倒装芯片封装

文档序号:1045173 发布日期:2020-10-09 浏览:8次 >En<

阅读说明:本技术 倒装芯片封装 (Flip chip package ) 是由 郑百盛 杜文杰 于 2019-05-09 设计创作,主要内容包括:一种倒装芯片封装,包括一基板、接合在基板上的一芯片本体以及连接于芯片本体与基板之间的多个凸块。基板包括多个输入导线以及多个输出导线。芯片本体包括第一封装单元以及第二封装单元。第一封装单元包括第一封环以及多个第一焊垫,第二封装单元包括第二封环以及多个第二焊垫,芯片本体在第一封环与第二封环之间连续地延伸。各输入导线具有与芯片本体重叠的一端以及位于基板的一第一接合区域的另一端,各输出导线具有与芯片本体重叠的一端以及位于基板的一第二接合区域的另一端。第一接合区域以及第二接合区域位于芯片本体的相对侧。(A flip chip package includes a substrate, a chip body bonded on the substrate, and a plurality of bumps connected between the chip body and the substrate. The substrate includes a plurality of input conductive lines and a plurality of output conductive lines. The chip body comprises a first packaging unit and a second packaging unit. The first packaging unit comprises a first sealing ring and a plurality of first welding pads, the second packaging unit comprises a second sealing ring and a plurality of second welding pads, and the chip body continuously extends between the first sealing ring and the second sealing ring. Each input lead has one end overlapped with the chip body and the other end positioned in a first bonding area of the substrate, and each output lead has one end overlapped with the chip body and the other end positioned in a second bonding area of the substrate. The first bonding region and the second bonding region are located on opposite sides of the chip body.)

倒装芯片封装

【技术领域】

本发明是关于一种半导体封装,且特别是关于一种倒装芯片封装。

【背景技术】

在高分辨率电子装置的应用上,高输出引脚计数(High Output Pin Count)的集成电路(integrated circuits,IC)芯片(chip)的需求增加。在各种封装技术中,高输出引脚计数集成电路芯片经常采用倒装芯片接合技术(Flip Chip Bonding Technology),因为倒装芯片接合技术利用配置在芯片主动面(active surface)上的焊料(solder)/金/铜柱凸块(Cu pillar bump),而有助于在芯片封装上实现大量触点以及高触点密度(contactdensity)。相较于引线键合技术(wire-bonding technology),焊料/金/铜柱凸块可在芯片与载体基板(carrier substrate)之间提供更短的传输路径,以提供期望的性能。

然而,基于制程极限以及制造成本的限制,集成电路芯片的触点密度不易改变。为了在小体积封装下提供更高的输出引脚计数,芯片封装技术仍有待改进。

发明内容

本发明提供一种具有高输出引脚计数且体积小的倒装芯片封装(flip chippackage)。

本发明的倒装芯片封装包括一基板、接合在该基板上的一芯片本体以及连接于该芯片本体与该基板之间的多个凸块。该基板包括多个输入导线以及多个输出导线。该芯片本体包括一第一封装单元以及一第二封装单元。该第一封装单元包括一第一封环以及位于该第一封环围绕的一区域内的多个第一焊垫,该第二封装单元包括一第二封环以及位于该第二封环围绕的一区域内的多个第二焊垫。该芯片本体在该第一封环与该第二封环之间连续地延伸。各该输入导线具有与该芯片本体重叠的一端以及位于该基板的一第一接合区域的另一端,各该输出导线具有与该芯片本体重叠的一端以及位于该基板的一第二接合区域的另一端。该第一接合区域以及该第二接合区域位于该芯片本体的相对侧。

在本发明的一实施例中,这些第一焊垫配置于一环状路径中,该环状路径位于该第一封环围绕的该区域内。

在本发明的一实施例中,这些第一焊垫配置于该第二封环围绕的一环状路径中。

本发明的倒装芯片封装包括一基板、接合在该基板上的一芯片本体以及连接于该芯片本体与该基板之间的多个凸块。该基板包括多个输入导线以及多个输出导线。该芯片本体包括一第一封装单元以及一第二封装单元。该第一封装单元包括配置在一第一环状路径中的多个第一焊垫,该第二封装单元包括配置在一第二环状路径中的多个第二焊垫。这些第一焊垫中最靠近这些第二焊垫的一第一焊垫与这些第二焊垫中最靠近这些第一焊垫的一第二焊垫之间的距离介于55微米与1000微米之间。各该输入导线具有与该芯片本体重叠的一端以及位于该基板的一第一接合区域的另一端,各该输出导线具有与该芯片本体重叠的一端以及位于该基板的一第二接合区域的另一端。该第一接合区域以及该第二接合区域位于该芯片本体的相对侧。

在本发明的一实施例中,这些凸块包括在该第一封装单元与该第二封装单元之间延伸的一互连凸块,该互连凸块的一端连接至这些第一焊垫中的一第一焊垫,该互连凸块的另一端连接至这些第二焊垫中的一第二焊垫。

在本发明的一实施例中,该基板还包括一互连导线,该互连导线的一端连接至这些第一焊垫中的一第一焊垫,该互连导线的另一端连接至这些第二焊垫中的一第二焊垫。

在本发明的一实施例中,该第一封环与该第二封环之间相隔一距离,该距离介于50微米与200微米之间。

在本发明的一实施例中,这些第一焊垫包括多个第一输入焊垫,这些第二焊垫包括多个第二输入焊垫,这些第一输入焊垫分别连接至这些输入导线中一部分的输入导线,这些第二输入焊垫分别连接至这些输入导线中另一部分的输入导线。

在本发明的一实施例中,这些第一焊垫中的一第一焊垫为一第一虚置焊垫,该第一虚置焊垫相较这些第一输入焊垫靠近该第二封环,这些第二焊垫中的一第二焊垫为一第二虚置焊垫,该第二虚置焊垫相较这些第二输入焊垫靠近该第一封环。

在本发明的一实施例中,该芯片本体的长度介于28毫米与66毫米之间。

在本发明的一实施例中,这些第一焊垫中最远离该第二封环的一第一焊垫与这些第二焊垫中最远离该第一封环的一第二焊垫之间的距离介于27毫米与65毫米之间。

在本发明的一实施例中,这些第一焊垫中最靠近该第二封环的一第一焊垫与这些第二焊垫中最靠近该第一封环的一第二焊垫之间的距离介于55微米与1000微米之间。

在本发明的一实施例中,该芯片本体还包括位于该第一封环与该第二封环之间的一周边电路。

基于上述,本发明的实施例的倒装芯片封装中的单一芯片本体包括多于一个的封装单元,以提供倒装芯片封装更高的触点密度,并且倒装芯片封装的体积不致过度扩大。据此,本发明的实施例的倒装芯片封装可在小体积下提供高输出引脚计数。

为让本发明的上述特征以及优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。

【附图说明】

图1为本发明的一实施例的倒装芯片封装的剖面示意图。

图2为本发明的一实施例的倒装芯片封装的平面示意图。

图3为本发明的另一实施例的倒装芯片封装的平面示意图。

图4为本发明的另一实施例的倒装芯片封装的平面示意图。

图5为本发明的另一实施例的倒装芯片封装的局部平面示意图。

图6为本发明的另一实施例的倒装芯片封装的平面示意图。

【符号说明】

100、200、300、400、500、600:倒装芯片封装

110、210、310:基板

112:导线

120、220、620:芯片本体

120A、220A、620A:第一封装单元

120B、220B、620B:第二封装单元

120S:主动面

122A:第一半导体组件

122B:第二半导体组件

124A、224A、224Ax、624A、624Ay:第一焊垫

124B、224B、624B、224Bx、624By:第二焊垫

130:凸块

212A、312A:输入导线

212B、312B:输出导线

216:互连导线

226、626:周边电路

432:互连凸块

B1:第一接合区域

B2:第二接合区域

d1、d2、d3:距离

DPA:第一虚置焊垫

DPB:第二虚置焊垫

IPA:第一输入焊垫

IPB:第二输入焊垫

L220:长度

OPA:第一输出焊垫

OPB:第二输出焊垫

PR1:第一环状路径

PR2:第二环状路径

R1、R2、CR:区域

S1:第一侧

S2:第二侧

SR1:第一封环

SR2:第二封环

WSR:宽度

具体实施方式

图1为本发明的一实施例的倒装芯片封装(flip chip package)的剖面示意图。请参照图1,一倒装芯片封装100可包括一基板110,接合在基板110上的一芯片本体120以及多个凸块(bump)130。芯片本体120通过凸块130接合在基板110上,而芯片本体120的一主动面(active surface)120S面向基板110。凸块130可以是金凸块、焊料凸块、铜凸块或其他类似的金属凸块。芯片本体120可以通过锡金共晶键合法(eutectic bonding method)、各向异性导电膜(anisotropic conductive film,ACF)接合法、表面安装技术(surface-mounttechnology,SMT)回焊方法而通过凸块130电性连接至基板110。基板110可以是软性印刷电路板(Flexible Printed Circuit,FPC)薄膜、球栅阵列(ball grid array,BGA)基板、薄膜衬底芯片(Chip on Film,COF)卷带(Tape)或玻璃衬底芯片(Chip On Glass,COG)玻璃基板,并包括形成于其上的多个导线112。芯片本体120可包括一第一封装单元120A以及一第二封装单元120B。

第一封装单元120A包括一第一半导体组件122A以及用于提供第一半导体组件122A电传输路径的多个第一焊垫(pad)124A。第二封装单元120B包括一第二半导体组件122B以及用于提供第二半导体组件122B电传输路径的多个第二焊垫124B。第一半导体组件122A以及第二半导体组件122B例如可分别为具有相应电路布局的晶粒(die)。具体而言,第一封装单元120A以及第二封装单元120B一并被封装(encapsulate)并单体化(singulate)而成为一单一的芯片本体120。

第一焊垫124A以及第二焊垫124B分别连接至凸块130,使得第一半导体组件122A以及第二半导体组件122B可以通过第一焊垫124A、第二焊垫124B以及凸块130电性连接至导线112。图1中所示的倒装芯片封装100的剖面可用于示例性说明半导体组件、焊垫、凸块以及导线的配置关系,但是本发明不限于此。在其他实施例中,倒装芯片封装可以包括图1中未图示的其他部件。

图2为本发明的一实施例的倒装芯片封装的平面示意图。在图2中,倒装芯片封装200可包括一基板210、接合在基板210上的一芯片本体220以及多个凸块(未图示)。基板210可以是软性印刷电路板(Flexible Printed Circuit,FPC)薄膜、球栅阵列(ball gridarray,BGA)基板、薄膜衬底芯片(Chip on Film,COF)卷带(Tape)或玻璃衬底芯片(Chip OnGlass,COG)玻璃基板,并且包括多个输入导线212A以及多个输出导线212B。芯片本体220包括一第一封装单元220A以及一第二封装单元220B。在本实施例中,每个输入导线212A具有与芯片本体220重叠的一端以及位于基板210的第一接合区域B1的另一端。每个输出导线212B具有与芯片本体220重叠的一端以及位于基板210的第二接合区域B2的另一端。第一接合区域B1以及第二接合区域B2位于芯片本体220的相对侧。为了说明,图2中所示的倒装芯片封装200的平面图中可省略部分部件,且部分省略的部件可参照图1。举例来说,图2中所示的倒装芯片封装200可还包括图1所示的凸块130,以将芯片本体220连接至基板210上的输入导线212A(或称为第一导线)以及输出导线212B(或称为第二导线)。

如图2所示,第一封装单元220A包括一第一封环SR1以及位于第一封环SR1围绕的一区域R1内的多个第一焊垫224A。第二封装单元220B包括一第二封环SR2以及位于第二封环SR2围绕的一区域R2内的多个第二焊垫224B。芯片本体220在第一封环SR1与第二封环SR2之间连续地延伸。换句话说,芯片本体220是一个别且单一的封装本体。图2中可省略倒装芯片封装200的部分部件,且部分省略的部件可参照图1。举例来说,图2中所示的芯片本体220亦可包括类似于图1所示的第一半导体组件122A以及第二半导体组件122B的半导体组件,且可电性连接至第一焊垫224A以及第二焊垫224B。此外,每个第一焊垫224A可连接至类似于图1所示的凸块130的一凸块,以电性连接至输入导线212A以及输出导线212B中对应一者。并且,每个第二焊垫224B可连接至类似于图1所示的凸块130的一凸块,以电性连接至输入导线212A以及输出导线212B中对应一者。

具体而言,图2所示的倒装芯片封装的平面图可作为图1的倒装芯片封装100的平面布局的实现例。具体而言,输入导线212A以及输出导线212B可对应于图1所示的导线112。第一焊垫224A以及第二焊垫224B可以对应于图1所示的第一焊垫124A以及第二焊垫124B。

尽管图2未图示出半导体组件,但是第一封装单元220A可视为封装第一半导体组件处,并且第一半导体组件可位于第一封环SR1围绕的区域R1内。类似地,第二封装单元220B可视为封装第二半导体组件处,第二半导体组件可位于第二封环SR2围绕的区域R2内。换句话说,第一封装单元220A以及第二封装单元220B可视为是两个独立的封装单元,每个封装单元中包括独立的一半导体组件。

在制造芯片本体220的过程中,多个封装单元呈阵列排列并整合封装在母封装中,而两个相邻的封装单元通过一预定切割区域彼此间隔开。接着,沿预定切割区域切割母封装以形成单独的芯片本体,即单体化制程(singulation process)。在本实施例中,第一封环SR1以及第二封环SR2可定义出第一封装单元220A以及第二封装单元220B,并且可保护每个封装单元中的部件。具体而言,第一封环SR1与第二封环SR2之间的区域CR可作为母封装的切割区域。在一些实施例中,第一封环SR1的宽度WSR以及第二封环SR2的宽度WSR可大致介于2微米(Micrometer,μm)与30微米之间,但是本发明不限于此。在其他实施例中,可不设置封环,并可通过焊垫或其他标记的配置来确定封装单元。一般而言,在单体化制程中,每个封装单元从母封装中单体化以形成一个单一个体,但在本实施例中,芯片本体220通过在一个单一个体中结合两个或更多封装单元而自母封装单体化。也就是说,本实施例中的芯片本体220嵌入与母封装中对应预定切割区域的区域CR。如果沿着区域CR切割芯片本体220,可获得两个独立的芯片封装。

在本实施例中,芯片本体220的长度L220可介于28毫米(millimeter,mm)与66毫米之间。第一封环SR1与第二封环SR2之间相隔距离d1,距离d1可类似母封装的预定切割区域的宽度。一般而言,母封装的预定切割区域的宽度应尽量缩小,因为预定切割区域增加时,也会增加废弃区域,如此一来将缩减总芯片(gross dies)。因此,距离d1可介于50微米与200微米之间,而不致过度扩大芯片本体220的整体体积。换句话说,芯片本体220的体积较小。最靠近第二封环SR2的第一焊垫224A与最靠近第一封环SR1的第二焊垫224B之间的距离d2可介于55微米与1000微米之间。最远离第二封环SR2的第一焊垫220A与最远离第一封环SR1的第二焊垫224B之间的距离d3可介于27毫米与65毫米之间。长度L220、距离d1、距离d2以及距离d3可依据每个封装单元的电路设计而决定,并且不限于上述的数量范围。

此外,芯片本体220可还包括位于第一封环SR1与第二封环SR2之间的区域CR的周边电路226。周边电路226可作为母封装中的测试电路,而于芯片本体220单体化后不被致能(enable)。在一些实施例中,介电材料可覆盖以及/或遮蔽周边电路226,使周边电路226可不与基板210上的导线电性连接。

第一封装单元220A以及第二封装单元220B是以相同的制程制造,并可具有相同的电路布局及功能。举例来说,在芯片本体220中,第一封装单元220A的第一焊垫224A配置在环状路径中,并且第二封装单元220B的第二焊垫224B也配置在环状路径中。在其他实施例中,每个封装单元中的焊垫可呈阵列排列。在第一封装单元220A中,连接至输入导线212A的第一焊垫224A可为第一输入焊垫IPA,连接至输出导线212B的第一焊垫224A可为第一输出焊垫OPA。第一输入焊垫IPA集中在芯片本体220的一侧,而第一输出焊垫OPA集中在芯片本体220的相对侧。此外,第一输出焊垫OPA不夹置(interpose)于相邻的两个第一输入焊垫IPA之间。第一输入焊垫IPA不夹置于相邻的两个第一输出焊垫OPA之间。类似地,第二焊垫224B可区分为连接至输入导线212A的第二输入焊垫IPB以及连接至输出导线212B的第二输出焊垫OPB,并且第二输入焊垫IPB以及第二输出焊垫OPB集中在各自的区域。

相较包括一个单一封装单元的封装本体,包括整合封装的第一封装单元220A以及第二封装单元220B的芯片本体220可提供更多的输入/输出通道。因此,倒装芯片封装200可实现高输出设计并且利于高分辨率电子装置的应用,而且倒装芯片封装200具有较小体积。举例来说,在每个第一封装单元220A以及每个第二封装单元220B提供N个输出通道的情况下,具有芯片本体220的倒装芯片封装200可提供2N个输出通道,其中N是整数。此外,第一封装单元220A及第二封装单元220B整合至单一芯片本体220中,因此仅需一道接合制程来将第一封装单元220A及第二封装单元220B接合在基板210上,而能缩短制程时间并简化制程。

图3为本发明的另一实施例的倒装芯片封装的平面示意图。在图3的实施例中,倒装芯片封装300可包括基板310、接合在基板310上的芯片本体220以及连接于基板310与芯片本体220之间的多个凸块(未图示)。倒装芯片封装300的芯片本体220基本上类似于图2中所示的倒装芯片封装200的芯片本体220,因此相同符号代表相同或相似部件,并且部件的细节可以参考关于图2的描述。在本实施例中,基板310上的输入导线312A和输出导线312B的配置不同于图2的基板210上的配置。

具体而言,在本实施例中,所有的输入导线312A从芯片本体220的第一侧S1延伸至第一接合区域B1。部分的输出导线312B从芯片本体220的第一侧S1延伸至第二接合区域B2,其余的输出导线312B从芯片本体220的相对的第二侧S2延伸至第二接合区域B2。第一封装单元220A中连接到输入导线312A的第一焊垫224A为第一输入焊垫IPA,并且第一封装单元220A中连接到输出导线312B的第一焊垫224A为第一输出焊垫OPA。在本实施例中,部分的第一输出焊垫OPA配置在芯片本体220的第一侧S1处而作为第一输入焊垫IPA。另外,位于第一输入焊垫IPA与第二封环SR2之间的第一焊垫224A是第一虚置焊垫DPA。在一些实施例中,部分的第一虚置焊垫DPA以及部分的第一输出焊垫OPA位于第一封装单元220A中相邻第一接合区域B1的一侧,并且第一输入焊垫IPA配置在相邻第一接合区域B1的第一虚置焊垫DPA与相邻第一接合区域B1的第一输出焊垫OPA之间。

类似于第一封装单元220A,第二封装单元220B的第二焊垫224B可区分为连接至输入导线312A的第二输入焊垫IPB、连接至输出导线312B的第二输出焊垫OPB以及位于第二输入焊垫IPB与第一封环SR1之间的第二虚置焊垫DPB。部分的第二输出焊垫OPB如同第二输入焊垫IPB而位于芯片本体220的第一侧S1处,并且第二输入焊垫IPB位于第二虚置焊垫DPB与位于第一侧S1的第二输出焊垫OPB之间。

芯片本体220可经适当设计,而于沿着第一封环SR1与第二封环SR2之间的区域切割芯片本体220的情况下,使第一虚置焊垫DPA以及第二虚置焊垫DPB作为输出焊垫。然而,芯片本体220在第一封环SR1与第二封环SR2之间是连续的,而输入导线312A以及输出导线312B被限定分别延伸至位于芯片本体220相对侧的第一接合区域B1以及第二接合区域B2。输出导线312B不延伸至第一虚置焊垫DPA以及第二虚置焊垫DPB。因此,第一虚置焊垫DPA以及第二虚置焊垫DPB既不连接至输入导线312A也不连接至输出导线312B。在一些实施例中,第一虚置焊垫DPA以及第二虚置焊垫DPB可接地(grounded)或浮接(floated)。在一些实施例中,第一虚置焊垫DPA以及第二虚置焊垫DPB可不与连接至基板310的凸块连接。在本实施例中,位于芯片本体220的第一侧S1的部分焊垫为输出焊垫。因此,尽管存在第一虚置焊垫DPA以及第二虚置焊垫DPB,但是输出焊垫的数量可增加以实现高输出设计。

图4为本发明的另一实施例的倒装芯片封装的平面示意图。在图4的实施例中,倒装芯片封装400类似于倒装芯片封装200,因此相同或相似符号代表相同或相似部件,并且部件的细节可以参考以上描述而不再赘述。在本实施例中,倒装芯片封装400可包括基板210以及接合在基板210上的芯片本体220,并且还包括一互连凸块432。互连凸块432可以是连接于芯片本体220上的焊垫与基板210上的导线之间的凸块。具体而言,互连凸块432在第一封装单元220A与第二封装单元220B之间延伸。互连凸块432的一端连接至多个第一焊垫中的一者,即第一焊垫224Ax。互连凸块432的另一端连接至多个第二焊垫中的一者,即第二焊垫224Bx。第一焊垫224Ax以及第二焊垫224Bx可邻设于第一封环SR1与第二封环SR2之间的区域,并且可限定为传输相同的电信号或电压。在一些实施例中,第一焊垫224Ax以及第二焊垫224Bx可均为连接至一地电压(ground voltage)的接地焊垫或连接至一电源的电源焊垫。在其他实施例中,互连凸块432可应用于倒装芯片封装100或倒装芯片封装300,以连接两个封装单元中的两个焊垫。

图5为本发明的另一实施例的倒装芯片封装的局部平面示意图。在图5的实施例中,倒装芯片封装500类似于倒装芯片封装200,因此相同或相似符号代表相同或相似部件,并且部件的细节可以参考以上描述而不再赘述。在本实施例中,倒装芯片封装500可包括基板210以及通过多个凸块(未图示)而接合在基板210上的芯片本体220,并且基板210包括输入导线212A、输出导线212B以及一互连导线216。互连导线216在第一封装单元220A与第二封装单元220B之间延伸,并且连接至多个第一焊垫中的一者,即第一焊垫224Ax,并且连接至多个第二焊垫中的一者,即第二焊垫224Bx。第一封装单元220A的第一焊垫224Ax以及第二封装单元220B的第二焊垫224Bx可邻设于第一封装单元220A与第二封装单元220B之间的区域,并可限定为传输相同的电信号或电压,且可通过相应的凸块或图4中所示的互连凸块432而连接至互连导线216。在一些实施例中,第一焊垫224Ax以及第二焊垫224Bx可均为连接至一地电压的接地焊垫或连接至一电源的电源焊垫。在其他实施例中,互连导线216可应用于倒装芯片封装100、倒装芯片封装200或倒装芯片封装300,以连接两个封装单元中的两个焊垫。

图6为本发明的另一实施例的倒装芯片封装的平面示意图。在图6的实施例中。倒装芯片封装600类似于倒装芯片封装200,因此相同或相似符号代表相同或相似部件,并且部件的细节可以参考以上描述而不再赘述。在本实施例中,倒装芯片封装600可包括基板210以及通过多个凸块(未图示于图6,但可参照图1的凸块130)而接合在基板210上的芯片本体620。倒装芯片封装600与倒装芯片封装200之间的不同之处在于芯片本体620的设计。具体来说,芯片本体620不包括围绕相应封装单元中的焊垫的封环。

在本实施例中,基板210包括多个输入导线212A以及多个输出导线212B。芯片本体620包括第一封装单元620A以及第二封装单元620B。第一封装单元620A包括配置在一第一环状路径PR1中的多个第一焊垫624A,第二封装单元620B包括配置在一第二环状路径PR2中的多个第二焊垫624B。第一焊垫624Ay(即最靠近第二焊垫624B的第一焊垫624A)与第二焊垫624By(即最靠近第一焊垫624A的第二焊垫624B)之间的距离d4可介于55微米与1000微米之间。最远离第二焊垫624B的第一焊垫624A与最远离第一焊垫624A的第二焊垫624B之间的距离d5可介于28毫米与66毫米之间。

每个输入导线212A的一端与芯片本体620重叠,另一端位于基板210的第一接合区域B1。每个输出导线212B的一端与芯片本体620重叠,另一端位于基板210的第二接合区域B2。第一接合区域B1以及第二接合区域B2位于芯片本体620的相对侧。第一焊垫624A可包括多个第一输入焊垫IPA,第二焊垫624B可以包括多个第二输入焊垫IPB。第一输入焊垫IPA分别连接至部分的输入导线212A,第二输入焊垫IPB分别连接至另一部分的输入导线212A。在一些实施例中,相较连接至输入导线212A的第一输入焊垫IPA更靠近第二焊垫624B设置的一个或多个第一焊垫624A可为虚置焊垫,其类似于图3中的第一虚置焊垫DPA。相较连接至输入导线212A的第二输入焊垫IPB更靠近第一焊垫624A设置的一个或多个第二焊垫624B可为虚置焊垫,其类似于图3中的第二虚置焊垫DPB。

此外,芯片本体620还可包括位在第一焊垫624A与第二焊垫624B之间的区域的周边电路626。在一些实施例中,第一焊垫624A中的一者以及第二焊垫624B中的一者可通过类似于图4所示的互连凸块432的互连凸块而连接,或者通过类似于图5所示的互连导线216的互连导线而连接。

综上所述,本发明的实施例的倒装芯片封装的芯片本体具有封装于一个单一封装中的两个或多个封装单元,而可提供更多输出信道且利于高分辨率电子装置的应用。本发明的实施例的倒装芯片封装可通过一道接合制程制做,如此一来,对于具有多个封装单元的一个单一芯片本体的倒装芯片封装,可简化倒装芯片封装的制造。另外,本发明的实施例的单一芯片本体整合地包括两个封装单元,而利于尺寸微型化。

虽然本发明已以实施例公开如上,然其并非用以限定本发明,任何所属技术领域中普通技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视后附的权利要求书所界定者为准。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:半导体封装件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类