半导体器件

文档序号:832135 发布日期:2021-03-30 浏览:29次 >En<

阅读说明:本技术 半导体器件 (Semiconductor device with a plurality of transistors ) 是由 杉田悟 汤泽康介 山田晋 小宫健治 于 2020-09-25 设计创作,主要内容包括:半导体器件包括半导体元件(40)、用于将半导体元件夹在之间的布线元件(50)、密封树脂体(30)。半导体元件(40)具有在其上形成有作为宽带隙半导体的SiC基材的SBD(12)。半导体元件(40)在两个表面上具有两个主电极(41、42)。布线元件(50)包括(i)电连接至第一主电极的散热器(51)和(ii)电连接至第二主电极的散热器以及端子(52、53)。该半导体器件还包括绝缘体(70)。绝缘体(70)具有由硅制成的非导电元件(13)。绝缘体(70)在两个表面上均具有用于散热器(51、52)的机械连接的接头(71、72)。(The semiconductor device includes a semiconductor element (40), a wiring element (50) for sandwiching the semiconductor element, and a sealing resin body (30). A semiconductor element (40) has an SBD (12) on which an SiC base material is formed as a wide band gap semiconductor. The semiconductor element (40) has two main electrodes (41, 42) on both surfaces. The wiring member (50) includes (i) a heat sink (51) electrically connected to the first main electrode and (ii) a heat sink electrically connected to the second main electrode, and terminals (52, 53). The semiconductor device further includes an insulator (70). The insulator (70) has a non-conductive element (13) made of silicon. The insulator (70) has on both surfaces joints (71, 72) for mechanical connection of the heat sinks (51, 52).)

半导体器件

技术领域

本公开总体上涉及一种半导体器件。

背景技术

专利文献1公开了一种半导体器件。该半导体器件包括:半导体元件,其具有在两个主表面上形成的主电极;与该主电极电连接的布线元件;以及密封树脂体。布线元件布置成将半导体元件夹在中间。密封树脂体将半导体元件和布线元件一体地密封在一个整体中。现有技术文件的公开内容通过引用并入本文,作为对本公开内容中的技术元件的解释。

(专利文献1)日本专利特开号JP 2016-31948

当具有比硅更宽带隙的宽带隙半导体用作半导体元件的基材时,可以使元件尺寸小于由硅制成的元件尺寸。当减小元件尺寸时,作用在半导体元件上的应力增加。鉴于以上或未提及的其他方面,需要对半导体器件进行进一步的改进。

发明内容

本公开的目的是提供一种高度可靠的半导体器件。

本文公开的半导体器件包括:半导体元件,其具有形成在第一主表面上并且由宽带隙半导体作为基材制成的第一主电极,以及形成在与第一主表面相反的第二主表面上的第二主电极;布线元件,其布置成将半导体元件夹在之间,并且包括:设置在第一主表面上并与第一主电极电连接的第一布线元件和设置在第二主表面上并与第二主电极电连接的第二布线元件;密封树脂体,用于将半导体元件和布线元件一体密封;和至少一个绝缘体,其与密封树脂体中的半导体元件一起被夹在布线元件之间,并且具有与第一布线元件连接的第一接头部和与第二布线元件连接的第二接头部。

根据本公开的半导体器件,半导体元件具有作为基材的宽带隙半导体。然而,不仅半导体元件而且绝缘体被插入在第一布线元件和第二布线元件之间。以这种方式,由于一些力被分配到绝缘体,所以减小了在密封树脂体的成型期间作用在半导体元件上的应力。以这种方式,可以提供高度可靠的半导体器件。

说明书中公开的各方面采用彼此不同的技术方案,以实现它们各自的目的。权利要求书和本节中描述的括号中的附图标记示例性地示出与稍后描述的实施例的各部分的对应关系,并且不用于限制技术范围。通过参考以下详细描述和附图,本说明书中公开的目的、特征和优点将变得显而易见。

附图说明

通过以下参考附图的详细描述,本公开的目的、特征和优点将变得更加显而易见,其中:

图1是应用了根据第一实施例的半导体器件的功率转换装置的电路图;

图2是半导体器件的平面图;

图3是沿着图2中的线III-III截取的截面图;

图4是沿着图2的线IV-IV截取的截面图;

图5是省略密封树脂体的图;

图6是另一臂的半导体器件的参考图;

图7A和图7B分别是绝缘体的效果图;

图8是根据第二实施例的半导体器件的平面图;

图9是沿图8中的线IX-IX截取的截面图;

图10是变形例的平面图;

图11是根据第三实施例的半导体器件的截面图。

具体实施方式

以下,参照附图说明多个实施例。在以下实施例中,在功能上和/或在结构上相对应/相关联的部件可以设置相同的附图标记。对于相对应的部件和/或相关联的部件,可以基于其他(即,基本)实施例的描述进行附加的说明。

(第一实施例,图1-4)

根据本实施例的半导体器件被应用于功率转换装置。功率转换装置被应用于例如车辆驱动系统。功率转换装置可以应用于例如燃料电池车辆(FCV)、电动车辆(EV)和混合动力车辆(HV)的车辆。

<车辆驱动系统,图1>

首先,描述车辆驱动系统的示意性结构。如图1所示,车辆驱动系统1包括直流(DC)电源2、马达3和功率转换装置4。

DC电源2例如是锂离子电池、镍氢电池或燃料电池。马达3是三相交流电(AC)型旋转电机。马达3用作车辆的驱动力的源,即电动马达。功率转换装置4在直流电源2和马达3之间进行功率转换。

<功率转换器>

接下来,描述功率转换装置4。如图1所示,功率转换装置4包括转换器5、平滑电容器6和逆变器7。转换器5和逆变器7是功率转换部。转换器5是将DC电压转换为具有不同电压值的DC电压的DC-DC转换器。

作为高电势侧电源线的P线包括VH线8H和VL线8L。VL线8L连接至DC电源2的正极端子。转换器5设置在VH线8H与VL线8L之间的位置,并且VH线8H的电势高于VL线8L的电势。作为低电势侧电源线的N线9连接到DC电源2的负极端子。

平滑电容器6连接到VH线8H和N线9之间的位置。平滑电容器6设置在转换器5和逆变器7之间的位置,并且与转换器5和逆变器7并联连接。平滑电容器6对例如来自转换器5的DC电压进行平滑,并且累积DC电压的电荷。平滑电容器6两端的电压变为用于驱动马达3的高DC电压。

逆变器7连接至VH线8H与N线9之间的位置。逆变器7将由转换器5升压后的直流电转换为适于驱动马达3的交流电,并将该交流电供给马达3。逆变器7是DC-AC转换器。三相逆变器用作逆变器7。功率转换装置4可以进一步包括滤波电容器(未示出)。滤波电容器连接到DC电源2与转换器5之间以及VL线8L与N线9之间的位置。

<转换器>

接下来,描述转换器5。如图1所示,转换器5包括用于四个相中的每个相的桥臂10和电抗器11。在图1中,加在桥臂10上的括号中的附图标记表示相关桥臂10属于U相、V相、W相和X相中的哪一个:10(U),10(V),10(W)和10(X)。本实施例的转换器5不具有降压功能,而是具有升压(即,增压)功能。

桥臂10连接到VH线8H和N线9之间的位置。多个桥臂10彼此并联连接。各个相的桥臂10具有共同的结构。桥臂10是上臂和下臂电路,其中上臂和下臂在VH线8H和N线9之间的位置处串联连接。桥臂10的上臂具有整流元件,该整流元件的正向方向定义为从直流电源2到平滑电容器6一侧的方向。桥臂10的下臂具有开关元件。

在本实施例中,桥臂10的上臂具有作为整流元件的肖特基势垒二极管12和非导电元件13。肖特基势垒二极管12在下文中可以称为SBD 12。SBD 12形成在如后所述具有碳化硅(SiC)作为基材的芯片上。SBD 12的阳极连接到VH线8H。

非导电元件13与SBD 12并联连接。非导电元件13是其中多个二极管(即,PN二极管)串联连接以使得它们的正向之间彼此相反的元件。非导电元件13形成在如下所述具有硅(Si)作为基材的芯片上。非导电元件13包括两个PN二极管13a和13b。PN二极管13a和13b的阳极彼此连接。PN二极管13a的阴极连接到SBD 12的阳极,并且PN二极管13b的阴极连接到SBD 12的阴极。

由于上述结构,非导电元件13的正向电压Vf具有比SBD 12的正向电压Vf大的值。因此,没有电流流过非导电元件13。此外,非导电元件13具有的击穿电压性能等于或高于SBD 12的击穿电压性能。非导电元件13被构造为在实际使用条件下不干扰SBD 12的操作。

另一方面,桥臂10的下臂具有作为开关元件的n沟道型MOSFET 14和二极管15。如同SBD 12,MOSFET 14形成在以SiC为基材的芯片上。MOSFET 14的源极连接到N线9。MOSFET14的漏极连接到SBD 12的阴极。MOSFET14的开关操作由控制电路部(未示出)控制。

二极管15与MOSFET 14反并联连接。二极管15形成在以Si为基材的芯片上。二极管15的阳极连接到(MOSFET 14的)漏极,阴极连接到(MOSFET 14的)源极。

电抗器11的一端经由VL线8L连接至直流电源2的正极端子。电抗器11的另一端连接到桥臂10的上臂和下臂之间的连接点,即,SBD 12的阴极和MOSFET 14的漏极之间的连接点。

<半导体器件,图2-5>

为了方便起见,在图3中,Z方向为上(而下为相反方向)。X方向是右(而左是相反的方向)。现在,在图2中,Y方向为后(反方向为前)。返回图3中,我们观察该器件的横截面的前侧(沿图2中的III-III线的横截面)。接下来,描述构成转换器5的半导体器件。图2至图5示出了形成用于转换器5的一相的桥臂10的上臂的半导体器件。图5是从图2省略了密封树脂体的图。以下,将半导体元件的板厚方向称为Z方向,将与Z方向正交的一个方向,具体而言,布线元件的纵向称为X方向。此外,将与Z方向和X方向都正交的方向称为Y方向。除非另有说明,否则从Z方向观看的平面图中的形状,换言之,由X方向和Y方向限定的XY平面上的形状是平面形状。此外,将从Z方向观察的平面图简称为平面图。如图2至图5所示,半导体器件20包括密封树脂体30、半导体元件40、布线元件50、主端子60和61以及绝缘体70。

在图2中,密封树脂体30密封形成半导体器件20的其他元件的一部分。其余的其他元件向密封树脂体30的外部露出。密封树脂体30例如由环氧树脂制成。密封树脂体30例如通过传递成型法成型。密封树脂体30具有大致长方体形状。如图2所示,密封树脂体30在俯视图中(向下观看)具有基本矩形的形状。在图3中,密封树脂体30具有底面30a和在Z方向上与底面30a相反的顶面30b。底面30a和顶面30b例如是平坦表面。

半导体元件40由具有比Si更宽带隙的宽带隙半导体作为基材的芯片形成。半导体元件40可以被称为半导体芯片。宽带隙半导体是例如带隙大于1.5eV的半导体。宽带隙半导体包括例如碳化硅(SiC)、氮化镓(GaN)、氧化镓(Ga2O3)和金刚石。

半导体元件40具有下部主电极41和上部主电极42,下部主电极41和上部主电极42设置在沿板厚方向即Z方向布置的主表面上。在半导体元件40中,形成具有竖直结构的元件,使得主电流在主电极41和42之间流动。如上所述,本实施例的半导体元件40是SBD(肖特基势垒二极管)12元件形成在以SiC为基材的芯片上的元件。在半导体元件40的下部主表面上形成有阴极电极作为下部主电极41。在与下部主表面相反的上部主表面上形成有阳极电极作为上部主电极42。主电极42(即,阳极电极)也可以称为肖特基电极。下部主电极41对应于第一主电极,上部主电极42对应于第二主电极。

布线元件50在Z方向上夹着半导体元件40。布线元件50电连接至主电极。作为布线元件50,例如,可以采用由Cu、Cu合金等制成的金属板,或在绝缘性基材的至少一个表面上设置有导体的结构。直接键合铜(DBC)基板是在其上布置导体的绝缘基板的示例。本实施例的布线元件50包括散热器51和52以及端子53。下散热器51布置在半导体元件40的下侧。下散热器51对应于第一布线元件。上散热器52和端子53布置在半导体元件40的上侧。上散热器52和端子53通过焊料54连接。上散热器52、端子53和焊料54对应于第二布线元件。

散热器51和52是由Cu、Cu合金等制成的金属构件。散热器51和52用于将半导体元件40的热传导到半导体器件20的外部。散热器51和52也可以称为散热构件。散热器51和52具有大致矩形的平面形状,其纵向侧沿X方向布置。散热器51和52在平面图中包括(重叠)半导体元件40。散热器51和52具有相似的形状。

端子53位于半导体元件40(即,主电极42)和散热器52之间的导电路径和导热路径的中间。端子53通过包括诸如Cu或Cu合金的金属材料而形成。端子53具有柱状体,该柱状体在平面图中具有大致矩形的形状,并且在平面图中具有与主电极42大致相同的尺寸。端子53可以被称为金属块体或继电构件。

半导体元件40的下部主电极41经由焊料55连接至散热器51的下部内表面51a。上部主电极42经由焊料56连接至端子53的一端。端子53的另一端经由上述焊料54连接至散热器52的内表面52a。

散热器51、52的大部分被密封树脂体30覆盖。(下散热器51的)下部外表面51b和(上散热器52的)上部外表面52b从密封树脂体30露出。外表面51b和52b也可以称为散热表面或暴露表面。下部外表面51b与密封树脂体30的底面30a基本齐平,而上部外表面52b与顶面30b基本齐平。

左侧主端子60将下部主电极41电连接到外部装置。下散热器51位于左侧主端子60和下部主电极41之间。右侧主端子61将上部主电极42电连接到外部装置。上散热器52位于右侧主端子61和上部主电极42之间。

左侧主端子60从下散热器51向后延伸。右侧主端子61从上散热器52向后延伸。可替代地,右侧主端子61可以从端子53向后延伸。主端子60和61也可以构造为与对应的散热器51和52分开的构件,并且可以作为延伸件与之接合,或者可以是单个一体结构。在本实施例中,主端子60和61作为相应的连续金属构件从对应的散热器51和52延伸。

主端子60从散热器51沿Y方向(向后)延伸,并从密封树脂体30的后侧面30c向其外部突出。主端子61从散热器52沿Y方向延伸,并从与主端子60相同的后侧面30c向外部突出。半导体器件20还包括多个虚拟端子62。虚拟端子62是具有与稍后描述的信号端子162相同结构的端子,但是不提供电连接功能,换言之,布线功能。虚拟端子62是没有电连接到半导体元件40的部件,也没有电连接到布线元件50。虚拟端子62在Y方向上延伸,并且从密封树脂体30的前侧面30d朝向其外部突出。前侧面30d是在Y方向上与后侧面30c相反的表面。

虚拟端子62与散热器51和主端子60一起被构造为作为共同构件的引线框架。引线框架是部分到部分具有不同宽度的部件(例如,部分地变薄)。在引线框架中,散热器51部分厚,而主端子60和虚拟端子62部分薄。在成型密封树脂体30之后,将引线框架的不必要部分(例如,虚拟端子之间的拉杆)切掉(即去除)。请注意,在散热器52和主端子61一体设置的连续金属构件中,散热器52部分比主端子61部分厚。

绝缘体70位于密封树脂体30中。绝缘体70与半导体元件40一起被布线元件50夹在之间。绝缘体70具有将下散热器51与上散热器52电分离的绝缘功能。绝缘体70具有用于机械连接到下散热器51(可选地通过焊料55)的接头71,以及用于机械连接到焊料56、端子53和上散热器52的接头72。

如上所述,本实施例的绝缘体70具有形成在以硅为基材的芯片上的非导电元件13。绝缘体70具有与半导体元件40相同的厚度。绝缘体70具有与半导体元件40基本相同的平面形状和尺寸。即,绝缘体70具有与半导体元件40几乎相同的尺寸。接头71形成在绝缘体70的在其第一布线元件侧的表面上,接头72形成在绝缘体70的在其第二布线元件侧的表面上。接头71和72是设置成与布线元件50建立机械连接的金属构件。接头72具有与主电极42基本相同的平面形状和尺寸。

第二布线元件具有两个端子53,并且在平面图中,其中一个端子53布置在与半导体元件40的主电极42重叠的位置。在平面图中,另一个端子53布置在与绝缘体70的接头72重叠的位置。两个端子53被设置为共同构件(即,相同部分)。接头71经由焊料55连接至散热器51的内表面51a。接头72经由焊料56连接至端子53的一端。上接头71对应于第一接头,下接头72对应于第二接头。

如图5所示,绝缘体70位于半导体元件40的右方。相对于垂直于布线元件50的纵向延伸的布线元件50的虚拟中心线CL,半导体元件40设置在左侧区域,绝缘体70设置在右侧区域。具体地,绝缘体70和半导体元件40相对于中心线CL大致镜像对称地设置。

如上所述,在半导体器件20中,密封树脂体30将形成用于一相的桥臂10上臂的半导体元件40和绝缘体70密封。密封树脂体30一体地密封半导体元件40、绝缘体70、散热器51的一部分、散热器52的一部分、端子53、每个主端子60、61的一部分以及每个虚拟端子62的一部分。

半导体元件40在Z方向上设置在散热器51和散热器52之间的位置处。(半导体元件40沿着Z方向设置在散热器51和52的设置/堆叠的中间位置处。)由此,半导体元件40的热量可以辐射/散发到Z方向的两侧。半导体器件20具有双面散热结构。散热器51的外表面51b与密封树脂体30的底面30a基本齐平。散热器52的外表面52b与密封树脂体30的顶面30b基本齐平。由于外表面51b和52b是暴露表面,因此可以改善散热。

图6是示出形成用于转换器5的一相的桥臂10下臂的半导体器件120的参考图。图2对应于图6。半导体器件120具有与半导体器件20相同的结构。在半导体器件120中,设置有半导体元件140代替半导体元件40。此外,设置有半导体元件145代替绝缘体70,设置信号端子162代替虚拟端子62。密封树脂体130对应于密封树脂体30,布线元件150对应于布线元件50。主端子160和161对应于主端子60和61。主端子160和161从密封树脂体130的侧面130c朝向外部突出。

如同半导体元件40,半导体元件140使用宽带隙半导体,具体是SiC作为基材。上述的MOSFET 14形成在半导体元件140中。半导体元件140在Z方向的两侧具有主电极(未示出)。主电极之一是漏电极,另一主电极是源电极。漏电极焊接到形成布线元件150的散热器(未示出)。源电极经由端子(未示出)连接到散热器152。半导体元件140在芯片上形成的元件方面与半导体元件40不同,但是构成基材的半导体材料、平面形状和尺寸以及厚度与半导体元件40几乎相同。

如同绝缘体70,半导体元件145使用Si作为基材。上述的二极管15形成在半导体元件145中。半导体元件140在Z方向的两侧具有主电极(未示出)。主电极之一是阴极电极,另一主电极是阳极电极。阴极电极焊接到与漏电极相同的散热器上。阳极电极经由端子连接至与源电极相同的散热器152。尽管半导体元件145在芯片上形成的元件方面与绝缘体70不同,但是半导体材料、平面形状和尺寸以及基材的厚度与绝缘体70基本相同。

信号端子162是提供电连接功能的外部连接端子。信号端子162经由焊线180连接到半导体元件140的焊盘(未示出)。该焊盘形成在半导体元件140中与源电极相同的主表面上。信号端子162从密封树脂体130的侧面130d朝外部突出。侧面130d是与侧面130c相反的表面。信号端子162的结构与虚拟端子62的结构相同。在图6中,用虚线表示信号端子162的被密封树脂体130覆盖的部分和焊线180。

信号端子162形成/设置为引线框架,该引线框架包括:(i)与半导体元件140的漏电极和半导体元件145的阴极电极连接的散热器;以及(ii)主端子160。该引线框架是与包括形成半导体器件20的散热器51、主端子60和虚拟端子62的(上述)引线框架共同的构件(即,共同的部件)。

因此,可以使用与形成下臂的半导体器件120相同的构件通过相同的制造工艺来形成形成上臂的半导体器件20。例如,这使得可以减少制造时间和成本。此外,半导体器件120的信号端子162安装在形成有至少一部分上述控制电路单元的电路板上。在本实施例中,半导体器件20具有与半导体器件120相同的结构,并且具有虚拟端子62。因此,虚拟端子62可以安装在电路板上。半导体器件20通过虚拟端子62保持在电路板上。

<半导体器件的制造方法>

接下来,描述半导体器件20的制造方法。

首先,形成将半导体元件40和绝缘体70夹在布线元件50之间或由布线元件50夹持的连接结构。

更具体地,与半导体元件40、绝缘体70和端子53一起制备(i)包括散热器51、主端子60和虚拟端子62的引线框架,以及(ii)包括一系列主端子61的散热器52。然后,将半导体元件40和绝缘体70经由焊料55分别设置在散热器51的内表面51a上。或者,例如,将在两侧预先焊接的端子53用面向半导体元件40侧的焊料56设置在半导体元件40上。端子53以相同的方式设置在绝缘体70上。

具有双面散热结构的半导体器件20例如由冷却器(未示出)从Z方向的两侧夹在中间。因此,需要表面在Z方向上具有高平行度以及平行表面之间具有高尺寸精度。因此,焊料54被配置的量能够吸收半导体器件20的高度变化。即,布置大量的焊料54。换句话说,焊料54被配置为比焊料55和56厚。然后,在这种设置状态下,执行第一回流焊。这样的设置使得可以获得堆叠体,其中半导体元件40、绝缘体70、散热器51和端子53一体地连接以具有一个本体。

接下来,将散热器52设置在未示出的基座的一个表面上,使得内表面52a面向上。然后,将上述层叠体设置在散热器52上,以使焊料54面对散热器52,并且进行第二回流焊。在第二回流焊中,从散热器51侧沿Z方向施加载荷,使得半导体器件20的高度具有预定的高度/尺寸。例如,通过施加载荷,使间隔件(未示出)与散热器51的内表面51a和基座的一个表面都接触。以这种方式,将半导体器件20的高度设置为具有预定高度。

通过进行第二回流焊,将堆叠体和具有一系列主端子61的散热器52集成为一体的连接结构。焊料54吸收由于构成半导体器件20的部件的尺寸公差和组装公差而引起的高度变化。

在形成连接结构之后,将密封树脂体30成型。在本实施例中,采用传递成型法。将连接结构放置在模具中,并且成型密封树脂体30。在本实施例中,密封树脂体30被成型使得散热器51和52被完全覆盖,并且在成型之后进行切割。密封树脂体30与一部分散热器51和52一起被切割。以这种方式,外表面51b和52b从密封树脂体30露出。外表面51b与底面30a基本齐平。外表面52b与顶面30b基本齐平。

接下来,可以通过去除拉杆等(未示出)来获得半导体器件20。

注意,密封树脂体30可以在外表面51b和52b被压靠成型模具的型腔壁表面并且彼此紧密接触的状态下成型。在这种情况下,当成型密封树脂体30时(即,成型完成时),外表面51b和52b(已经)从密封树脂体30中露出。因此,不必要进行成型后的切割。另外,尽管上面已经示出了执行两次回流焊的示例,但是本发明不限于这样的示例。可以通过一次回流焊工艺来形成连接结构。可替代地,可以通过焊料芯片键合法等形成连接结构而不进行回流焊。

<第一实施例的概要>

与Si相比,诸如SiC的宽带隙半导体具有诸如更高的介电击穿场强、更高的饱和速度和更高的导热率的特性。因此,如果性能相当,则可以使元件尺寸小于Si。通常,当元件尺寸减小时,热量辐射/发散面积尺寸也减小,从而导致产生的热量发散困难。宽带隙半导体比Si具有更高的导热率和更高的热功率,从而允许/实现元件尺寸的减小。通过减小元件尺寸也可以降低成本。

如上所述,本实施例的半导体器件20包括具有宽带隙半导体作为基材的半导体元件40。半导体元件40元件尺寸小于在以Si为基材的芯片上形成具有同等性能的元件的配置。图7A/7B示出了用树脂30A填充模腔以形成密封树脂体30的步骤。如图7A所示,当形成密封树脂体30以覆盖散热器51和52的外表面51b和52b时,例如,散热器52的外表面52b与未填充有树脂30A的型腔壁表面80之间有时会形成间隙。在这种情况下从树脂30A施加到散热器52的内表面52a的力与从树脂30A施加到外表面52b的力之间存在差异。即,当外表面和内表面上的力不相等时(即,当通过作用在两个表面上的力不能获得静压力时),应力作用在机械连接散热器51和52的柱状部分上。即,应力作用在半导体元件40上。

如果仅将具有小元件尺寸的半导体元件40设置在散热器51和52之间的位置,则应力集中在半导体元件40上。例如,应力集中在半导体元件40和布线元件50之间的焊料接头上。在本实施例中,绝缘体70还用作将散热器51和52机械连接的柱,从而向绝缘体70分配/释放在密封树脂体30成型期间起作用的应力。因此,可以抑制半导体元件40上的应力集中。以这种方式,可以提供高度可靠的半导体器件20。

当通过使外表面51b、52b与型腔壁表面80接触而成型密封树脂体30时(图7B),散热器51的内表面51a从树脂30A受到的力的方向和散热器52的内表面52a从树脂30A受到的力的方向彼此相反。因此,半导体元件40在朝向Z方向两侧的拉动方向上受到(即,接收到)应力。在本实施例中,由于存在绝缘体70,所以在成型密封树脂体30时起作用的应力朝向绝缘体70分布。因此,可以抑制应力集中在半导体元件40上。以这种方式,可以提供高度可靠的半导体器件20。在图7A/7B中,用白色箭头表示散热器从树脂接受到的力。

在本实施例中,作为绝缘体70,采用在以Si为基材的芯片上形成的非导电元件13。因此,在不阻碍半导体元件40操作的同时,实现了机械连接布线元件50的功能。非导电元件13的结构中,PN二极管13a和13b沿相反方向连接,并且可以容易地形成在半导体基板上。

半导体元件40和绝缘体70的布置方向不限于以上示例。例如,布线元件50的横向方向可以被设置为布置方向。但是,将布线元件50的纵向即X方向设定为布置方向。以这种方式,可以抑制布线元件50的尺寸/体积的增加,并因此抑制半导体器件20的尺寸/体积的增加。例如,在散热器52中,由于作用在内表面52a和外表面52b上的力的差异而可能产生旋转力矩。旋转力矩在散热器52的纵向方向上特别大,但是可以通过将布置方向设为纵向方向来抑制旋转力矩。并且,通过这种布置,可以降低作用在半导体元件40上的应力。

特别地,在本实施例中,相对于布线元件50在纵向上的虚拟中心线CL,在纵向上的一个区域中布置半导体元件40,并且在另一区域中布置绝缘体70。因此,例如在平面图中相对于旋转轴线位于左侧和右侧的半导体元件40和绝缘体70可以有效地消除旋转力矩。

尽管非导电元件13由两个PN二极管13a和13b形成,但是非导电元件13不限于这种结构。可以采用其中三个或更多个PN二极管串联的结构,使得在三个或更多个二极管中相邻的PN二极管的正向彼此相反。

(第二实施例,图8、9)

第二实施例是作为基本结构的前一实施例的修改,并且可以结合其描述。在前一实施例中,在平面图中,使绝缘体70的面积尺寸基本等于半导体元件40的面积尺寸。另外,示出了仅设置一个绝缘体70的例子。然而,本公开不限于这样的示例。

图8和9示出了本实施例的半导体器件20。与前一实施例类似,在布线元件50之间设置一个半导体元件40和一个绝缘体70。在平面图中,绝缘体70的面积尺寸大于半导体元件40的面积尺寸。以这种方式,对于绝缘体70的连接部分,形成布线元件50的散热器51和52与端子53之间的焊料接头的面积尺寸大于半导体元件40的连接部分。其他结构与前一实施例的结构相同。

<第二实施例的概要>

在本实施例中,在平面图中,绝缘体70大于半导体元件40,因此,与前一实施例相比,作用在绝缘体70上的应力增大。以这种方式,可以进一步减小作用在半导体元件40上的应力。因此,可以进一步提高半导体器件20的可靠性。

半导体器件20的结构不限于以上示例。例如,如图10所示的修改中,半导体器件20可以包括多个绝缘体70。在图10中,半导体器件20包括两个绝缘体70。两个绝缘体70在Y方向上并排布置。通过设置多个绝缘体70,机械连接散热器51和散热器52的柱数增加。这使得可以将作用在密封树脂体30成型上的否则集中的应力划分为和分配为两列。应当注意,该结构可以包括三个或更多个绝缘体70。此外,多个绝缘体70的设置不限于图10所示的示例。例如,多个绝缘体70的设置线可以沿X方向延伸。

此外,在图10的示例中,多个绝缘体70的总面积尺寸,即,绝缘体70的面积尺寸之和大于半导体元件40的面积尺寸。以这种方式,可以获得与图8所示结构相同的效果。

(第三实施例,图11)

第三实施例是作为基本结构的前面实施例的修改,并且可以结合其描述。在前面的实施例中,非导电元件13是绝缘体70。绝缘体不限于这种部件。

图11是示出本实施例的半导体器件20的截面图,其与图3对应。半导体器件20包括绝缘体70A。其他结构与第一实施例的结构相同。绝缘体70A在绝缘基材的两个表面上具有接头71和72。绝缘基材是使用玻璃、陶瓷、半导体等具有电绝缘性的无机材料形成的。非导电元件13未形成在绝缘体70A(即,绝缘基材)上。

通过使用由无机材料制成的绝缘基材,绝缘体70A的击穿电压等于或高于半导体元件40的击穿电压。此外,绝缘体70A将(i)作为第一布线元件的散热器51与(ii)作为第二布线元件的散热器52和端子53电分离。因此,没有电流通过绝缘体70A在第一布线元件和第二布线元件之间流动,并且在半导体器件20的使用条件下,不妨碍半导体元件40的操作。绝缘体70A用作将散热器51和散热器52机械地连接的支柱。

<第三实施例的概要>

如本实施例所示,通过利用基材的特性,可以采用绝缘体70A作为绝缘体。包括绝缘体70A的半导体器件20也可以实现与包括绝缘体70的半导体器件20相同的效果。对于绝缘体70,可以优选使用线性膨胀系数接近于形成半导体元件40的基材的线性膨胀系数的材料。

本实施例的结构和第二实施例的结构是可组合的。本实施例可以实现与第二实施例中描述的结构相同的效果。例如,绝缘体70A的面积尺寸可以大于半导体元件40的面积尺寸。而且,该结构可以包括多个绝缘体70A。多个绝缘体70A的总面积尺寸可以大于半导体元件40的面积尺寸。

(其他实施方式)

说明书和附图中公开的内容不限于示例性实施例。本公开内容包括所示出的实施例以及本领域技术人员对实施例的修改。例如,本公开不限于实施例中所示的部件和/或元件的组合。本公开可以以各种组合来实现。本公开可以具有可以添加到实施例的附加部分。本公开包括实施例的部件和/或元件的省略。本公开涵盖一个实施例与另一实施例之间的部件和/或元件的替换或组合。本公开的技术范围不限于实施例的描述。可以理解的是,公开的一些技术范围由权利要求的说明示出,并且还包括与权利要求的说明等同的含义以及在该范围内的修改。

说明书、附图等的公开内容不受权利要求书的描述限制。说明书、附图等中的公开内容包含权利要求中描述的技术构思,并且进一步扩展到比权利要求中的技术构思更宽泛的技术构思。因此,可以从说明书、附图等的公开中提取各种技术构思,而不限于权利要求的描述。

尽管示出了其中半导体器件20包括虚拟端子62的示例,但是本发明不限于这种示例。虚拟端子62是可选的,并且可以省略。

主端子60和61的数量和布置不限于以上示例。例如,可以使用其中主端子60和61中的至少一个设置成多个的结构。

应用半导体器件20的转换器5的电路结构不限于以上示例。转换器5的相数不限于多相。其中的相数可以是单相。在采用多相的情况下,相数不限于四个。在用于一个相的桥臂10中,上臂可以具有并联结构。例如,可以将SBD 12和非导电元件13的并联电路设置成两组,并且可以将两组这样的并联电路彼此并联连接。半导体器件20的应用目标不限于具有增压功能的转换器5的上臂。

半导体器件20中包括的半导体元件40的数量不限于以上示例。如上所述,当一个上臂由两组并联电路组成时,可以设置两个半导体元件40和两个绝缘体70(即,非导电元件13)。

在本实施例中描述的结构具有:半导体元件,其中,以宽带隙半导体作为基材形成有竖直元件;设置为将半导体元件夹在中间的布线元件;以及将半导体元件和布线元件一体密封的密封树脂体。在这种结构中,通过添加绝缘体,可以减小在成型密封树脂体时作用在半导体元件上的应力,从而提供高度可靠的半导体器件。竖直元件不限于上述的SBD 12。竖直元件也可以是诸如MOSFET等的开关元件。

在平面图中,可以使绝缘体70(或70A)的面积尺寸小于半导体元件40的面积尺寸。通过设置绝缘体70(或70A),与不具有绝缘体70/70A的结构相比,可以使作用在半导体元件40上的应力减小。

尽管示出了第二布线元件包括散热器52和端子53的示例,但是本公开不限于这样的示例。端子53可以省略。例如,代替端子53,散热器52可以设置有朝着半导体元件40突出的突起。

已经示出了散热器51和52的外表面51b和52b从密封树脂体30露出的示例,但是本公开不限于这样的示例。外表面51b和52b可以构造成不从密封树脂体30露出。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:半导体装置及半导体装置的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类