下焊料4(Sn-0.3~2wt%Ag-0.5~1wt%Cu)和芯片3,用回流焊接合。

接下来,如图16(b)所示,在芯片3之上配置芯片上焊料6(Sn-0.3~2wt%Ag-0.5~1wt%Cu)和板状的布线部件5,用回流焊将它们接合。在芯片3有多个的情况下,也可以使用通过预先用树脂制的连接部件5a连接多个板状的布线部件5而一体化的部件。

接下来,如图16(c)所示,以包围芯片焊接到绝缘基板1的芯片3的方式,通过粘接材料安装壳体7到绝缘基板1,使用线8用线键合对与外部端子连接的壳体7的端子部(未图示)和芯片3进行信号布线。另外,能够通过回流焊时的加热,完成壳体7的粘接。壳体7和绝缘基板1的粘接既可以在焊料4以及焊料6的回流焊时同时完成,也可以在与焊料的回流焊工序不同的工序中完成粘接。通过将芯片3的下焊料4和上焊料6设为Sn-0.3~3wt%Ag-0.5~1wt%Cu,能够在壳体7不熔融的温度下进行焊料接合,能够一并进行焊料接合和壳体7的粘接,能够简化工序,所以优选。另外,在预先用树脂制的连接部件5a连接多个板状的布线部件5的情况下,也能够使焊料在比树脂制的连接部件5a的耐热温度低的温度下熔融,所以优选。

最后,使密封树脂流入并硬化而形成密封树脂部9,如图2所示的半导体装置101完成。

此外,在绝缘基板1的陶瓷基材中使用AlN,但只要能够确保绝缘性,则陶瓷也可以是Al2O3或者Si3N4等,大小以及厚度也不限于此。基于线的隔件2使用Al制的线,但也可以是Cu等。基于线的隔件2的线径设为100μm,但小于焊料厚即可,并且最低能够确保焊料厚即可,所以也可以使用包含Ni球等的焊料。绝缘基板1设为陶瓷基材1b和翼片1a通过铸造事先成为一体的基板,但也可以是将陶瓷基板和翼片事先钎焊或者焊接(brazing orsoldering)而成的基板。在铸造或者钎焊的情况下,不经由热传导率低的焊料,所以能够减小热阻,因此优选。另外,只要能够确保绝缘性,则不限于陶瓷,也可以是将树脂性的片材粘结而成的部件,是与绝缘基板、绝缘片材以及绝缘膜等绝缘部件成为一体的部件即可。

在焊接芯片3的面,为了确保焊接性,作为金属膜3b、3d,将Ni配置5μm,但只要能够焊接,则也可以是Au或者Ti等,厚度也不限于此。包含Ni的金属膜3b、3d分别既可以在芯片3设置于1个部位,也可以设置于2个部位以上。

半导体元件3a设为IGBT,但也可以是IC(Integrated Circuit,集成电路)、或者晶闸管、MOSFET(Metal Oxide Semiconductor Field Effect Transistor,金属氧化物半导体场效应晶体管)。也可以是SBD(Schottky Barrier Diode,肖特基势垒二极管)、或者SBJ(Junction Barrier Schottky,结势垒肖特基)等整流元件,也可以应用于半导体装置以外的半导体封装。另外,大小以及厚度不限于此。如图17所示,芯片也可以是1个,与其对应地布线部件也可以是1个。

另外,半导体元件3a使用Si制,但还能够使用碳化硅(SiC)、氮化镓(GaN)系材料或者金刚石这样的带隙比硅宽的、所谓宽带隙半导体材料。在利用使用宽带隙半导体材料来形成、能够进行电流容许量以及高温动作的半导体元件的情况下,半导体装置101呈现特别显著的效果。

由宽带隙半导体形成的开关元件以及整流元件相比于由硅形成的元件,电力损耗更低,所以能够实现开关元件以及整流元件中的高效化,乃至能够实现电力用半导体装置的高效化。进而,耐电压性高且容许电流密度也高,所以能够实现开关元件以及整流元件的小型化,通过使用这些小型化的开关元件以及整流元件,电力用半导体装置也能够实现小型化或者进一步的大电流化。另外,耐热性高,所以能够进行高温动作,还能够实现安装于散热器的散热片(冷却器)的小型化以及水冷部的气冷化,所以能够实现电力用半导体装置的进一步的小型化、大电流化。

板状的布线部件5设为Cu制,但也可以是Al等其他部件。也可以使用贴合殷钢等多个金属而成的覆层材料。也可以在表面配置Ni或者Au等的金属膜,板厚不限于1mm。

连接部件5a设为PPS制,但只要在回流焊时的高温下不变形,则也可以是PBT(聚对苯二甲酸丁二醇酯)等。只要能够使布线部件5一体化,则连接部件5a在多个板状的布线部件5之间既可以配置于1个部位,也可以配置于多个部位。设为用定位销进行定位,但也可以利用绝缘基板1的电极图案1c。设为连接部件5a通过嵌件模塑形成,但也可以是对成形的树脂压入金属而一体化的方法。

多个布线部件5设为用连接部件5a一体化的结构,但也可以如图18所示,设为壳体7兼作布线部件5的连接部件的构造,通过壳体7固定布线部件5的外部电极5b。由此,能够进一步削减零件件数。

壳体7只要在回流焊时的高温下不变形,则也可以是PBT(Polybuthyleneterephthalate,聚对苯二甲酸丁二醇酯)等。设为通过嵌件模塑形成,但也可以是对成形的树脂压入金属而一体化的方法。

线8不限于栅极布线,也可以使用于发射极感测或者温度感测二极管等的布线。另外,材质不限于Al,也可以是Cu等。线8的线径不限于φ200。另外,也可以并非线而设为焊接板状的布线部件的构造。

密封树脂部9由环氧树脂形成,但只要能够确保绝缘性,则不限于环氧树脂,也可以是硅凝胶等。利用芯片下焊料4以及芯片上焊料6的接合也可以在1次的回流焊中进行。

如以上所述,根据实施方式1所涉及的半导体装置101,具备:绝缘基板1,陶瓷基材1b和冷却用翼片1a成为一体;多个板状的布线部件5,通过包含树脂的连接部件5a连接;以及多个半导体元件3a,一面经由芯片下焊料4接合到绝缘基板1的陶瓷基材1b侧,另一面以分别对应的方式经由芯片上焊料6接合多个板状的布线部件5,芯片下焊料4以及芯片上焊料6都包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分,所以能够抑制缩孔,不损害散热性而能够实现小型化。另外,能够抑制在温度循环时由于Ni消失引起的剥离,能够抑制向Al制的金属膜的形变,所以可靠性优良,热阻小,因此能够提供小型化的模块。另外,通过将芯片下焊料4以及芯片上焊料6设为相同的组成,管理变得容易。另外,熔点相同,所以能够以相同的装置的相同的温度分布接合芯片下和芯片上。

进而,将绝缘基板1设为陶瓷基材1b和冷却用翼片1a成为一体的结构,所以相比于使基板和翼片隔着润滑脂接触,能够降低热阻,所以能够实现模块的小型化。另外,将芯片3上的布线设为焊接板状的布线部件5的构造,所以相比于线键合的情况,能够提高电流密度,能够实现模块的小型化。

另外,通过将多个板状的布线部件预先用树脂制的连接部件5a串联地连接而一体化,所以能够削减定位销,能够相应地小型化。另外,绝缘基板1和半导体元件3a夹着隔件2接合,所以能够确保最低焊料厚,能够防止在焊料厚中产生失衡而散热性受到损害。

另外,在芯片3的表面的金属膜中使用Al的情况下,芯片上焊料6设为包含0.3wt%以上且2wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分,所以能够得到与上述同样的效果。进而,在芯片3的背面的金属膜中使用Al的情况下,芯片下焊料4设为包含0.3wt%以上且2wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分,所以能够得到与上述同样的效果。

实施方式2.

在实施方式1中,示出在芯片下焊料4以及芯片上焊料6中使用包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料进行制造的情况,但在实施方式2中,说明使用仅包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料进行制造的情况。

关于实施方式2所涉及的半导体装置102,在芯片下焊料4以及芯片上焊料6中,使用包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料制造。另外,在芯片3的表面侧的金属膜3d和背面侧的金属膜3b或者绝缘基板1的电极图案1c表面的金属膜1d中,使用Ag制的膜。实施方式2中的制造的半导体装置的结构除了金属膜3d和金属膜3b或者金属膜1d以外,与实施方式1中的半导体装置的结构相同,援用在实施方式1中使用的图,省略同样部分的说明。

在实施方式2中的半导体装置的制造工序中,在由于图16(b)中的回流焊时的加热而焊料熔融时,从与芯片下焊料4以及芯片上焊料6分别接合的金属膜3b、3d或者1d,Ag分别熔化到芯片下焊料4以及芯片上焊料6,芯片下焊料4以及芯片上焊料6中的Ag的浓度分别成为0.3~2wt%。实施方式2中的半导体装置102的制造方法在其他工序中与实施方式1中的半导体装置101的制造方法相同,援用在实施方式1中使用的图,省略同样部分的说明。

如以上所述,根据实施方式2所涉及的半导体装置102的制造方法,包括:经由芯片下焊料4,通过回流焊,接合形成于多个半导体元件3a的背面的金属膜3b和在陶瓷基材1b和冷却用翼片1a成为一体的绝缘基板1的陶瓷基材1b侧设置的电极图案1c表面的金属膜1d的工序;以及使多个板状的布线部件5以分别与多个半导体元件3a对应的方式,经由芯片上焊料6通过回流焊与形成于多个半导体元件3a的表面的金属膜3d接合的工序,在经由芯片下焊料4接合的工序以及经由芯片上焊料6接合的工序中,作为芯片下焊料4以及芯片上焊料6,都使用包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料,通过将形成于多个半导体元件3a的表面的金属膜3d设为Ag制,将形成于多个半导体元件3a的背面的金属膜3b和在绝缘基板1的陶瓷基材1b侧设置的电极图案1c表面的金属膜1d中的任意金属膜设为Ag制,通过各回流焊,使芯片下焊料4以及芯片上焊料6都成为包含0.3wt%以上且3wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分的焊料,所以制造的半导体装置不仅具有与实施方式1同样的效果,而且还能够廉价地提供焊料。

此外,金属膜3d和金属膜3b或者金属膜1d代替Ag制而设为Cu制,在芯片下焊料4以及芯片上焊料6中都使用包含0.3wt%以上且2wt%以下Ag、以Sn为主成分的焊料,也能够得到同样的效果。

另外,在金属膜3d和金属膜3b或者金属膜1d中使用的Ag或者Cu不论是镀层、还是粉、膏中的哪个,都能够得到同样的效果。

另外,在芯片3的表面的金属膜中使用Al的情况下,芯片上焊料6设为包含0.3wt%以上且2wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分,所以能够得到与上述同样的效果。进而,在芯片3的背面的金属膜中使用Al的情况下,芯片下焊料4设为包含0.3wt%以上且2wt%以下Ag、包含0.5wt%以上且1wt%以下Cu、以Sn为主成分,所以能够得到与上述同样的效果。

另外,金属膜3b和3d这两方的金属膜无需一定是Ag制,也可以是仅金属膜3b为Ag制的结构或者仅金属膜3d为Ag制的结构。另外,金属膜3b和3d这两方的金属膜无需一定是Cu制,也可以是仅金属膜3b为Cu制的结构或者仅金属膜3d为Cu制的结构。

实施方式3.

在实施方式2中,示出在芯片下焊料4以及芯片上焊料6中使用包含0.3wt%以上且2wt%以下Ag、以Sn为主成分的焊料的情况下,在绝缘基板1的电极图案1c之上,原样地搭载有半导体元件的情况,但在实施方式3中,说明在电极图案1c上的配置半导体元件3a以外的区域设置有抗蚀剂的情况。

图19是从上部观察该实施方式3所涉及的半导体装置103时的俯视图。图20是图19的BB向视剖面图。如图19以及图20所示,半导体装置103在实施方式2中在绝缘基板1的陶瓷基材1b侧设置的电极图案1c表面的金属膜1d是Cu制,在芯片下焊料4中使用包含0.3wt%以上且2wt%以下Ag、以Sn为主成分的焊料的情况下,在电极图案1c表面的金属膜1d之上,在配置半导体元件3a的区域以外的区域中形成聚酰亚胺等抗蚀剂10之后,用芯片下焊料4接合半导体元件3a。实施方式3中的半导体装置103的其他结构以及制造方法与实施方式2中的半导体装置102的电极图案1c表面的金属膜1d为Cu制的情况的结构以及制造方法相同,援用在实施方式1中使用的图,省略同样部分的说明。

如以上所述,根据实施方式3所涉及的半导体装置103的制造方法,在电极图案1c表面的金属膜1d为Cu制的情况下,在电极图案1c表面的金属膜1d上配置半导体元件3a的区域以外的区域形成抗蚀剂10之后,经由芯片下焊料4接合,所以制造的半导体装置不仅具有与实施方式1同样的效果,而且能够抑制芯片下焊料润湿扩展的区域。

此外,在上述实施方式中,冷却用翼片1a使用Al制,但不限于此。例如,在使用Cu制的冷却用翼片1a时,能够进一步提高散热性。

另外,设为在第2次的回流焊中接合芯片上焊料和布线部件,但也可以通过使用激光的光点加热进行焊接。为了使焊接性良好,在芯片以及绝缘基板的表面形成Ni等的金属膜,但该Ni等金属在焊料熔融时在焊料之中扩散。通过第2次的回流焊,Ni等金属过剩地扩散,不能成为针对缩孔有效的组成。相对于此,如果是利用激光的光点加热,则芯片下焊料不熔融,所以能够防止这样的扩散。另外,有时在第1次的回流焊中产生的缩孔的端部在第2次的回流焊中被塞住而成为空洞,但芯片下焊料不熔融,所以不产生这样的空洞。

通过使用激光进行光点加热,能够防止芯片下焊料的再熔融,所以还能够在无布线部件的状态下检查芯片下焊料的空洞以及缩孔这样的缺陷。在布线部件是Cu的情况下,X射线的透射率接近焊料,所以为了在搭载有包含Cu的布线部件的状态下进行检查,需要CT处理或者目视判定。另一方面,在搭载布线部件之前的状态下进行检查的情况下,能够用通常的X射线装置检查,所以能够削减检查所花费的工时。

另外,在通过焊料约束芯片的状态下急速加热至焊接温度时,有时通过由于基板和芯片的线膨胀系数差产生的热应力而芯片破损。在使用激光的光点加热中,仅对通过芯片上焊料接合的区域进行加热,所以能够减小由于基板和芯片的线膨胀系数差引起的热应力的影响,能够防止芯片的破损。

只要能够仅对芯片上焊料和布线部件的焊接区域进行加热,则也可以是使如烙铁那样加热的金属接触的方法。

本申请记载各种例示性的实施方式以及实施例,但1个或者多个实施方式中记载的各种特征、方式以及功能不限于特定的实施方式的应用,能够单独或者以各种组合应用于实施方式。因此,在本申请说明书公开的技术的范围内,设想未例示的无数的变形例。例如,包括将至少1个构成要素变形的情况、追加的情况或者省略的情况、进而提取至少1个构成要素并与其他实施方式的构成要素组合的情况。

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有两个或更多芯片组件的电子设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类