一种经济型630MPa高强抗震钢筋用钢及其生产方法

文档序号:62971 发布日期:2021-10-01 浏览:40次 >En<

阅读说明:本技术 一种经济型630MPa高强抗震钢筋用钢及其生产方法 (Economical 630MPa high-strength anti-seismic steel bar steel and production method thereof ) 是由 于同仁 汪开忠 郭湛 余良其 杨应东 张晓瑞 姜婷 宋祖峰 袁月 尹德福 龚梦强 于 2021-06-18 设计创作,主要内容包括:本发明的一种经济型630MPa高强抗震钢筋用钢及其生产方法,属于混凝土用热轧带肋钢筋技术领域。经济型630MPa高强抗震钢筋用钢其化学成分组成及重量百分比含量包括:C:0.20~0.30%,Si:0.40~0.80%,Mn:1.40~1.60%,P:≤0.035%,S:≤0.035%,Nb:0.010~0.020%,V:0.050~0.100%,N:0.008~0.015%,W:0.010~0.020%,其余为Fe和不可避免的杂质元素。除C、Si、Mn、V、Nb等常规强化元素外,通过少量添加W元素,利用其在钢中形成稳定的W-2(C、N)、W(C、N)的高硬度碳氮化物,提高钢的强度。(The invention discloses an economical steel for 630MPa high-strength anti-seismic reinforcing steel bars and a production method thereof, and belongs to the technical field of hot-rolled ribbed reinforcing steel bars for concrete. The economical 630MPa high-strength anti-seismic steel bar comprises the following chemical components in percentage by weight: c: 0.20 to 0.30%, Si: 0.40-0.80%, Mn: 1.40-1.60%, P: less than or equal to 0.035%, S: less than or equal to 0.035%, Nb: 0.010-0.020%, V: 0.050 to 0.100%, N: 0.008-0.015%, W: 0.010-0.020%, and the balance of Fe and inevitable impurity elements. Besides the conventional strengthening elements such as C, Si, Mn, V, Nb and the like, by adding a small amount of W element,by means of which stable W is formed in steel 2 (C, N) and W (C, N) to improve the strength of the steel.)

一种经济型630MPa高强抗震钢筋用钢及其生产方法

技术领域

本发明属于混凝土用热轧带肋钢筋

技术领域

,更具体地说,涉及一种经济型630MPa高强抗震钢筋用钢及其生产方法。

背景技术

我国高速工业化和城市化带动建筑行业的快速发展,建筑钢筋成为钢材产品中消耗量最大的品种,占全部钢产量的1/5。近年来随着国家出台了一系列政策加强高强钢筋的推广应用,我国高强钢筋的产量和增长率以及高强钢筋产量占钢筋年产量的比例呈逐年增长的态势。

应用高强钢筋,在工程建设阶段可以减少物流运输和建筑钢筋加工、连接工作量,从而节约土地、煤、水、矿石等能源和资源的消耗量,并减少CO2、SO2等有害气体和废渣的排放;在使用阶段,则可降低建筑采暖、照明、家用电器、通风等能耗,减少维护使用费,实现降低工程成本,获得巨大的直接或间接经济收益。高强钢筋的推广应用符合我国提出的可持续发展的国策,并将推进能源燃料的节约和合理利用,有利于促进工程建设的科学发展,对促进钢铁工业结构调整和转型升级、淘汰落后生产力,实施可持续发展将具有重要意义。

中国专利申请号201310444163.4,公开日为:2014-01-08的专利文献公开了“一种630MPa级高强热轧钢筋及其生产工艺”。该螺纹钢筋包含如下组分:0.38~0.43%C,0.8~1.1%Cr,0.75~1.0%Mn,0.15~0.25%Mo,0.15~0.3%Si,≤0.035%S、P,≤0.035%N,余量为Fe。该螺纹钢筋的制造方法“采用加热炉加热到1000-1200℃,然后经在线第一冷却工序将钢筋快速度冷却到610-630℃,然后在淬火装置内用水或淬火液进行为时12-14秒钟淬火,然后经过回火加热炉加热到550-660℃回火,再通过第二冷却工艺冷却到常温”。其存在以下不足:(1)Cr、Mo含量较高,大大增加生产成本,且Cr不利于延伸指标、易脆断;(2)C、N含量过高,不利于焊接性能;(3)国内钢筋生产线大多没有在线回火装置,生产工艺很难实现。

中国专利申请号201310593620.6,公开日为:2014-03-19的的专利文献公开了“一种630MPa级以上高强钢筋及其钢筋混凝土应用方法”。该高强钢筋的重量百分比成分为:碳:0.28%-0.38%、硅:0-0.35%、锰:0-0.90%、铬:0.80%-1.50%、镍:3.00%-4.00%、钼:0.40%-0.60%、磷:0-0.015%、硫:0-0.015%、氢:0-2.0ppm、钒:0.10%-0.20%、钛:0-0.025%、铜:0-0.20%、铝:0-0.05%、0-0.50%残余元素,其余为Fe。该高强钢筋含有大量国家战略资源Ni、Mo等合金,不仅生产成本高,而且造成国家战略资源不必要的浪费。

基于上述内容,本发明结合现有工艺和相关装备,提出了一种经济型630MPa高强抗震钢筋用钢及其生产方法,在满足630MPa级高强钢筋性能要求的前提下,大大节约成本和资源。

发明内容

1.要解决的问题

针对现有钢筋钢抗震性能差,强度低的问题,本发明提供一种经济型630MPa高强抗震钢筋用钢;结合现有工艺装备条件,设计了635MPa钢筋的成分范围及两相区轧制工艺,在不降低延性指标的前提下使强度级别达到635MPa,来满足高层、大跨度建筑结构的需要。

本发明的另一目的在于提供一种经济型630MPa高强抗震钢筋用钢的生产方法。

2.技术方案

为了解决上述问题,本发明所采用的技术方案如下:

本发明的一种经济型630MPa高强抗震钢筋用钢,所述经济型630MPa高强抗震钢筋用钢其化学成分组成及重量百分比含量包括:C:0.20~0.30%,Si:0.40~0.80%,Mn:1.40~1.60%,P:≤0.035%,S:≤0.035%,Nb:0.010~0.020%,V:0.050~0.100%,N:0.008~0.015%,W:0.010~0.020%,其余为Fe和不可避免的杂质元素。除C、Si、Mn、V、Nb等常规强化元素外,通过少量添加W元素,利用其在钢中形成稳定的W2(C、N)、W(C、N)的高硬度碳氮化物,提高钢的强度。

作为本发明的进一步说明,所述化学成分组成中:1.35[C]+0.8[N]≤0.5[W]+0.2[V]+0.3[Nb]+0.25[Si]+0.1[Mn]。W2(C、N)、W(C、N)能起到阻碍晶粒长大的作用,保证钢的延性,即利用上述的公式,保证足量的碳氮化物的析出,充分发挥V、Nb、Mo的析出强化作用,满足强度的要求。

作为本发明的进一步说明,所述化学成分组成中:0.1≤[Mo]/([V]+[Nb])≤0.3。通过采用奥氏体未再结晶区轧制工艺,抑制晶粒的长大、同时促进晶粒内形成大量位错和亚晶,在保证性能的前提下,大幅减少V、Nb等微合金元素的加入量,添加少量W元素来弥补V和Nb的减少带来的强度降低,即上述公式确保W与V、Nb元素合适的比例下,实现奥氏体未再结晶区轧制。

作为本发明的进一步说明,所述经济型630MPa高强抗震钢筋用钢其金相组织为:铁素体+珠光体。

本发明的一种经济型630MPa高强抗震钢筋用钢的生产方法,包括以下步骤:

S1、钢水冶炼,冶炼炉出钢过程中加入钨铁;

S2、LF炉精炼;

S3、连铸;

S4、奥氏体未再结晶区轧制;

S5、轧后快冷,上冷床。

作为本发明的进一步说明,其特征在于,所述步骤S1中,冶炼炉出钢3/5时加入钨铁。

作为本发明的进一步说明,其特征在于,所述步骤S2中,LF炉精炼时间≥20min。

作为本发明的进一步说明,其特征在于,所述步骤S4中,奥氏体未再结晶区轧制包括以下步骤:

(1)加热温度范围为:1080~1180℃;均热温度范围为:1030~1130℃,均热时间范围为:80-120min;有利于钢的奥氏体化及促进Si、Mn、V、Nb、W在奥氏体中的溶解,方坯在输送辊道上经喷水冷却。

(2)开轧温度范围为:950~1050℃;经6架粗轧机组轧制,变形量20%,经6架中轧机组轧制,变形量20%,在中轧机组到精轧机组间设置喷水冷却装置。

(3)进精轧机温度范围为:900~950℃;经6架精轧机组在奥氏体未再结晶区轧制,大变形量60%,利用低温、大变形量,促进γ奥氏体向α铁素体+P珠光体转变,且细化铁素体晶粒、促进晶粒内形成大量位错,提高钢的强韧性能。

作为本发明的进一步说明,其特征在于,所述步骤S4中,精轧前设置喷水冷却装置。

作为本发明的进一步说明,其特征在于,所述步骤S5中,上冷床返红温度范围为:800~900℃。精轧机后设置快速水冷装置,通过轧后快冷,上冷床返红温度控制在800~900℃,获得理想的主要是铁素体+珠光体的细晶组织,晶粒度达到9级及以上,且促进V(C,N)、NbC的第二相粒子的析出,从而提高钢筋的强韧性能。

3.有益效果

相比于现有技术,本发明的有益效果为:

(1)本发明的一种经济型630MPa高强抗震钢筋用钢,生产出的钢其屈服强度≥630MPa,抗拉强度≥790MPa,断后伸长率≥15%,最大力下总伸长率≥9.0%,强屈比≥1.25,屈屈比≤1.30。所要解决的关键技术是提供一种630MPa级高强抗震钢筋的经济型合金成分范围及奥氏体未再结晶轧制工艺,不仅满足市场对630MPa级高强抗震钢筋的需求,而且大大节约成本和资源;

(2)本发明的一种经济型630MPa高强抗震钢筋用钢,采用经济型的成分设计,并结合奥氏体未再结晶区轧制方法,综合利用微合金元素的固溶、析出以及奥氏体未再结晶区轧制细晶强化等综合强化手段,实现钢筋强韧性能的提高,达到630MPa级高强抗震钢筋性能要求;

(3)本发明的一种经济型630MPa高强抗震钢筋用钢的生产方法,加热温度控制在1080~1180℃,均热温度控制在1030~1130℃,均热时间80-120min,有利于钢的奥氏体化及促进Si、Mn、V、Nb、W在奥氏体中的溶解,方坯在输送辊道上经喷水冷却,开轧温度控制在950~1050℃,经6架粗轧机组轧制,变形量20%,经6架中轧机组轧制,变形量20%,在中轧机组到精轧机组间设置喷水冷却装置,将进精轧机温度控制在900~950℃,经6架精轧机组在奥氏体未再结晶区轧制,大变形量60%,利用低温、大变形量,促进γ奥氏体向α铁素体+P珠光体转变,且细化铁素体晶粒、促进晶粒内形成大量位错,提高钢的强韧性能,精轧机后设置快速水冷装置,通过轧后快冷,上冷床返红温度控制在800~900℃,获得理想的主要是铁素体+珠光体的细晶组织,晶粒度达到9级及以上,且促进V(C,N)、NbC的第二相粒子的析出,从而提高钢筋的强韧性能。

附图说明

以下将结合附图和实施例来对本发明的技术方案作进一步的详细描述,但是应当知道,这些附图仅是为解释目的而设计的,因此不作为本发明范围的限定。此外,除非特别指出,这些附图仅意在概念性地说明此处描述的结构构造,而不必要依比例进行绘制。

图1为本发明的一种经济型630MPa高强抗震钢筋用钢500倍金相组织示意图,其中白色:铁素体,灰色:珠光体,晶粒度11.5级。

具体实施方式

下文对本发明的示例性实施例的详细描述参考了附图,该附图形成描述的一部分,在该附图中作为示例示出了本发明可实施的示例性实施例。尽管这些示例性实施例被充分详细地描述以使得本领域技术人员能够实施本发明,但应当理解可实现其他实施例且可在不脱离本发明的精神和范围的情况下对本发明作各种改变。下文对本发明的实施例的更详细的描述并不用于限制所要求的本发明的范围,而仅仅为了进行举例说明且不限制对本发明的特点和特征的描述,以提出执行本发明的最佳方式,并足以使得本领域技术人员能够实施本发明。因此,本发明的范围仅由所附权利要求来限定。

本发明的一种经济型630MPa高强抗震钢筋用钢,其化学成分组成及重量百分比含量如表1所示:

表1各实施例的化学元素组成及重量百分比(重量百分比%,余量为Fe和不可避免的杂质)

上述实施例的成分满足以下范围:

C:0.20~0.30%,Si:0.40~0.80%,Mn:1.40~1.60%,P:≤0.035%,S:≤0.035%,Nb:0.010~0.020%,V:0.050~0.100%,N:0.008~0.015%,W:0.010~0.020%,其余为Fe和不可避免的杂质元素。

上述元素在抗震钢筋用钢中的作用基本如下:

C是钢强化的主要元素,可在钢中形成固溶体、碳化物来提高强度,有利于强屈比的提高。C含量越高、强度越高,但塑性、韧性越低。因此在保证钢的强度能满足使用要求时,应尽量减少C的含量。本发明C的含量为0.20~0.30%。

Si起固溶强化作用,主要在铁素体中形成固溶体,来提高钢的强度,有利于强屈比的提高,但会降低钢的塑性。本发明Si含量在0.40~0.80%。

Mn起固溶强化作用,主要在珠光体中形成固溶体,来提高钢的强度,有利于强屈比的提高,但含量较高时,使晶粒粗大,增加脆性,还会影响钢的焊接性能。本发明Mn含量在1.40~1.60%。

Nb主要起细晶强化作用,少量Nb(≤0.02%)即可显著提高钢的抗拉强度和屈服强度,同时不降低钢的延性指标。本发明中Nb含量在0.010~0.020%。

V主要起析出强化的作用,利用V(C,N)第二相粒子在钢中的细小弥散分布,显著提高钢的强韧性能,但V加入过多会造成V资源的浪费。本发明中V含量在0.05~0.10%。

N能提升钢的强度,尤其在含V钢中,N能促进V的沉淀析出、并细化晶粒,VN钢的沉淀强化作用是V钢的近2倍,但N含量过高会引起时效硬化。本发明中N含量在0.008~0.015%。

W是强碳化物形成元素,在钢中形成稳定的W2C、WC的高硬度碳化物,也有部分钨以固溶体状态存在于奥氏体中,提高钢的强度,另外还能起到细化晶粒作用。但W含量过高,不仅造成资源浪费,而且恶化钢的延伸性能。本发明W含量在0.010~0.020%。

上述元素中,除C、Si、Mn、V、Nb等常规强化元素外,通过少量添加W元素,利用其在钢中形成稳定的W2(C、N)、W(C、N)的高硬度碳氮化物,提高钢的强度。

W2(C、N)、W(C、N)能起到阻碍晶粒长大的作用,保证钢的延性,即利用上述的公式,保证足量的碳氮化物的析出,充分发挥V、Nb、Mo的析出强化作用,满足强度的要求。通过1.35[C]+0.8[N]≤0.5[W]+0.2[V]+0.3[Nb]+0.25[Si]+0.1[Mn]的元素控制达成。

采用奥氏体未再结晶区轧制工艺,抑制晶粒的长大、同时促进晶粒内形成大量位错和亚晶,在保证性能的前提下,大幅减少V、Nb等微合金元素的加入量,添加少量W元素来弥补V和Nb的减少带来的强度降低,即上述公式确保W与V、Nb元素合适的比例下,实现奥氏体未再结晶区轧制。通过0.1≤[Mo]/([V]+[Nb])≤0.3的元素控制达成。

本发明的一种经济型630MPa高强抗震钢筋用钢的生产方法,包括以下步骤:

S1、钢水冶炼,控制冶炼终点碳含量,挡渣出钢,冶炼炉出钢过程中加入钨铁;钨铁含W量为70~80%,出钢3/5时加入钨铁。

S2、LF炉精炼;LF炉精炼时间≥20min,W的收得率≥95%。

S3、连铸成需要的坯料。

S4、奥氏体未再结晶区轧制,奥氏体未再结晶区轧制包括以下步骤:

(1)加热温度范围为:1080~1180℃;均热温度范围为:1030~1130℃,均热时间范围为:80-120min;有利于钢的奥氏体化及促进Si、Mn、V、Nb、W在奥氏体中的溶解,方坯在输送辊道上经喷水冷却。

(2)开轧温度范围为:950~1050℃;经6架粗轧机组轧制,变形量20%,经6架中轧机组轧制,变形量20%,在中轧机组到精轧机组间设置喷水冷却装置。

(3)进精轧机温度范围为:900~950℃;经6架精轧机组在奥氏体未再结晶区轧制,大变形量60%,利用低温、大变形量,促进γ奥氏体向α铁素体+P珠光体转变,且细化铁素体晶粒、促进晶粒内形成大量位错,提高钢的强韧性能。

S5、轧后快冷,上冷床,上冷床返红温度范围为:800~900℃。精轧机后设置快速水冷装置,通过轧后快冷,上冷床返红温度控制在800~900℃,如图1所示,获得理想的主要是铁素体+珠光体的细晶组织,晶粒度达到9级及以上,且促进V(C,N)、NbC的第二相粒子的析出,从而提高钢筋的强韧性能。

实施例1

本实施例的一种经济型630MPa高强抗震钢筋用钢,其化学成分组成及重量百分比含量如表1中实施例1所示。

本实施例的一种经济型630MPa高强抗震钢筋用钢的生产方法,其在本实施例化学成分基础上,包括以下步骤:

S1、转炉炼钢,控制冶炼终点碳含量为0.06%C,挡渣出钢,出钢3/5时加入钨铁,钨铁含W量为70~80%,出钢3/5时加入钨铁。

S2、LF炉精炼;LF炉精炼时间≥20min,W的收得率≥95%。

S3、连铸成150*150mm方坯。

S4、奥氏体未再结晶区轧制,奥氏体未再结晶区轧制包括以下步骤:

(1)加热温度范围为:1080℃;均热温度范围为:1030℃,均热时间范围为:120min;

(2)开轧温度范围为:950℃;经6架粗轧机组轧制,变形量20%,经6架中轧机组轧制,变形量20%,在中轧机组到精轧机组间设置喷水冷却装置。

(3)进精轧机温度范围为:900℃;经6架精轧机组在奥氏体未再结晶区轧制,变形量60%,利用低温、大变形量,促进γ奥氏体向α铁素体+P珠光体转变,且细化铁素体晶粒、促进晶粒内形成大量位错,提高钢的强韧性能。

S5、轧后快冷,上冷床,上冷床返红温度范围为:800℃。

所得抗震钢筋用钢,经过三组测试,其力学性能如表2所示:

表2实施例1的抗震钢筋用钢的力学性能

R<sub>eL</sub>(MPa) R<sub>m</sub>(MPa) 强屈比(R<sub>m</sub>/R<sub>eL</sub>) 屈屈比(R<sub>eL</sub>/630) A(%) A<sub>gt</sub>(%)
657 832 1.27 1.04 18.5 10.6
655 820 1.25 1.04 19.5 11.5
660 852 1.29 1.05 20.0 9.5

实施例2

本实施例的一种经济型630MPa高强抗震钢筋用钢,其化学成分组成及重量百分比含量如表1中实施例2所示。

本实施例的一种经济型630MPa高强抗震钢筋用钢的生产方法,其在本实施例化学成分基础上,包括以下步骤:

S1、转炉炼钢,控制冶炼终点碳含量为0.07%C,挡渣出钢,出钢3/5时加入钨铁,钨铁含W量为70~80%,出钢3/5时加入钨铁。

S2、LF炉精炼;LF炉精炼时间≥20min,W的收得率≥95%。

S3、连铸成150*150mm方坯。

S4、奥氏体未再结晶区轧制,奥氏体未再结晶区轧制包括以下步骤:

(1)加热温度范围为:1180℃;均热温度范围为:1130℃,均热时间范围为:80min;

(2)开轧温度范围为:1050℃;经6架粗轧机组轧制,变形量20%,经6架中轧机组轧制,变形量20%,在中轧机组到精轧机组间设置喷水冷却装置。

(3)进精轧机温度范围为:950℃;经6架精轧机组在奥氏体未再结晶区轧制,变形量60%,利用低温、大变形量,促进γ奥氏体向α铁素体+P珠光体转变,且细化铁素体晶粒、促进晶粒内形成大量位错,提高钢的强韧性能。

S5、轧后快冷,上冷床,上冷床返红温度范围为:900℃。

所得抗震钢筋用钢,经过三组测试,其力学性能如表3所示:

表3实施例1的抗震钢筋用钢的力学性能

R<sub>eL</sub>(MPa) R<sub>m</sub>(MPa) 强屈比(Rm/ReL) 屈屈比(ReL/630) A(%) A<sub>gt</sub>(%)
684 865 1.26 1.09 18.0 9.0
674 845 1.25 1.07 19.0 9.5
670 845 1.26 1.06 20.6 12.0

实施例3

本实施例的一种经济型630MPa高强抗震钢筋用钢,其化学成分组成及重量百分比含量如表1中实施例3所示。

本实施例的一种经济型630MPa高强抗震钢筋用钢的生产方法,其在本实施例化学成分基础上,包括以下步骤:

S1、转炉炼钢,控制冶炼终点碳含量为0.08%C,挡渣出钢,出钢3/5时加入钨铁,钨铁含W量为70~80%,出钢3/5时加入钨铁。

S2、LF炉精炼;LF炉精炼时间≥20min,W的收得率≥95%。

S3、连铸成150*150mm方坯。

S4、奥氏体未再结晶区轧制,奥氏体未再结晶区轧制包括以下步骤:

(1)加热温度范围为:1130℃;均热温度范围为:1080℃,均热时间范围为:100min;

(2)开轧温度范围为:1000℃;经6架粗轧机组轧制,变形量20%,经6架中轧机组轧制,变形量20%,在中轧机组到精轧机组间设置喷水冷却装置。

(3)进精轧机温度范围为:925℃;经6架精轧机组在奥氏体未再结晶区轧制,变形量60%,利用低温、大变形量,促进γ奥氏体向α铁素体+P珠光体转变,且细化铁素体晶粒、促进晶粒内形成大量位错,提高钢的强韧性能。

S5、轧后快冷,上冷床,上冷床返红温度范围为:850℃。

所得抗震钢筋用钢,经过三组测试,其力学性能如表3所示:

表3实施例1的抗震钢筋用钢的力学性能

R<sub>eL</sub>(MPa) R<sub>m</sub>(MPa) 强屈比(Rm/ReL) 屈屈比(ReL/630) A(%) A<sub>gt</sub>(%)
679 863 1.27 1.08 18.2 9.3
669 843 1.26 1.06 19.2 9.8
665 843 1.27 1.06 20.8 12.3

上述实施例中,ReL为屈服强度;Rm为抗拉强度;强屈比(Rm/ReL),Rm为实测抗拉强度,ReL为实测屈服强度;屈屈比(ReL/635),630为钢筋屈服强度特性值,单位MPa;A为断后延伸率;Agt为最大力下延伸率。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种430铁素体不锈钢及其生产工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!