半导体装置

文档序号:636329 发布日期:2021-05-11 浏览:14次 >En<

阅读说明:本技术 半导体装置 (Semiconductor device with a plurality of semiconductor chips ) 是由 武田直己 恩田智弘 河野贤哉 新谷宽 春別府佑 谷江尚史 于 2020-11-11 设计创作,主要内容包括:本发明提供一种在两面安装构造的功率半导体中即使使用无Pb材料等高弹性的接合材料也能降低半导体元件所产生的应力的可靠性高的半导体装置。一种半导体装置,其特征中在于,具备:半导体元件,仅在一面具有栅极电极;上部电极,连接于所述半导体元件的具有所述栅极电极的面;以及下部电极,连接于所述半导体元件的与具有所述栅极电极的面相反一侧的面,在所述半导体装置中,所述上部电极中的与所述半导体元件的具有所述栅极电极的面连接的连接端部位于比所述半导体元件的具有所述栅极电极的面的端部靠内侧、且所述下部电极中的与所述半导体元件的所述相反一侧的面连接的连接端部位于比所述半导体元件的所述相反一侧的面的端部靠内侧。(The invention provides a highly reliable semiconductor device capable of reducing stress generated in a semiconductor element even when a highly elastic bonding material such as a Pb-free material is used for a power semiconductor having a double-sided mounting structure. A semiconductor device is characterized by comprising: a semiconductor element having a gate electrode on only one surface; an upper electrode connected to a surface of the semiconductor element having the gate electrode; and a lower electrode connected to a surface of the semiconductor element opposite to the surface having the gate electrode, wherein a connection end portion of the upper electrode connected to the surface of the semiconductor element having the gate electrode is located inside an end portion of the surface of the semiconductor element having the gate electrode, and a connection end portion of the lower electrode connected to the surface of the semiconductor element opposite to the surface is located inside an end portion of the surface of the semiconductor element opposite to the surface.)

半导体装置

技术领域

本发明涉及半导体装置的构造,特别涉及对于应用于电力控制用功率半导体的安装构造有效的技术。

背景技术

在世界范围内,功率半导体的普及被推进,在被用于开关电路、整流电路的半导体装置中,针对大电流化、高散热化、高可靠化这样的各种要求的安装技术正被开发。

作为功率半导体的安装技术,已知有两面安装构造,即、在半导体元件的上下表面设置电极,在上表面以及下表面都将至少1个电极与外部电极连接。

作为半导体元件的上下表面的电极的例子,在MOSFET(Metal OxideSemiconductor Field Effect Transistor(金属氧化物半导体场效应晶体管):场效应晶体管)方面,可举出在一面具有源极电极和栅极电极,在另一面具有漏极电极这样的结构而在IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)方面,可举出在一面具有发射极电极和栅极电极而在另一面具有集电极电极这样的结构,在二极管方面,可举出在一面具有P极而在另一面具有N极这样的结构。

此外,作为功率半导体元件,通常在任意一面的外周部形成一般由氧化硅膜(SiO2)构成的外周部绝缘层。在上述例子中,在MOSFET方面,在源极电极侧形成外周部绝缘层,在IGBT方面,在发射极电极侧形成外周部绝缘层,如果为二极管,则在P或N极侧中的任意一方形成外周部绝缘层。

作为该两面安装构造的半导体装置的例子,例如提出了专利文献1的半导体装置。在专利文献1中,引线框架5以及基极电极3经由焊料2、4连接于半导体元件1的上下表面。半导体元件1为在除了其最上部以及最下部之外的端部具有凹型的缺口、并且焊料2、4不与半导体元件1的端部连接的构造。但是,焊料2、4虽然避开半导体元件1的端部,但在其附近连接。另外,引线框架5的端部在半导体元件1的端部的内侧连接,基极电极3的端部在半导体元件1的端部的外侧连接。另外,引线框架5、焊料2、4、基极电极3以及半导体元件1的一部分或全部由密封树脂6密封。

另外,在专利文献2中,与引线框架1以及外壳电极5电连接的金属板6a经由接合构件2被连接于半导体元件3的上下表面。引线框架1的端部在半导体元件3的端部的内侧连接,金属板6a的与接合构件2连接的面的端部与半导体元件3的端部齐平地连接。另外,引线框架1、接合构件2、金属板6a以及半导体元件3的一部分或全部由绝缘构件4密封。

另外,在专利文献3中,金属层4a、4b、14a、14b经由焊料层5a、5b、15a、15b连接于半导体元件6的两面。焊料层5a、5b、15a、15b的端部全部在半导体元件6的内侧连接。另外,金属层4a、4b、14a、14b的与半导体元件6连接的面的端部在比半导体元件6端部靠内侧的位置连接。进而,在该半导体装置中,半导体元件6在两面具有栅极电极(控制电极)。

现有技术文献

专利文献

专利文献1:日本特开2013-187494号公报

专利文献2:日本特开2004-289028号公报

专利文献3:日本特开2013-149760号公报

发明内容

然而,近年来,由于对环境的考虑,作为半导体装置的接合材料而大量使用的含铅(Pb)焊料的限制增强。Pb的融点低,弹性低,所以作为半导体装置的接合材料,还具有易于处置的优点。但是,对人体有害,所以推进代替含Pb焊料的无Pb材料的开发。

作为无Pb材料,通常是例如Sn-Sb、Sn-Ag-Cu等未含Pb的焊料、使用了Cu、Ag的在高温下烧结的接合材料。这些接合材料的弹性比含铅焊料高,半导体元件的应力由于连接时的热负荷而增加,在最坏的情况下,产生开裂等问题。

特别是,在多被用于功率半导体的两面安装构造方面,为了使大电流流过而需要尽可能扩大连接面积,实现高可靠化成为大的课题。

在上述专利文献1中,引线框架5的长度比半导体元件1短,基极电极3的长度比半导体元件1长。因此,在例如使用无Pb材料将半导体元件1与基极电极3、以及半导体元件1与引线框架5连接的情况下,有可能会由于相互的热膨胀系数差而产生弯曲变形,半导体元件1的应力因高弹性的无Pb材料而增加。因此,产生半导体元件1开裂的风险增加的问题。

另外,在上述专利文献2中,引线框架1的长度比半导体元件3短,金属板6a的长度与半导体元件3相同。因此,在例如使用无Pb材料将半导体元件3与引线框架1、以及半导体元件1与金属板6a连接的情况下,有可能会由于相互的热膨胀系数差而产生弯曲变形,半导体元件3的应力因高弹性的无Pb材料而增加。因此,与专利文献1同样地,产生半导体元件3开裂的风险增加的问题。

另外,在上述专利文献3中,在半导体元件6的两面设置有栅极电极(控制电极),金属层4a、4b、14a、14b与半导体元件6部分地连接,为以半导体元件6为中心的对称的构造。因而,对于例如使用如MOSFET那样的、在一面设置有源极电极和栅极电极并在另一面设置有漏极电极的半导体元件来应用于使大电流流过的半导体装置,绝不是适当的构造。

因而,本发明的目的在于提供在两面安装构造的功率半导体中即使使用无Pb材料等高弹性的接合材料也能够降低半导体元件所产生的应力的可靠性高的半导体装置。

另外,本发明的另一目的在于提供在两面安装构造的功率半导体中实现高可靠性、并且能够通过高散热来应对大电流的半导体装置。

为了解决上述课题,本发明提的半导体装置其特征在于,具备:半导体元件,仅在一面具有栅极电极;上部电极,连接于所述半导体元件的具有所述栅极电极的面;以及下部电极,连接于所述半导体元件的与具有所述栅极电极的面相反一侧的面,在所述半导体装置中,所述上部电极中的与所述半导体元件的具有所述栅极电极的面连接的连接端部位于比所述半导体元件的具有所述栅极电极的面的端部靠内侧、且所述下部电极中的与所述半导体元件的所述相反一侧的面连接的连接端部位于比所述半导体元件的所述相反一侧的面的端部靠内侧。

另外,本发明的半导体装置的特征在于,具备:半导体元件,仅在一面,在芯片外周部具有外周部绝缘层;上部电极,连接于所述半导体元件的具有所述外周部绝缘层的面;以及下部电极,连接于所述半导体元件的与具有所述外周部绝缘层的面相反一侧的面,在所述半导体装置中,所述半导体元件为二极管,所述上部电极中的与所述半导体元件的具有所述外周部绝缘层的面连接的连接端部位于比所述半导体元件的具有所述外周部绝缘层的面的端部靠内侧、且所述下部电极中的与所述半导体元件的所述相反一侧的面连接的连接端部位于比所述半导体元件的所述相反一侧的面的端部靠内侧。

根据本发明,能够实现在两面安装构造的功率半导体中即使使用无Pb材料等高弹性的接合材料也能够降低半导体元件所产生的应力的可靠性高的半导体装置。

另外,能够实现在两面安装构造的功率半导体中实现高可靠性、并且能够通过高散热来应对大电流的半导体装置。

除了上述以外的课题、结构以及效果通过以下的实施方式的说明而使其变清楚。

附图说明

图1是示出本发明的实施例1的半导体装置的概略结构的剖面图。

图2是示意地示出图1中的半导体元件1a附近的纵向构造的图。

图3是示意地示出图1中的半导体元件1a附近的平面构造的图。

图4是示意地示出以往的半导体装置的连接工序中的半导体元件端部附近的变形的图。

图5是示意地示出本发明的实施例1的半导体装置的连接工序中的半导体元件端部附近的变形的图。

图6是示意地示出本发明的实施例1的半导体装置的纵向构造的一部分的图。

图7是示出在本发明的实施例1的半导体装置的连接工序中半导体元件所产生的热应力的图。

图8是示出本发明的实施例2的半导体装置的概略结构的剖面图。

图9是示意地示出本发明的实施例3的半导体装置的平面构造的图。

图10是示意地示出本发明的实施例3的半导体装置的纵向构造的图。

图11是示意地示出本发明的实施例3的半导体装置的纵向构造的图。

图12是示出实施例1(图2)的变形例的图。

图13是示出实施例2(图8)的变形例的图。

符号说明

1a:半导体元件(开关电路芯片);1b:电容器;1c:控制电路芯片;1d:上部电极(第2内部电极);1e:(第1)导电性接合材料(电路体的接合材料);1f:导线;1g:下部电极(第1内部电极);1h:模制树脂(第1树脂、电路体的树脂);1i:引线框架(支承体);2:基座(第1外部电极、第1外部端子);2a:底座(第1电极面部);3:引线(第2外部电极、第2外部端子);3a:引线头(第2电极面部);4:第2导电性接合材料(半导体装置的接合材料);5:模制树脂(第2树脂、半导体装置的树脂);7a:(第1)半导体元件1a的角部附近;7b:(第2)半导体元件1a的角部附近;7c:(第3)半导体元件1a的角部附近;7d:(第4)半导体元件1a的角部附近;8a:(第1)下部电极1g的端部;8b:(第2)下部电极1g的端部;9a:(第1)半导体元件1a的端部;9b:(第2)半导体元件1a的端部;10a:半导体元件(二极管);10e:导电性接合材料(半导体装置的接合材料);20:基座(第1外部电极、第1外部端子);20a:底座(第1电极面部);30:引线(第2外部电极、第2外部端子);30a:引线头(第2电极面部);50:模制树脂(半导体装置的树脂);100:电路体;200:半导体装置(整流元件);300:半导体装置(整流元件);L:外周部绝缘层(SiO2);p1:应力集中部位(上);p2:应力集中部位(下);J:从上部电极1d中的与半导体元件1a连接的面的端部至下部电极1g中的与半导体元件1a连接的面的端部为止的距离;W:从上部电极1d中的与半导体元件1a连接的面的端部至半导体元件1a端部为止的距离;X:用J除以W并进行无量纲化而得到的值;Tb:弯曲应力方向;Tj:焊料热应力方向;D2:从半导体元件1a的第一主面的与下部电极1g的连接端部至半导体元件1a的端部为止的区域;S:源极电极(第2主端子);D:漏极电极(第1主端子);C:栅极电极(控制电极)。

具体实施方式

以下,使用附图,说明本发明的实施例。此外,在各附图中,关于相同的结构附加相同的符号,关于重复的部分,省略其的详细的说明。

【实施例1】

参照图1至图7以及图12,说明本发明的实施例1的半导体装置。此外,图4是为了易于理解图5所示的本发明的作用效果而示意地示出作为比较例示出的以往的半导体装置的连接工序中的半导体元件端部附近的变形的图。另外,图12是示出图2的变形例的图。

《半导体装置200:之一》

首先,使用图1,说明本实施例的半导体装置的构造和功能。图1是示意地示出本实施例的车载用交流发电机(Alternator)用半导体装置(整流元件)200的纵向构造的剖面的图。

在图1中,半导体装置200构成为作为主要的结构而具备:在上部(图1的纸面的上方)具有底座(第1电极面部)2a的基座(第1外部电极、第1外部端子)2、在下部(图1的纸面的下方)具有引线头(第2电极面部)3a的引线(第2外部电极、第2外部端子)3、以及电路体100。

底座2a经由第2导电性接合材料(半导体装置的接合材料)4而与后述电路体100的下部电极(第1内部电极)1g连接。

另外,引线头3a经由第2导电性接合材料4而与后述电路体100的上部电极(第2内部电极)1d连接。

另外,位于底座2a以及基座2的上部的一部分、位于引线头3a以及引线3的下部的一部分以及电路体100被模制树脂(第2树脂,半导体装置的树脂)5覆盖而密封。

此外,基座2以及引线3为与外部的电路(交流发电机的电路)电连接时的外部端子。以上为半导体装置200的结构概要。

《电路体100》

接下来,说明半导体装置200所具备的电路体100的详细结构。此外,在图1中,用虚线示出电路体100是为了记载电路体100所占的区域。

电路体100具备半导体元件1a、电容器1b以及控制电路芯片1c。另外,电路体100具备下部电极1g、上部电极1d以及引线框架(支承体)1i。

半导体元件1a例如由MOSFET构成。而且,MOSFET的漏极电极D(第1主端子)和源极电极S(第2主端子)设置于半导体元件1a各自的主面。以后,还将半导体元件1a的设置有漏极电极D这一侧的面记载为半导体元件1a的第一主面,将设置有源极电极S这一侧的面记载为半导体元件1a的第二主面。

漏极电极D经由第1导电性接合材料(电路体的接合材料)1e连接于作为第1内部电极的下部电极1g的一端的面(第1面)。此外,也可以代替第1导电性接合材料1e而通过超声波接合等来连接。

源极电极S经由第1导电性接合材料1e连接于作为第2内部电极的上部电极1d的一端的面(第1面)。

控制电路芯片1c经由第1导电性接合材料1e连接于作为支承体的引线框架1i之上。

另外,对控制电路芯片1c供给电源的电容器1b也经由第1导电性接合材料1e连接于引线框架1i之上。电容器1b例如能够使用陶瓷电容器。

下部电极1g的另一端的面(第2面)如后所述从电路体100的第1面露出,经由第2导电性接合材料4而与底座2a接触。

上部电极1d的另一端的面(第2面)如后所述从电路体100的第2面露出,经由第2导电性接合材料4而与引线头3a接触。

此外,引线框架1i被配置成与基座2、即底座2a电绝缘。

第1导电性接合材料1e以及第2导电性接合材料4的材料例如为作为普通的导电性的接合材料的焊料、包含Au、Ag或Cu的金属、或者导电性粘接材料等。此外,作为焊料,使用普通的高铅焊料、共晶焊料、无铅焊料等。另外,作为导电性粘接材料,使用在树脂中含有Ag、Cu以及Ni等金属填料或仅由金属构成的材料。

此外,第1导电性接合材料1e以及第2导电性接合材料4的材料既可以为相同的材料,或者也可以为不同的材料。另外,第1导电性接合材料1e在半导体元件1a的上下既可以为相同的材料,或者也可以为不同的材料。另外,第2导电性接合材料4的材料在电路体100的上下既可以为相同的材料,或者也可以为不同的材料

作为基座2、引线3、下部电极1g、上部电极1d以及引线框架1i的材料,主要使用导热率高且导电性优良的Cu,但也可以为CuMo、42合金、Al、Au、Ag等。此时,为了提高连接稳定性,最好对与导电性接合材料的连接部分实施Au、Pd、Ag以及Ni等的镀敷。

控制电路芯片1c经由导线1f而与半导体元件1a电连接。例如在半导体元件1a为功率MOSFET的情况下,用导线1f将形成于半导体元件1a的栅极电极与控制电路芯片1c连接,控制电路芯片1c控制功率MOSFET的栅极电压。由此,能够使大电流流过具有开关功能的半导体元件1a。

另外,电容器1b利用引线框架1i、导线1f而与半导体元件1a、控制电路芯片1c电连接。

半导体元件1a具有对大电流进行开关的功能。例如作为具有开关的功能的半导体元件(开关电路芯片)1a,为具备IGBT、GTO(Gate Turn-Off thyristor,栅极关断晶闸管)、功率MOSFET的半导体元件。另外,还能够采用形成有晶闸管等对大电流进行导通及截止控制的半导体元件的由Si、SiC、SiN、GaAs等构成的半导体元件。

另外,控制电路芯片1c为控制对大电流进行开关的半导体元件1a的半导体元件。控制电路芯片1c自身为不包括对大电流进行开关的半导体元件的半导体元件。即,控制电路芯片1c例如为形成有多个逻辑电路、模拟电路、驱动器电路等并根据需要而形成有微型处理器等的半导体元件。此外,也可以设为兼具控制在半导体元件1a流过的大电流的功能。

另外,半导体元件1a、控制电路芯片1c、电容器1b、下部电极1g、上部电极1d以及第1导电性接合材料1e一体地被模制树脂(第1树脂、电路体的树脂)1h覆盖,并被密封,构成一体化的电路体100。

此外,以后还将电路体100的配置有下部电极1g、引线框架1i这一侧记载为第1面,将其相反一侧、即配置有上部电极1d一侧的面记载为第2面。下部电极1g以及引线框架1i的下表面侧和上部电极1d的上表面侧不被电路体100的第1树脂1h覆盖,而在电路体100的表面露出。

因而,电路体100的上部电极1d的上表面能够经由第2导电性接合材料4而与引线头3a电连接。

另外,电路体100的下部电极1g的下表面能够经由第2导电性接合材料4而与底座2a电连接。

《半导体装置200:之二》

如上那样,电路体100为由第1树脂1h密封而一体地构成,下部电极1g以及上部电极1d的各一面分别在电路体100的表面露出的构造。该露出的下部电极1g的一面利用第2导电性接合材料4电连接于基座2的底座2a,上部电极1d的一面利用第2导电性接合材料4电连接于引线3的引线头3a,构成半导体装置200。

在该结构中,使与半导体元件1a的源极电极S连接的上部电极1d比下部电极1g厚。在此,厚意味着在从底座2a朝向引线头3a的方向上长。

这样使上部电极1d比下部电极1g厚,从而能够使在电流流经源极电极S时与损耗相伴的发热效率良好地散热到上部电极1d侧,能够提高半导体装置200的冷却性。

半导体元件1a在形成源极电极S一侧的面,主要形成晶体管元件,晶体管元件的发热主要在形成源极电极S一侧产生。因此,有效的是利用上部电极1d来散热。为了利用该上部电极1d来散热,有效的是增大上部电极1d的热容量,使导热变良好,如上所述,采用使上部电极1d比下部电极1g厚的方法。

另外,通过增厚上部电极1d,从而上部电极1d成为能够在电路体100的引线头3a侧使导电体露出,能够与引线头3a、即引线3电连接的构造。

接下来,使用图2以及图3,说明本实施例的半导体装置的构造的详细内容。图2是示意地示出图1中的半导体元件1a附近的纵向构造的图。图3是示意地示出图1中的半导体元件1a附近的平面构造的图。图2对应于图3的A-A’剖面。此外,在图2以及图3中,为了易于理解,仅显示有配置于半导体装置200的半导体元件1a、上部电极1d、下部电极1g、第1导电性接合材料1e。

在图2以及图3中,半导体元件1a在上部电极1d侧具有栅极电极(控制电极)C和源极电极S,在下部电极1g侧仅具有漏极电极D。另外,半导体元件1a在栅极电极C侧的面的外周部具有由氧化硅膜(SiO2)构成的外周部绝缘层L。

半导体元件1a的源极电极S侧的面(第二主面)经由第1导电性接合材料1e而与上部电极1d的下表面连接。

另外,漏极电极D侧的面(第一主面)经由第1导电性接合材料1e而与下部电极1g的上表面连接。

上部电极1d的长度(图2中的上部电极1d的左右方向的距离)比半导体元件1a的长度(图2中的半导体元件1a的左右方向的距离)短,上部电极1d的端部以及上部电极1d与半导体元件1a的连接部的端部都位于半导体元件1a的内侧。另外,与半导体元件1a连接的下部电极1g的端部与上部电极1d的端部在铅垂方向上对齐。

当制造本实施例的半导体装置200时,为了形成电路体100,首先,在上部电极1d以及半导体元件1a、下部电极1g各自之间配置第1导电性接合材料1e,将其加热到高温,将上部电极1d的下表面、半导体元件1a的第二主面以及下部电极1g的上表面以及半导体元件1a的第一主面进行连接。连接工序例如为回流焊、流动焊等。此时,为了使第1导电性接合材料1e熔融,将半导体装置200整体加热至接合材料的融点以上,之后冷却至常温。

在冷却过程中,在上部电极1d以及下部电极1g、半导体元件1a中全部产生热变形。在上部电极1d、下部电极1g为Cu,半导体元件1a为Si的情况下,各自的热膨胀率约为16.8×10^-6/K、2.4×10^-6/K,所以上部电极1d和下部电极1g比半导体元件1a收缩。由此,在上部电极1d以及下部电极1g、半导体元件1a中产生弯曲变形,在各构件中产生热应力。

接下来,使用图4以及图5,说明本实施例的半导体装置的作用效果。图4示出了以往构造的半导体装置的连接工序中的变形图,图5示出了本实施例的半导体装置的连接工序中的变形图。此外,在图4以及图5中,为了易于理解,放大显示图2的区域Y所示的半导体元件1a的端部。

如图4所示,在以往构造中,下部电极1g的长度比半导体元件1a长。因此,与下部电极1g连接的连接部扩展至半导体元件1a的第一主面的端部。另一方面,上部电极1d的长度比半导体元件1a短。因此,关于半导体元件1a的第二主面,上部电极1d与半导体元件1a的连接部形成于半导体元件1a的第二主面的内侧。

下部电极1g与半导体元件1a的连接部的长度比上部电极1d与半导体元件1a的连接部的长度长,所以从下部电极1g传递到半导体元件1a的力比来自上部电极1d的力大,热收缩时的半导体元件1a的弯曲变形如图4所示向上凸。

在图4的点p1处,半导体元件1a的弯曲变形变大,产生箭头Tb的拉伸(弯曲应力),并且进而从第1导电性接合材料1e还同时施加箭头Tj的拉伸(焊料热应力),所以应力集中于点p1。在第1导电性接合材料1e使用无铅焊料、烧结材料等刚性高的接合材料的情况下,应力集中部位p1的应力进一步变大,相比于铅焊料的情况,裂纹进一步进入到半导体元件1a的风险增加。

相对于此,如图5所示,在本实施例的半导体装置200中,经由第1导电性接合材料1e而与半导体元件1a连接的部分的下部电极1g的长度比半导体元件1a短。因此,在从半导体元件1a的第一主面的与下部电极1g的连接端部至半导体元件1a的端部为止的区域D2上不连接第1导电性接合材料1e,弯曲变形比以往构造小。

进而,与半导体元件1a连接的区域的下部电极1g的两端部与上部电极1d的端部在铅垂方向上对齐,所以上下的弯曲变形的不平衡被消除,应力集中部位被分散到点p1和点p2,与以往构造相比,能够大幅降低应力集中部位p1的应力。因此,在第1导电性接合材料1e使用无铅焊料、烧结材料等刚性高的无铅接合材料的情况下,也能够制造高可靠的半导体装置。此外,也可以将本实施例的构造应用于作为导电性接合材料1e而使用了铅焊料的情况。

接下来,使用图6以及图7,定量地说明本发明的连接工序中的热应力降低效果。图6是示出用于在图7中说明在使下部电极1g的长度变化的情况下在连接工序中半导体元件1a所产生的热应力如何变化的参数的定义的图。图7是通过有限要素法来调查在使下部电极1g的长度变化的情况下在连接工序中半导体元件1a所产生的热应力如何变化的结果。此外,在图6中,为了易于理解,仅放大显示图2的区域Y所示的半导体元件1a的端部。

在图6中,将从上部电极1d中的与半导体元件1a的连接面的端部(图6中的虚线E-E’)至半导体元件1a端部为止的距离设为W。另外,将从上部电极1d中的与半导体元件1a的连接面的端部至下部电极1g中的与半导体元件1a的连接面的端部为止的距离设为J。此外,在下部电极1g中的与半导体元件1a的连接面的端部位于比上部电极1d中的与半导体元件1a的连接面的端部靠半导体元件1a的中心侧的情况下,J取负的值。

在此,将用J除以W并标准化而成的参数定义为X。X为用J除以W并进行无量纲化而得到的值。在图4所示的以往构造中,半导体元件1a下表面在整个面连接于下部电极1g,所以X为1。

相对于此,在图5所示的本发明的半导体装置中,经由第1导电性接合材料1e而与半导体元件1a连接的部分的下部电极1g的长度比半导体元件1a短,所以J比W小。因而,X取小于1的任意值(但是,下限是有限的)。在图2所示的本实施例的半导体装置200中,上部电极1d与下部电极1g的大小相等,J=0,X=0。

图7的横轴表示在上述中定义的参数X。横轴的范围在-1.5至1的范围改变。另外,在图7的纵轴中,利用图4所示的以往构造的应力集中部位p1的应力对当在本发明的半导体装置中使参数X变化的情况下半导体元件1a所产生的热应力进行标准化。

在图4的以往构造中,对应于X=1,标准化后的应力为1。通过黑圈(●)标示来表示图5所示的半导体元件1a的上部电极1d侧的应力集中部位p1的应力,通过黑三角(▲)标示来表示半导体元件1a的下部电极1g侧的应力集中部位p2的应力。在应力集中部位p1和应力集中部位p2产生的应力中的大的一方为在半导体元件1a中产生的最大的应力。

如图7所示,参数X越大,即下部电极1g越长,下部电极1g与半导体元件1a的第一主面的连接长度越长,则应力集中部位p1的应力越增大。这是因为从下部电极1g传递到半导体元件1a的力比来自上部电极1d的力大,热收缩时的半导体元件1a的弯曲变形如图4所示向上凸。

另一方面,参数X越小,即下部电极1g越短,下部电极1g与半导体元件1a的第一主面的连接长度越短,则应力集中部位p2的应力越增大。这是因为从上部电极1d传递到半导体元件1a的力比来自下部电极1g的力大,热收缩时的半导体元件1a的弯曲变形向下凸。

这样,在应力集中部位p1和应力集中部位p2的应力中存在折衷的关系,所以存在使半导体元件1a所产生的应力成为最小的参数X。从图7可知,在X=0(对应于图2的构造)时,半导体元件1a所产生的应力最小,为以往构造(X=1)时的一半左右。也就是说,与半导体元件1a连接的下部电极1g的端部最好与上部电极1d的端部在铅垂方向上对齐。

此外,从参数X的定义来看,通过在以往构造中增大上部电极1d,使上部电极1d的端部、半导体元件1a的端部、以及下部电极1g的端部在铅垂方向上对齐,从而也能够在几何学上实现X=0。但是,在半导体元件1a的第二主面,在周边有焊料的湿润性差的外周部绝缘层L,另外在其附近存在栅极电极C,需要使它们与上部电极1d电绝缘,所以在如以往构造那样连接半导体元件1a的第一主面整个区域的构造中,无法实现在X=0的情况下进行动作的半导体装置。

此外,本发明的效果并不限定于上述参数X=0的情况。例如,当在图6中将W设为0.4mm、将J设为0.2mm的情况下,相当于X=0.5,从图7可知,与以往构造相比,能够将应力降低20%左右。

因而,即使在由于电路体100的结构的制约而无法实现X=0的情况下,根据本发明,通过在可能的范围使X接近0,能够降低连接工序时的应力。

换言之,以上说明的本实施例的半导体装置200构成为具备仅在一面具有栅极电极C的半导体元件1a、与半导体元件1a的具有栅极电极C的面(第二主面)连接的上部电极1d、以及和半导体元件1a的与具有栅极电极C的面相反一侧的面(第一主面)连接的下部电极1g,上部电极1d中的与半导体元件1a的具有栅极电极C的面(第二主面)的连接端部位于比半导体元件1a的具有栅极电极C的面(第二主面)的端部靠内侧、且下部电极1g中的与半导体元件1a的相反一侧的面(第一主面)的连接端部位于比半导体元件1a的相反一侧的面(第一主面)的端部靠内侧。

另外,上部电极1d构成为经由第1导电性接合材料1e连接于半导体元件1a,下部电极1g经由第2导电性接合材料(1e)连接于半导体元件1a,第1导电性接合材料1e与上部电极1d的连接部的端部、以及第2导电性接合材料(1e)与下部电极1g的连接部的端部在铅垂方向上大致对齐。

此外,也可以如图12所示的变形例那样,构成为第1导电性接合材料1e与上部电极1d的连接部的端部、第2导电性接合材料(1e)与下部电极1g的连接部的端部、第1导电性接合材料1e与半导体元件1a的连接部的端部、第2导电性接合材料(1e)与半导体元件1a的连接部的端部在铅垂方向上全部大致对齐。

【实施例2】

接下来,参照图8以及图13,说明本发明的实施例2的半导体装置。图8是示意地示出本实施例的车载用交流发电机(Alternator)用半导体装置(整流元件)300的纵向构造的剖面的图。另外,图13是图8的变形例,是与实施例1的图2对应的图。

在实施例1中,使用了MOSFET等具有开关功能的半导体元件,相对于此,在本实施例中,使用了具有整流功能的半导体元件(二极管)。

在图8中,半导体装置300构成为具备在上部(图8的纸面的上方)具有凸状的底座(第1电极面部)20a的基座(第1外部电极、第1外部端子)20、在下部(图8的纸面的下方)具有引线头(第2电极面部)30a的引线(第2外部电极、第2外部端子)30、以及半导体元件10a。

底座20a经由导电性接合材料(半导体装置的接合材料)10e而与半导体元件10a直接连接,该半导体元件10a为仅在一面在芯片外周部外周部具有绝缘层L的二极管。另外,引线头30a经由导电性接合材料10e而与为二极管的半导体元件10a直接连接。

引线头30a的长度(图8中的引线头30a的左右方向的距离)比半导体元件10a的长度(图8中的半导体元件10a的左右方向的距离)短,引线头30a的端部以及引线头30a中的与半导体元件10a的连接部的端部都位于半导体元件10a的内侧。另外,底座20a的端部与引线头30a的端部在铅垂方向上对齐。

另外,位于底座20a以及基座20的上部的一部分、位于引线头30a以及引线30的下部的一部分、以及半导体元件10a被模制树脂(半导体装置的树脂)50覆盖而密封。

在本实施例中,为二极管的半导体元件10a自身具有整流功能,所以与实施例1不同,不构成电路体100,而能够将半导体元件10a直接与基座(第1外部电极)20和引线(第2外部电极)30连接,所以能够以更低成本提供半导体装置。

另外,通过使底座20a的端部与引线头30a的端部在铅垂方向上对齐,能够实现与实施例1同样的纵向构造,所以能够降低在连接工序中半导体元件10a所产生的热应力。

另外,在交流发电机(Alternator)中,需要P型和N型的整流元件,所以需要将在图8中使半导体元件10a的朝向上下反转(使P极和N极反转)的半导体装置制造两个种类。在本实施例中,底座20a的端部与引线头30a的端部在铅垂方向上对齐,所以即使使半导体元件10a反转,连接方式也不改变。因而,P型和N型都能够制造出高可靠性的半导体装置。

图13是将实施例1(图2)的半导体元件1a置换为由P/N结构成的二极管的本实施例(图8)的变形例。关于二极管以外,与图2的结构相同,省略重复的详细说明。也可以与实施例1(图2)同样地,将上部电极1d以及下部电极1g连接于为二极管的半导体元件10a,构成半导体装置300。

也就是说,换言之,以上说明的本实施例的半导体装置300构成为具备仅在一面在芯片外周部具有外周部绝缘层L的半导体元件10a、与半导体元件10a的具有外周部绝缘层L的面连接的上部电极1d、以及与半导体元件10a的与具有外周部绝缘层L的面相反一侧的面连接的下部电极1g,半导体元件10a为由P/N结构成的二极管,上部电极1d中的与半导体元件10a的具有外周部绝缘层L的面的连接端部位于比半导体元件10a的具有外周部绝缘层L的面的端部靠内侧、且下部电极1g中的与半导体元件10a的相反一侧的面的连接端部位于比半导体元件10a的相反一侧的面的端部靠内侧。

【实施例3】

接下来,参照图9至图11,说明本发明的实施例3的半导体装置。本实施例的构造除了半导体元件1a与下部电极1g的连接方式之外,与实施例1的半导体装置200相同,所以省略重复的与半导体装置的整体构造有关的说明。

图9是示意地示出本实施例的半导体装置中的半导体元件1a附近的平面构造的图。图10以及图11是示意地示出本实施例的半导体装置中的半导体元件1a附近的纵向构造的图。图10对应于图9的B-B’剖面,图11对应于图9的C-C’剖面。此外,在图9至图11中,为了易于理解,仅显示配置于半导体装置200的半导体元件1a、上部电极1d、下部电极1g、第1导电性接合材料1e。

如图9以及图10所示,在本实施例的半导体装置中,在半导体元件1a的角部附近7a、7b、7c、7d,为如下构造:下部电极1g的端部8a、8b、8c、8d(未图示8c、8d)为半导体元件1a的内侧,与上部电极1d的端部对齐。

因此,在半导体元件1a的角部附近,为与实施例1(图2)同样的纵向构造。

另外,如图9以及图11所示,在本实施例的半导体装置中,在半导体元件1a的角部附近7a、7b、7c、7d以外的区域,经由第1导电性接合材料1e而与半导体元件1a连接的部分的下部电极1g的长度比半导体元件1a的长度长,所以连接至半导体元件1a的端部9a、9b。

在连接工序中产生的热应力在半导体元件1a的角部附近7a、7b、7c、7d变得特别高。因而,抑制角部的应力对于防止半导体元件的裂纹是有效的。

因而,在本实施例中,仅在半导体元件1a的角部附近采用与实施例1(图2)同样的连接方式。在半导体元件1a的角部附近以外的区域,与实施例1(图2)相比,半导体元件1a与下部电极1g的接触面积大。由此,能够抑制半导体元件角部的应力,并且还能够实现散热性的提高。

此外,本发明并不限定于上述实施例,包括各种变形例。例如,上述实施例是为了易于理解地说明本发明而详细地说明的实施例,未必限定于具备所说明的所有结构的例子。另外,能够将某个实施例的结构的一部分置换为其它实施例的结构,另外,还能够对某个实施例的结构附加其它实施例的结构。另外,关于各实施例的结构的一部分,能够进行其它结构的追加、删除以及置换。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:重布线层结构与半导体封装

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类